
TAU

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

The 11th DOE ACTS
Workshop

Berkeley, CA – Aug 20, 2010

Sameer Shende
Performance Research Lab
University of Oregon
http://tau.uoregon.edu

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Acknowledgments: PRL, UO

•  Prof. Allen D. Malony, Comp. & Info Sci., Dir. NIC	

•  Wyatt Spear	

•  Dr. Chee Wai Lee	

•  Scott Biersdorff	

•  Alan Morris	

•  Suzanne Millstein	

•  Dr. Rob Yelle	

•  Carl Woeck	

•  William Voorhess	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

TAU Performance System®

•  Tuning and Analysis Utilities (15+ year project)	

•  Performance problem solving framework for HPC	

–  Integrated, scalable, flexible, portable	

–  Target all parallel programming / execution paradigms	

•  Integrated performance toolkit (open source) 	

–  Instrumentation, measurement, analysis, visualization	

–  Widely-ported performance profiling / tracing system	

–  Performance data management and data mining	

•  Broad application use (NSF, DOE, DOD, …)	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

TAU Performance System

•  http://tau.uoregon.edu/	

•  Multi-level performance instrumentation	

–  Multi-language automatic source instrumentation	

•  Flexible and configurable performance measurement	

•  Widely-ported parallel performance profiling system	

–  Computer system architectures and operating systems	

–  Different programming languages and compilers	

•  Support for multiple parallel programming paradigms	

–  Multi-threading, message passing, mixed-mode, hybrid	

•  Integration in complex software, systems, applications	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

What is TAU?
•  TAU is a performance evaluation tool	

•  It supports parallel profiling and tracing 	

•  Profiling shows you how much (total) time was spent in each routine 	

•  Tracing shows you when the events take place in each process along a timeline	

•  TAU uses a package called PDT for automatic instrumentation of the source code	

•  Profiling and tracing can measure time as well as hardware performance counters

from your CPU	

•  TAU can automatically instrument your source code (routines, loops, I/O,

memory, phases, etc.)	

•  TAU runs on all HPC platforms and it is free (BSD style license)	

•  TAU has instrumentation, measurement and analysis tools	

–  paraprof is TAU’s 3D profile browser	

•  To use TAU’s automatic source instrumentation, you need to set a couple of

environment variables and substitute the name of your compiler with a TAU shell
script	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Using TAU: A brief Introduction
•  TAU supports several measurement options (profiling, tracing,

profiling with hardware counters, etc.)	

•  Each measurement configuration of TAU corresponds to a unique

stub makefile and library that is generated when you configure it	

•  To instrument source code using PDT	

–  Choose an appropriate TAU stub makefile in <arch>/lib:	

% setenv TAU_MAKEFILE $TAU/Makefile.tau-mpi-pdt	

% setenv TAU_OPTIONS ‘-optVerbose …’ (see tau_compiler.sh -help)	

And use tau_f90.sh, tau_cxx.sh or tau_cc.sh as Fortran, C++ or C compilers:	

% mpif90 foo.f90 	

changes to 	

% tau_f90.sh foo.f90	

•  Execute application and analyze performance data:	

% pprof (for text based profile display)	

% paraprof (for GUI)	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Direct Observation: Events
•  Event types	

–  Interval events (begin/end events)	

•  measures performance between begin and end	

•  metrics monotonically increase	

–  Atomic events	

•  used to capture performance data state	

•  Code events	

–  Routines, classes, templates	

–  Statement-level blocks, loops	

•  User-defined events	

–  Specified by the user	

•  Abstract mapping events	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

inclusive
duration

exclusive
duration

int foo()
{
 int a;
 a = a + 1;

 bar();

 a = a + 1;
 return a;
}

Inclusive and Exclusive Profiles

•  Performance with respect to code regions	

•  Exclusive measurements for region only	

•  Inclusive measurements includes child regions	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Interval Events, Atomic Events in TAU

Interval event	

e.g., routines	

(start/stop)	

Atomic events	

(trigger with 	

value)	

% setenv TAU_CALLPATH_DEPTH 	

0	

% setenv TAU_TRACK_HEAP 	

 	

1	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Atomic Events, Context Events

% setenv TAU_CALLPATH_DEPTH 	

1	

% setenv TAU_TRACK_HEAP 	

 	

1	

Atomic event	

Context event���
= atomic event	

+ executing ���
context	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Context Events (default)

% setenv TAU_CALLPATH_DEPTH 	

2	

% setenv TAU_TRACK_HEAP 	

 	

1	

Context event���
= atomic event	

+ executing ���
context	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

A New Approach: tau_exec

•  Runtime instrumentation by pre-loading the
measurement library	

•  Works on dynamic executables (default under Linux)	

•  Substitutes I/O, MPI and memory allocation/

deallocation routines with instrumented calls	

•  Track interval events (e.g., time spent in write()) as

well as atomic events (e.g., how much memory was
allocated) in wrappers	

•  Accurately measure I/O and memory usage	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Issues

•  Heap memory usage reported by the mallinfo() call is
not 64-bit clean. 	

