Analyzing CPU Applications with
HPCToolkit

John Mellor-Crummey
Rice University

2025 Energy HPC Conference
February 28, 2025

Office of /N N . 'D%

R .
.‘* ENERGY Science /’VAW“

Topics

e Events for CPU performance measurement

* Kernel sampling

e Context recycling for dynamic threads

Sample Sources - |

Linux thread-centric timers

e CPUTIME (DEFAULT if no sample source is specified)
— CPU time used by the thread in microseconds
— does not include time blocked in the kernel

— disadvantage: completely overlooks time a thread is blocked
— advantage: a blocked thread is never unblocked by sampling

e REALTIME

— real time used by the thread in microseconds
— includes time blocked in the kernel

Best for analysis of
profile data

Produces more intuitive
traces

— advantage: shows where a thread spends its time, even when blocked
— disadvantages

activates a blocked thread to take a sample
a blocked thread appears active even when blocked

Note: Only use one Linux timer to measure an execution

Sample Sources - I

Linux perf_event monitoring subsystem
e Kernel subsystem for performance monitoring

e Access and manipulate
— hardware counters: cycles, instructions, ...
— software counters: context switches, page faults, ...

e Available in modern Linux kernels

A useful explanation about events available through perf
https://sites.google.com/site/Ibathen/research/pert

https://sites.google.com/site/lbathen/research/perf

perf_event Hardware Event Counters

PERF_COUNT_HW_CPU_CYCLES
PERF_COUNT_HW_INSTRUCTIONS
PERF_COUNT_HW_CACHE_REFERENCES
PERF_COUNT_HW_CACHE_MISSES
PERF_COUNT_HW_BRANCH_INSTRUCTIONS
PERF_COUNT_HW_BRANCH_MISSES
PERF_COUNT_HW_BUS_CYCLES
PERF_COUNT_HW_STALLED CYCLES_FRONTEND
PERF_COUNT_HW_STALLED CYCLES_BACKEND
PERF_COUNT_HW_REF_CPU_CYCLES

perf event Hardware Cache Events

e Hardware cache

— PERF_COUNT_HW_CACHE_L1D
— PERF_COUNT_HW_CACHE_L1I

— PERF_COUNT_HW_CACHE_LL

— PERF_COUNT_HW_CACHE_DTLB
— PERF_COUNT_HW_CACHE_ITLB
— PERF_COUNT_HW_CACHE_BPU
— PERF_COUNT_HW_CACHE_NODE

e Operations
— PERF_COUNT_HW_CACHE_OP_READ
— PERF_COUNT_HW_CACHE_OP_WRITE
— PERF_COUNT_HW_CACHE_OP_PREFETCH

e Results
— PERF_COUNT_HW_CACHE_RESULT_ACCESS
— PERF_COUNT_HW_CACHE_RESULT_MISS

perf_event Software Events

PERF_COUNT_SW_CPU_CLOCK
PERF_COUNT_SW_TASK_CLOCK
PERF_COUNT_SW_PAGE_FAULTS
PERF_COUNT_SW_CONTEXT_SWITCHES
PERF_COUNT_SW_CPU_MIGRATIONS
PERF_COUNT_SW_PAGE_FAULTS_MIN
PERF_COUNT_SW_PAGE_FAULTS_MAJ
PERF_COUNT_SW_ALIGNMENT_FAULTS
PERF_COUNT_SW_EMULATION_FAULTS

Measuring Other Hardware Events

e See the full list of available events with

— hpcrun -L
* Perf events are grouped by categories indicated by a prefix
— ix86arch::<event> Il Intel architecture
— perf::<event> Il perf_event builtin
— bdw_ep::<event> I/l Broadwell EP specific

e For convenience
— you may omit the category prefix, e.g. “perf::”
— you may specify counter names using lower case

Multiplexing Events

* |n a single execution, you can measure more hardware events
than the number of hardware counters available per thread

* |f you specify more events than counters available
— perf_events will automatically multiplex them

e How multiplexing works with Linux perf_event subsystem

— at any time, the number of events being collected will not exceed
the number of hardware counters available per thread

— the kernel will partition events into sets that can be monitored
simultaneously using hardware counter resources

— the kernel will monitor one set of events for a while then switch
to another

— monitoring of event sets is scheduled in round-robin fashion

— while multiplexing is convenient, there is some loss of accuracy
— my advice: multiplexing is fine for casual execution analysis

Controlling perf_event Sampling Frequency

e Automatic Recommended

— HPCToolkit samples perf_event counters min(300x/second,
maximum Linux allows)

— may be higher than necessary for long executions
reducing the frequency will reduce measurement overhead

e Specify frequency
— use the @f<freq> suffix for an event to specify frequency
— hpcrun -e CYCLES@f100 -e INSTRUCTIONS@f200 ...