–  32 bit counters in Linux roll over when > 4GB memory is used	

–  We keep track of heap memory usage in 64 bit counters inside TAU	

•  Compensation of perturbation introduced by tool	

–  Only show what application uses	

–  Create guards for TAU calls to not track I/O and memory allocations/

de-allocations performed inside TAU	

•  Provide broad POSIX I/O and memory coverage 	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

tau_exec: Usage

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

tau_exec

•  Uninstrumented execution	

–  % mpirun –np 256 ./a.out	

•  Track MPI Performance	

–  % mpirun –np 256 tau_exec ./a.out	

•  Track I/O Performance (MPI enabled by default)	

–  % mpirun –np 256 tau_exec –io ./a.out	

•  Track Memory	

–  % setenv TAU_TRACK_MEMORY_LEAKS 1	

–  % mpirun –np 256 tau_exec –memory ./a.out	

•  Track I/O and Memory	

–  % mpirun –np 256 tau_exec –io –memory ./a.out	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

tau_exec: A tool to simplify Memory, I/O evaluation

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Environment Variables in TAU
Environment	
 Variable	
 Default	
 Descrip5on	

TAU_TRACE	
 0	
 Se,ng	
 to	
 1	
 turns	
 on	
 tracing	

TAU_CALLPATH	
 0	
 Se,ng	
 to	
 1	
 turns	
 on	
 callpath	
 profiling	

TAU_TRACK_MEMORY_LEAKS	
 0	
 Se,ng	
 to	
 1	
 turns	
 on	
 leak	
 detecEon	

TAU_TRACK_HEAP	
 or	

TAU_TRACK_HEADROOM	

0	
 Se,ng	
 to	
 1	
 turns	
 on	
 tracking	
 heap	
 memory/headroom	
 at	
 rouEne	
 entry	
 &	
 exit	

using	
 context	
 events	
 (e.g.,	
 Heap	
 at	
 Entry:	
 main=>foo=>bar)	

TAU_CALLPATH_DEPTH	
 2	
 Specifies	
 depth	
 of	
 callpath.	
 Se,ng	
 to	
 0	
 generates	
 no	
 callpath	
 or	
 rouEne	

informaEon,	
 se,ng	
 to	
 1	
 generates	
 flat	
 profile	
 and	
 context	
 events	
 have	
 just	

parent	
 informaEon	
 (e.g.,	
 Heap	
 Entry:	
 foo)	

TAU_SYNCHRONIZE_CLOCKS	
 1	
 Synchronize	
 clocks	
 across	
 nodes	
 to	
 correct	
 Emestamps	
 in	
 traces	

TAU_COMM_MATRIX	
 0	
 Se,ng	
 to	
 1	
 generates	
 communicaEon	
 matrix	
 display	
 using	
 context	
 events	

TAU_THROTTLE	
 1	
 Se,ng	
 to	
 0	
 turns	
 off	
 thro_ling.	
 Enabled	
 by	
 default	
 to	
 remove	
 instrumentaEon	

in	
 lightweight	
 rouEnes	
 that	
 are	
 called	
 frequently	

TAU_THROTTLE_NUMCALLS	
 100000	
 Specifies	
 the	
 number	
 of	
 calls	
 before	
 tesEng	
 for	
 thro_ling	

TAU_THROTTLE_PERCALL	
 10	
 Specifies	
 value	
 in	
 microseconds.	
 Thro_le	
 a	
 rouEne	
 if	
 it	
 is	
 called	
 over	
 100000	

Emes	
 and	
 takes	
 less	
 than	
 10	
 usec	
 of	
 inclusive	
 Eme	
 per	
 call	

TAU_COMPENSATE	
 0	
 Se,ng	
 to	
 1	
 enables	
 runEme	
 compensaEon	
 of	
 instrumentaEon	
 overhead	

TAU_PROFILE_FORMAT	
 Profile	
 Se,ng	
 to	
 “merged”	
 generates	
 a	
 single	
 file.	
 “snapshot”	
 generates	
 xml	
 format	

TAU_METRICS	
 TIME	
 Se,ng	
 to	
 a	
 comma	
 separted	
 list	
 generates	
 other	
 metrics.	
 (e.g.,	

TIME:linuxEmers:PAPI_FP_OPS:PAPI_NATIVE_<event>)	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Memory Leaks in MPI

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Instrumentation Issues
•  Dynamic Instrumentation using DyninstAPI [U. Wisconsin,

Madison, and U. Maryland]	

•  Pre-execution instrumentation	

•  Shell script spawned the task on the node and instrumented it	

•  As the number of processors increased, more time was wasted:	

–  transferring un-instrumented executables to the compute nodes,	

–  Instrumenting the application binary 	

•  Solution: Binary re-writing!	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Re-writing Binaries

•  Support for both static and dynamic executables	

•  Specify the list of routines to instrument/exclude from

instrumentation	

•  Specify the TAU measurement library to be injected	

•  Simplify the usage of TAU:	

–  To instrument:	

•  % tau_run a.out –o a.inst	

–  To perform measurements, execute the application:	

•  % mpirun –np 4 ./a.inst	

–  To analyze the data:	

•  % paraprof 	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Using TAU with DyninstAPI : tau_run

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

TAU Performance System Components

2
2	

TAU Architecture	

 Program Analysis	

Parallel Profile Analysis 	

PD

T	

Pe

rf
D

M
F	

Pa
ra

Pr
of
	

Performance Data Mining	

Performance Monitoring	

TA
U

ov
er

Su
pe

rm
on
	

PerfExplorer	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

TAU Instrumentation / Measurement

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

TAU Instrumentation
•  Flexible instrumentation mechanisms at multiple levels	

–  Source code	

•  manual (TAU API, TAU Component API)	

•  automatic	

–  C, C++, F77/90/95 (Program Database Toolkit (PDT))	

–  OpenMP (directive rewriting (Opari), POMP spec)	

–  Object code	

•  pre-instrumented libraries (e.g., MPI using PMPI)	

•  statically-linked and dynamically-linked	

–  Executable code	

•  dynamic instrumentation (pre-execution) (DynInstAPI)	

•  virtual machine instrumentation (e.g., Java using JVMPI)	

•  Python interpreter based instrumentation at runtime	

–  Proxy Components	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

TAU Analysis

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

ParaProf Profile Analysis Framework

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Parallel Profile Visualization: ParaProf

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

PerfDMF Architecture

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Building Bridges to Other Tools

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Direct Performance Observation

•  Execution actions of interest exposed as events	

–  In general, actions reflect some execution state	

•  presence at a code location or change in data	

•  occurrence in parallelism context (thread of execution)	

–  Events encode actions for performance system to observe	

•  Observation is direct	

–  Direct instrumentation of program (system) code (probes)	

–  Instrumentation invokes performance measurement	

–  Event measurement: performance data, meta-data, context	

•  Performance experiment	

–  Actual events + performance measurements	

•  Contrast with (indirect) event-based sampling	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

TAU Instrumentation Approach

•  Support for standard program events	

–  Routines, classes and templates	

–  Statement-level blocks	

–  Begin/End events (Interval events)	

•  Support for user-defined events	

–  Begin/End events specified by user	

–  Atomic events (e.g., size of memory allocated/freed)	

–  Flexible selection of event statistics	

•  Provides static events and dynamic events	

•  Enables “semantic” mapping	

•  Specification of event groups (aggregation, selection)	

•  Instrumentation optimization	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

TAU Event Interface

•  Events have a type, a group association, and a name	

•  TAU events names are character strings	

–  Powerful way to encode event information	

–  Inefficient way to communicate each event occurrence	

•  TAU maps a new event name to an event ID	

–  Done when event is first encountered (get event handle)	

–  Event ID is used for subsequent event occurrences	

–  Assigning a uniform event ID a priori is problematic	

•  A new event is identified by a new event name in TAU	

–  Can create new event names at runtime	

–  Allows for dynamic events (TAU renames events)	

–  Allows for context-based, parameter-based, phase events	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Using TAU: A brief Introduction
•  TAU supports several measurement options (profiling, tracing,

profiling with hardware counters, etc.)	