— Specify a different default frequency using the -c option
— example: sample both CYCLES and INSTRUCTION 200x per second
hpcrun -c 200 -e CYCLES -e INSTRUCTIONS

* Specify period
— Use the @<period> suffix for an event to specify a period
— hpcrun -e CYCLES@1000000 -e INSTRUCTIONS@5000000 ...

10

Topics

* Events for CPU performance measurement

* Kernel sampling

e Context recycling for dynamic threads

11

Topics

* Events for CPU performance measurement

* Kernel sampling

e Context recycling for dynamic threads

12

Kernel Sampling in HPCToolkit

e When sampling using the Linux perf_event subsystem
— sample user space activity
— sample kernel space activity

e When a thread is active in the kernel, the user calling context
is frozen

e Attribute kernel activity to the point where it occurred in the
user calling context

— form a calling context that has
— user calling context as the prefix
— kernel calling context as the suffix

13

Kernel Sampling Yields Insight

Investigating MPI Performance with Kernel Sampling

Platform
* Intel Broadwell
* Infiniband network

Q: Why is MPI
communication
bandwidth so
low on node
(6-9 GB/s)?

A: Bounded by single
thread memory
bandwidth

Memcpy 12 GB/s
Stream (1T) 8-9 GB/s
Stream (OMP) 60 GB/s

[X X] hpcviewer: mpibw
ws osu_bibw.c £ =
103 for(i = @; i < options.loop + options.skip; i++) {
104 if(i == options.skip) {
105 t_start = MPI_Wtime(Q);
106
107
108 for(j = @; j < window_size; j++) {
109 MPI_Irecv(r_buf, size, MPI_CHAR, (myid + numprocs/2)%numprocs, 10, MPI_COMM_WORLD,
110 recv_request + j);
111 }
112
113 for(j = 0; j < window_size; j++) {
114 MPI_Isend(s_buf, size, MPI_CHAR, (myid + numprocs/2)%numprocs, 100, MPI_COMM_WORLD,
115 send_request + j);
116 }
117
118 MPI_Waitall(window_size, send_request, reqstat);|
119 MPI_Waitall(window_size, recv_request, regstat);
120 }
121
% Calling Context View | %, Callers View X |}, Flat View =

Scope

0 6fo M EA A

CYCLES:Sum (E) CACHE_LL:READ:Sum (v CACHE_LL:WRITE:Sum (E) INSTRUCTIONS:Sum (E)

v ¢l copy_user_enhanced_fast_string
v & process_vm_rw

user space

kernel Space 1.53e+11 39.5% 1.46e+08 93.3% 1.40e+07 87.8% 1.18e+10 2.2%

1.53e+11 39.5% 1.46e+08 93.3% 1.40e+07 87.8% 1.18e+10 2.2%

v 4 sys_process_vm_readv 1.53e+11 39.5% 1.46e+08 93.3% 1.40e+07 87.8% 1.18e+10 2.2%
v i system_call_fastpath 1.53e+11 39.5% 1.46e+08 93.3% 1.40e+07 87.8% 1.18e+10 2.2%
v ¢l _Gl_process_vm_readv 1.53e+11 39.5% 1.46e+08 93.3% 1.40e+07 87.8% 1.18e+10 2.2%

V¥ & <unknown procedure> 0xd161 [libpsm2.s0.2.1] 1.53e+11 39.5% 1.46e+08 93.3% 1.40e+07 87.8% 1.18e+10 2.2%

v ¢ <unknown procedure> 0xcc82 [libpsm2.50.2.1] 8.08e+10 20.9% 1.19e+08 76.3% 9.88e+06 61.9% 6.30e+09 1.2%

v ¢ <unknown procedure> Ox5aa3 [libpsm2.s0.2.1] 8.08e+10 20.9% 1.19e+08 76.3% 9.88e+06 61.9% 6.30e+09 1.2%

v 4 <unknown procedure> Oxc3eb [libpsm2.50.2.1] 8.08e+10 20.9% 1.19e+08 76.3% 9.88e+06 61.9% 6.30e+09 1.2%

v ¢ <unknown procedure> 0x1d4e6 [libpsm2.s0.2.1] 6.15e+10 15.9% 7.66e+07 49.1% 6.39e+06 40.1% 4.89e+09 0.9%

v 44 189: MPIDI_CH3_Progress_start 6.15e+10 15.9% 7.66e+07 49.1% 6.39e+06 40.1% 4.89e+09 0.9%

v ¢ 145: MPIR_Waitall_impl 6.15e+10 15.9% 7.66e+07 49.1% 6.39e+06 40.1% 4.89e+09 0.9%

v ¢4 309: PMPI_Waitall 6.15e+10 15.9% 7.66e+07 49.1% 6.39e+06 40.1% 4.89e+09 0.9%

v 43 118: main 6.15e+10 15.9% 7.66e+07 49.1% 6.39e+06 40.1% 4.89e+09 0.9%

1<

Measure Thread Blocking using perf_events

Original idea: Kernel blocking time

Apphoationfeer / ------- \pm) / \pm m /

p— __/ __/

Blocking Blocking

Our approach: Estimated kernel blocking time

Application/User RERERY
ut /g ut

Linux Kernel \..../ \....../

Estimated blocking

15

Example: Thread Blocking in “tar”

hpcrun -e CYCLES -e BLOCKTIME -e PAGE-FAULTS tar xzf \

~/Downloads/eclipse-rcp-indigo-linux-gtk-x86_64.tar.gz

hpcviewer: tar (on ori.cs.rice.edu)