•  Each measurement configuration of TAU corresponds to a unique

stub makefile and library that is generated when you configure it	

•  To instrument source code using PDT	

–  Choose an appropriate TAU stub makefile in <arch>/lib:	

% setenv TAU_MAKEFILE /usr/local/packages/tau/i386_linux/lib/Makefile.tau-mpi-pdt	

% setenv TAU_OPTIONS ‘-optVerbose …’ (see tau_compiler.sh -help)	

And use tau_f90.sh, tau_cxx.sh or tau_cc.sh as Fortran, C++ or C compilers:	

% mpif90 foo.f90 	

changes to 	

% tau_f90.sh foo.f90	

•  Execute application and analyze performance data:	

% pprof (for text based profile display)	

% paraprof (for GUI)	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

TAU	
 Measurement	
 ConfiguraEon	

% cd /usr/local/packages/tau/i386_linux/lib; ls Makefile.*
Makefile.tau-pdt
Makefile.tau-mpi-pdt
Makefile.tau-opari-openmp-mpi-pdt
Makefile.tau-mpi-scalasca-epilog-pdt
Makefile.tau-mpi-vampirtrace-pdt
Makefile.tau-multiplecounters-mpi-papi-pdt
Makefile.tau-multiplecounters-papi-mpi-openmp-opari-pdt
Makefile.tau-pthread-pdt…	

•  For	
 an	
 MPI+F90	
 applicaEon,	
 you	
 may	
 want	
 to	
 start	
 with:	

Makefile.tau-­‐mpi-­‐pdt	

–  Supports	
 MPI	
 instrumentaEon	
 &	
 PDT	
 for	
 automaEc	
 source	
 instrumentaEon	

–  % setenv TAU_MAKEFILE
/usr/local/packages/tau/i386_linux/lib/Makefile.tau-mpi-
pdt

–  % tau_f90.sh matrix.f90 -o matrix	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Usage Scenarios: Routine Level Profile
•  Goal: What routines account for the most time? How much?	

•  Flat profile with wallclock time:	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Generating a flat profile with MPI

% setenv TAU_MAKEFILE /usr/local/packages/tau/i386_linux
 /lib/Makefile.tau-mpi-pdt
% set path=(/usr/local/packages/tau/i386_linux/bin $path)
% tau_f90.sh matmult.f90 -o matmult
(Or edit Makefile and change F90=tau_f90.sh)

% mpirun -np 4 ./matmult
% paraprof -–pack app.ppk
 Move the app.ppk file to your desktop.

% paraprof app.ppk

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

TAU Measurement Configuration –
Examples •  ./configure –pdt=/usr/local/packages/pdtoolkit-3.16 -mpi Configure using

PDT and MPI	

•  ./configure -papi=/usr/local/packages/papi-4.0.0 ���

 -pdt=<dir> -mpi ; make clean install	

–  Use PAPI counters (one or more) with C/C++/F90 automatic instrumentation.

Also instrument the MPI library.	

•  Typically configure multiple measurement libraries using installtau	

•  Past configurations are stored in TAU’s .all_configs file and .installflags	

•  Each configuration creates a unique <arch>/lib/Makefile.tau<options> ���

stub makefile. It corresponds to the configuration options used. e.g.,	

–  /usr/local/packages/i386_linux/lib/Makefile.tau-mpi-pdt	

–  /usr/local/packages/i386_linux/lib/Makefile.tau-mpi-papi-pdt	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Compile-Time Environment Variables
•  Optional parameters for TAU_OPTIONS: [tau_compiler.sh –help]	

-optVerbose 	

 	

Turn on verbose debugging messages	

-optCompInst 	

 	

Use compiler based instrumentation	

-optNoCompInst 	

 	

Do not revert to compiler instrumentation if source 	

	

 	

 	

instrumentation fails.	

-optDetectMemoryLeaks 	

Turn on debugging memory allocations/ 	

 	

	

 	

 	

de-allocations to track leaks	

-optKeepFiles 	

Does not remove intermediate .pdb and .inst.* files	

-optPreProcess 	

Preprocess Fortran sources before instrumentation	

-optTauSelectFile="" 	

Specify selective instrumentation file for tau_instrumentor	

-optLinking="" 	

Options passed to the linker. Typically ���

	

 	

 	

$(TAU_MPI_FLIBS) $(TAU_LIBS) $(TAU_CXXLIBS)	

-optCompile="" 	

Options passed to the compiler. Typically ���

	

 	

 	

$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)	

-optPdtF95Opts="" 	

Add options for Fortran parser in PDT (f95parse/gfparse)	

-optPdtF95Reset="" 	

Reset options for Fortran parser in PDT (f95parse/gfparse)	

-optPdtCOpts="" 	

Options for C parser in PDT (cparse). Typically ���

	

 	

 	

$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)	

-optPdtCxxOpts="" 	

Options for C++ parser in PDT (cxxparse). Typically���

	

 	

 	

$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)	

...	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Compiling Fortran Codes with TAU
•  If your Fortran code uses free format in .f files (fixed is default for .f), you may use:	

% setenv TAU_OPTIONS ‘-optPdtF95Opts=“-R free” -optVerbose ’	

•  To use the compiler based instrumentation instead of PDT (source-based):���
% setenv TAU_OPTIONS ‘-optCompInst -optVerbose’	

•  If your Fortran code uses C preprocessor directives (#include, #ifdef, #endif):	

% setenv TAU_OPTIONS ‘-optPreProcess -optVerbose -optDetectMemoryLeaks’	

•  To use an instrumentation specification file:	

% setenv TAU_OPTIONS ‘-optTauSelectFile=mycmd.tau -optVerbose -optPreProcess’	

% cat mycmd.tau	

BEGIN_INSTRUMENT_SECTION	

memory file=“foo.f90” routine=“#”	

# instruments all allocate/deallocate statements in all routines in foo.f90	

loops file=“*” routine=“#”	

io file=“abc.f90” routine=“FOO”	

END_INSTRUMENT_SECTION	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Usage Scenarios: Loop Level Instrumentation
•  Goal: What loops account for the most time? How much?	

•  Flat profile with wallclock time with loop instrumentation:	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Generating a loop level profile
% setenv TAU_MAKEFILE /usr/local/packages/tau/i386_linux
 /lib/Makefile.tau-mpi-pdt
% setenv TAU_OPTIONS ‘-optTauSelectFile=select.tau –optVerbose’
% cat select.tau
 BEGIN_INSTRUMENT_SECTION
 loops routine=“#”
 END_INSTRUMENT_SECTION

% set path=(/usr/local/packages/tau/i386_linux/bin $path)
% make F90=tau_f90.sh
(Or edit Makefile and change F90=tau_f90.sh)
% mpirun -np 4 ./a.out
% paraprof -–pack app.ppk
 Move the app.ppk file to your desktop.

% paraprof app.ppk

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Usage Scenarios: Compiler-based Instrumentation
•  Goal: Easily generate routine level performance data using the compiler instead of

PDT for parsing the source code	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Use Compiler-Based Instrumentation

% setenv TAU_MAKEFILE /usr/local/packages/tau/i386_linux
 /lib/Makefile.tau-mpi

% setenv TAU_OPTIONS ‘-optCompInst –optVerbose’
% % set path=(/usr/local/packages/tau/i386_linux/bin $path)
% make F90=tau_f90.sh
(Or edit Makefile and change F90=tau_f90.sh)

% mpirun -np 4 ./a.out
% paraprof -–pack app.ppk
 Move the app.ppk file to your desktop.

% paraprof app.ppk

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Usage Scenarios: Calculate mflops in
Loops •  Goal: What MFlops am I getting in all loops?	

•  Flat profile with PAPI_FP_INS/OPS and time with loop instrumentation:	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Generate a PAPI profile with 2 or more
metrics % setenv TAU_MAKEFILE /usr/local/packages/tau/i386_linux

 /lib/Makefile.tau-papi-mpi-pdt
% setenv TAU_OPTIONS ‘-optTauSelectFile=select.tau –optVerbose’
% cat select.tau
 BEGIN_INSTRUMENT_SECTION
 loops routine=“#”
 END_INSTRUMENT_SECTION

% set path=(/usr/local/packages/tau/i386_linux/bin $path)
% make F90=tau_f90.sh
(Or edit Makefile and change F90=tau_f90.sh)
% setenv TAU_METRICS TIME:PAPI_FP_INS:PAPI_L1_DCM
% mpirun -np 4 ./a.out
% paraprof -–pack app.ppk
 Move the app.ppk file to your desktop.

% paraprof app.ppk
 Choose Options -> Show Derived Panel -> “PAPI_FP_INS”, click “/”, “TIME”, click “Apply”

 choose.

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Derived Metrics in ParaProf

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Comparing Effects of Multi-Core Processors

AORSA2D	

 magnetized���
 plasma simulation	

  Automatic loop level ���
instrumentation	

 Blue is single node	

  Red is dual core	

  Cray XT3 (4K cores)	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Mflops Sorted by Exclusive Time

low 	

mflops?	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Generating Callpath Profiles
•  Goal: To expose the calling sequence. E.g., what routine calls an MPI_Barrier()?