File Filter View Window Help

% unistd.h §2 =0
return read_chk (__fd, buf, nbytes, bos® (__buf));

Measure and attribute

40
41 if (__nbytes > _ bos® (_ buf))

12 return read chk warn (_ fd, buf, nbytes, bos® (buf)); time a thread iS blocked
43
14 reurn read alias (fd, buf, nbytes); \ in the kernel
¥ v
K1]
"X Calling Context View £3 2, Callers View };, Flat View =8
T3S M S A A N2

Scope CYCLES:Sum (I) | BLOCKTIME:Sum (1) PAGE-FAULTS:Sum (1)
Experiment Aggregate Metrics 7
v <program root>
v B 500: main
v B»2734: read_and

v B»177: open_archive

3.70e+01 42.0%

v [B»2032: [I] _open_archive
v [B» 838: find_next_block

v B 619: flush_archive

¥ B 1011: [I] flush_read

v B 2017: gnu_flush_read | . A
v Bp1916: [I] _gnu_flush_read 3.064 Tlme bIOCK_ed In the
v loop at buffer.c: 1880 3_:—4 kernel domlnates the
v [BP1879: safe_read q

computation time
associated with reads

U T

- loop at safe-read.c: 66

v B»66: [I] read

»44: _read_nocancel
¥) entry_SYSCALL _64_fastpath
v B SyS_read
Kernel < By vis_read
v By __vfs_read
frames B _vis_

v B pipe_read

v B pipe_wait

16

A Few More Things

e Events for CPU performance measurement
e Differential performance analysis (useful for CPU and GPU)

* Kernel sampling

e Context recycling for dynamic threads

17

Context Recycling for Short-lived Threads

* Problem
— some codes create many short-
lived threads

— DCA+ 160 ranks generated 1.2M
thread profiles and traces

— time-centric views of such codes -
are problematic

e Solution

— when a thread completes, put its
(CCT, trace) in a free list

— when a new thread starts, look for
an available (CCT, trace) pair to
augment

— create a new one only if needed

<
2
5
H
3
< l

&
4
=

Credit: Laksono Adhianto 18

DCA+ using Context Recycling

DCA+ 10 ranks, 12 threads each with context recycling

dca-database

]
c
S
7
|-
]
2
o~
4
]
9

View Window Help

File

19

ple<void* (*(std::pair<dca::phys::solver:<

M std::_Bind_sim

M dca::phys::solver::StdThreadQmciClusterSolver<dca::ph

hys::solver::StdThreadQmciClusterSolver<dca::ph

phys::solver::ctaux::CtauxWalker<{dca::linalg::Dev

©
¥
=
v
2
©
%
B
s}

M dca::phys::solver:ctaux::CtauxWalker<(dca::linalg::Dev

W dca::phys::solver:ctaux::CtauxWalker<(dca::linalg::Dev
B dca::phys::solver:ctaux::CT_AUX WALKER TOOLS<(dca:

M dca::phys::solver:ctaux::walkerkernels::compute_Gamn

W __device_stub__ZN3dca4

ompute_Gamm

hys::solver::ctaux::walkerkernel

phys6solversctaux13walkerkern

M cudalaunch<char>

B cudalaunch

W cudart::cudaApiLaunchCommon

B <unknown procedure=> 0x22b1bf [libcuda.s0.390.46]
W <unknown procedure> 0xe293d [libcuda.s0.390.46]

<unknown procedure=> 0xe2865 [libcuda.s0.390.46]

B <unknown procedure=> 0x1cfel3 [libcuda.s0.390.46]
M <unknown procedure= 0x19e250 [libcuda.s0.390.46]

B

(< Tl

o v
0 E
2
=
o
o=
2
- T 2
<p) @
! - £ 8
oy o
20 v
g3
S E o
o @
B
cE ©w =
S
5 @ =
Jn ok
3Ee
vy s
sV
t,mm
o E 5
swm.._,m
S 5w
— mn,md_
m Ty s
o 55 &5@
= A
s ¥z
8 Vitha
L. HEEBN

3 o~

€9

Time Range: [8.113s, 412.819s] Rank Range: [0.0,1.11] Cross Hair: (109.049s, 1.7)

& Trace View ‘

= 8 | Mini Map

T — -

ianto

Laksono Adh

Cred

| '"‘W"""wimll“.‘ﬂ 5 ‘F'Il"'l'W"']'T["' l!“I"l'l!ll“lllfwu'!l|l
I

3 Depth View “ Summary View