Where?	

•  Callpath profile for a given callpath depth:	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Callpath Profile
•  Generates program callgraph	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Generate a Callpath Profile

% setenv TAU_MAKEFILE /usr/local/packages/tau/i386_linux
 /lib/Makefile.tau-mpi-pdt

% set path=(/usr/local/packages/tau/i386_linux/bin $path)
% make F90=tau_f90.sh
(Or edit Makefile and change F90=tau_f90.sh)
% export TAU_CALLPATH_DEPTH 1
% export TAU_CALLPATH_DEPTH=100

% mpirun -np 4 ./a.out
% paraprof -–pack app.ppk
 Move the app.ppk file to your desktop.
% paraprof app.ppk
(Windows -> Thread -> Call Graph)

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Usage Scenario: Detect Memory Leaks

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Detect Memory Leaks
% setenv TAU_MAKEFILE /usr/local/packages/tau/i386_linux

 /lib/Makefile.tau-mpi-pdt
% setenv TAU_OPTIONS ‘-optDetectMemoryLeaks -optVerbose’
% set path=(/usr/local/packages/tau/i386_linux/bin $path)
% make F90=tau_f90.sh
(Or edit Makefile and change F90=tau_f90.sh)
% setenv TAU_CALLPATH_DEPTH 100

% mpirun -np 4 ./a.out
% paraprof -–pack app.ppk
 Move the app.ppk file to your desktop.

% paraprof app.ppk
(Windows -> Thread -> Context Event Window -> Select thread -> select...

expand tree)
(Windows -> Thread -> User Event Bar Chart -> right click LEAK
-> Show User Event Bar Chart)

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Instrument a Python program
•  Goal: Generate a flat profile for a Python program	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Instrumenting a Python program

Original
code:

Create a wrapper:

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Generate a Python Profile

% setenv TAU_MAKEFILE /usr/local/packages/tau/i386_linux
 /lib/Makefile.tau-python-pdt
% set path=(/usr/local/packages/tau/i386_linux/bin $path)
% cat wrapper.py
 import tau
 def OurMain():
 import foo
 tau.run(‘OurMain()’)
Uninstrumented:
% ./foo.py
Instrumented:
% export PYTHONPATH= <taudir>/i386_linux/<lib>/bindings-python-pdt
(same options string as TAU_MAKEFILE)
% export LD_LIBRARY_PATH=<taudir>/i386_linux/lib/bindings-python-pdt:
$LD_LIBRARY_PATH
% ./wrapper.py

Wrapper invokes foo and generates performance data
% pprof/paraprof

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Usage Scenarios: Mixed Python+F90+C
+pyMPI •  Goal: Generate multi-level instrumentation for Python+MPI+C+F90+C++ ...	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Generate a Multi-Language Profile
% setenv TAU_MAKEFILE /usr/local/packages/tau/i386_linux
 /lib/Makefile.tau-python-mpi-pdt
% set path=(/usr/local/packages/tau/i386_linux/bin $path)
% setenv TAU_OPTIONS ‘-optShared -optVerbose…’
(Python needs shared object based TAU library)
% make F90=tau_f90.sh CXX=tau_cxx.sh CC=tau_cc.sh (build libs, pyMPI w/TAU)
% cat wrapper.py
 import tau
 def OurMain():
 import App
 tau.run(‘OurMain()’)
Uninstrumented:
% mpirun –np 4 pyMPI ./App.py
Instrumented:
% export PYTHONPATH= <taudir>/i386_linux/<lib>/bindings-python-mpi-pdt
(same options string as TAU_MAKEFILE)
% export LD_LIBRARY_PATH=<taudir>/i386_linux/lib/bindings-python-mpi-pdt:
$LD_LIBRARY_PATH
% mpirun –np 4 <pkgs>/pyMPI-2.5b0-TAU/bin/pyMPI
./wrapper.py (Instrumented pyMPI with wrapper.py)

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Tracing	
 Measurement	
 	

void master {	

 ...	

 send(B, tag, buf);	

 ...	

}	

Process A:	

void slave {	

 ...	

 recv(A, tag, buf);	

 ...	

}	

Process B:	

void worker {	

 ...	

 recv(A, tag, buf);	

 ...	

}	

void master {	

 ...	

 send(B, tag, buf);	

 ...	

}	

MONITOR	

58	

 A	

 ENTER	

 1	

60	

 B	

 ENTER	

 2	

62	

 A	

 SEND	

 B	

64	

 A	

 EXIT	

 1	

68	

 B	

 RECV	

 A	

...	

69	

 B	

 EXIT	

 2	

...	

1	

 master	

2	

 worker	

3	

 ...	

 trace(ENTER, 1);	

 trace(SEND, B);	

 trace(EXIT, 1);	

 trace(ENTER, 2);	

 trace(RECV, A);	

 trace(EXIT, 2);	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Tracing Analysis and Visualization

1 master

2 worker

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main
master
worker

58 60 62 64 66 68 70

B

A

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Usage Scenarios: Generating a Trace
File •  Goal: Identify the temporal aspect of performance. What happens in my code at a given time?

When?	

•  Event trace visualized in Vampir/Jumpshot	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

VNG Process Timeline with PAPI
Counters

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Vampir Counter Timeline Showing I/O BW

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Generate a Trace File
% setenv TAU_MAKEFILE /usr/local/packages/tau/i386_linux/
lib/Makefile.tau-mpi-pdt

% export TAU_TRACE=1
% set path=(/usr/local/packages/tau/i386_linux/bin $path)
% make F90=tau_f90.sh
(Or edit Makefile and change F90=tau_f90.sh)
% mpirun -np 4 ./a.out
% tau_treemerge.pl
(merges binary traces to create tau.trc and tau.edf files)
JUMPSHOT:
% tau2slog2 tau.trc tau.edf –o app.slog2
% jumpshot app.slog2
 OR
VAMPIR:
% tau2otf tau.trc tau.edf app.otf –n 4 –z
(4 streams, compressed output trace)
% vampir app.otf

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Usage Scenarios: Evaluate Scalability
•  Goal: How does my application scale? What bottlenecks occur at what core counts?	

•  Load profiles in PerfDMF database and examine with PerfExplorer	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Usage Scenarios: Evaluate Scalability

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Performance Regression Testing

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

68	

Evaluate Scalability using PerfExplorer Charts
% setenv TAU_MAKEFILE /usr/local/packages/tau/i386_linux

 /lib/Makefile.tau-mpi-pdt
% set path=(/usr/local/packages/tau/i386_linux/bin $path)
% make F90=tau_f90.sh
(Or edit Makefile and change F90=tau_f90.sh)
% mpirun -np 1 ./a.out
% paraprof -–pack 1p.ppk
% mpirun -np 2 ./a.out …
% paraprof -–pack 2p.ppk … and so on.
On your client:
% perfdmf_configure --create-default
(Chooses derby, blank user/passwd, yes to save passwd, defaults)
% perfexplorer_configure
(Yes to load schema, defaults)
% paraprof
(load each trial: DB -> Add Trial -> Type (Paraprof Packed Profile) ->

OK) OR use perfdmf_loadtrial.
% perfdmf_loadtrial –a “NWChem” –x “Scaling on i386_linux” –n “32p”

32p.ppk
Then,
% perfexplorer
(Select experiment, Menu: Charts -> Speedup)

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Communication Matrix Display
•  Goal: What is the volume of inter-process communication? Along which calling path?	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Communication Matrix
% setenv TAU_MAKEFILE /usr/local/packages/tau/i386_linux

 /lib/Makefile.tau-mpi-pdt
% set path=(/usr/local/packages/tau/i386_linux/bin $path)
% make F90=tau_f90.sh
(Or edit Makefile and change F90=tau_f90.sh)
% export TAU_COMM_MATRIX=1

% mpirun -np 4 ./a.out (setting the environment variables)

% paraprof
(Windows -> Communication Matrix)

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

ParaProf: Communication Matrix Display

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Measuring Performance of PGI GPGPU Accelerated Code

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Scaling NAMD with CUDA (Jumpshot with TAU)

Data transfer	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Parallel Profile Visualization: ParaProf

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Scalable Visualization: ParaProf (128k cores)

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Scatter Plot: ParaProf (128k cores)

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

ParaProf (1m cores*)

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Histogram: ParaProf (1m cores*)

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Labs: LiveDVD

•  Add one of 	

source /usr/local/packages/etc/point.bashrc 	

or 	

source /usr/local/packages/etc/point.cshrc 	

to the end of your .login file (for bash or csh/tcsh users respectively).	

On the LiveDVD, please see the ~/point-workshop directory	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Program Database Toolkit (PDT)

Application	

/ Library	

C / C++	

parser	

Fortran parser	

F77/90/95	

C / C++	

IL analyzer	

Fortran	

IL analyzer	

Program	

Database	

Files	

IL	

 IL	

DUCTAPE	

TAU ���

instrumentor	

Automatic source	

instrumentation	

.	

.	

.	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Automatic Source-level Instrumentation

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Selective Instrumentation File

•  Specify a list of events to exclude or include	

•  # is a wildcard in a routine name	

	

 BEGIN_EXCLUDE_LIST	

	

 Foo	

	

 Bar	

	

 D#EMM	

	

 END_EXCLUDE_LIST	

	

 BEGIN_INCLUDE_LIST	

	

 int main(int, char **)	

	

 F1	

	

 F3	

	

 END_INCLUDE_LIST	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Selective Instrumentation File

•  Optionally specify a list of files	

•  * and ? may be used as wildcard characters	

BEGIN_FILE_EXCLUDE_LIST	

f*.f90	

Foo?.cpp 	

END_FILE_EXCLUDE_LIST	

BEGIN_FILE_INCLUDE_LIST	

main.cpp	

foo.f90	

END_FILE_INCLUDE_LIST	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

TAU Integration with IDEs

•  High performance software development environments	

–  Tools may be complicated to use	

–  Interfaces and mechanisms differ between platforms / OS	

•  Integrated development environments	

–  Consistent development environment	

–  Numerous enhancements to development process	

–  Standard in industrial software development	

•  Integrated performance analysis	

–  Tools limited to single platform or programming language	

–  Rarely compatible with 3rd party analysis tools	

–  Little or no support for parallel projects	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

TAU and Eclipse

 PerfDMF

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Choosing PAPI Counters with TAU in Eclipse

% /usr/local/packages/eclipse/eclipse

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

VampirTrace and Vampir

•  Introduction 	

•  Event Trace Visualization	

•  Vampir & VampirServer	

•  The Vampir Displays	

–  Timeline	

–  Process Timeline with Performance Counters	

–  Summary Display	

–  Message Statistics	

•  VampirTrace	

–  Instrumentation & Run-Time Measurement	

•  Conclusions	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

VampirServer Architecture

Merged���
Traces	

Analysis Server	

Classic
Analysis:"

Worker 1	

Worker 2	

Worker m	

Master	

Trace 1	

Trace 2	

Trace 3	

Trace N	

File System	

Internet	

Parallel Program	

Monitor System	

Event Streams	

Visualization Client	

Segment
Indicator	

768 Processes
Thumbnail View	

Timeline with 	

16 Traces visible	

Process	

Parallel I/O	

 Message

Passing	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Vampir Displays

The main displays of Vampir:	

•  Global Timeline	

•  Process Timeline w/o Counters	

•  Statistic Summary	

•  Summary Timeline	

•  Message Statistics	

•  Collective Operation Statistics	

•  Counter Timeline	

•  Call Tree	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Vampir Global Timeline Display

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Process Timeline Display

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Process Timeline with Counters

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Statistic Summary Display

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Vampir and VampirTraces are 	

available at http://www.vampir.eu and	

 http://www.tu-dresden.de/zih/vampirtrace/ ,	

get support via vampirsupport@zih.tu-dresden.de	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Jumpshot

•  http://www-unix.mcs.anl.gov/perfvis/software/viewers/index.htm	

•  Developed at Argonne National Laboratory as part of the MPICH project	

–  Also works with other MPI implementations	

–  Installed on IBM BG/P	

–  Jumpshot is bundled with the TAU package 	

•  Java-based tracefile visualization tool for postmortem performance analysis
of MPI programs	

•  Latest version is Jumpshot-4 for SLOG-2 format	

–  Scalable level of detail support	

–  Timeline and histogram views	

–  Scrolling and zooming	

–  Search/scan facility	

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Jumpshot

High Performance Software Tools to Fast-Track
Development of Scalable and Sustainable Applications

11th DOE ACTS Workshop
Berkeley, California – Aug 17-20, 2010

Support Acknowledgements
•  Department of Energy (DOE)	

–  Office of Science	

•  MICS, Argonne National Lab	

–  ASC/NNSA	

•  University of Utah ASC/NNSA Level 1	

•  ASC/NNSA, Lawrence Livermore National Lab	

•  Department of Defense (DoD)	

•  NSF Software Development for Cyberinfrastructure (SDCI)	

•  Research Centre Juelich	

•  ANL, LBL, PNNL, LLNL, LANL, SNL	

•  TU Dresden	

•  ParaTools, Inc.	

