
Analyzing CPU Applications with
HPCToolkit

John Mellor-Crummey

Rice University

2025 Energy HPC Conference

February 28, 2025

2

Topics
• Events for CPU performance measurement

• Kernel sampling

• Context recycling for dynamic threads

Sample Sources - I
Linux thread-centric timers

• CPUTIME (DEFAULT if no sample source is specified)

— CPU time used by the thread in microseconds

— does not include time blocked in the kernel

– disadvantage: completely overlooks time a thread is blocked

– advantage: a blocked thread is never unblocked by sampling

• REALTIME

— real time used by the thread in microseconds

— includes time blocked in the kernel

– advantage: shows where a thread spends its time, even when blocked

– disadvantages

 activates a blocked thread to take a sample

 a blocked thread appears active even when blocked

3

Note: Only use one Linux timer to measure an execution

Best for analysis of  
profile data

Produces more intuitive

traces

Sample Sources - II
Linux perf_event monitoring subsystem

• Kernel subsystem for performance monitoring

• Access and manipulate

— hardware counters: cycles, instructions, …

— software counters: context switches, page faults, …

• Available in modern Linux kernels

4

A useful explanation about events available through perf

https://sites.google.com/site/lbathen/research/perf

https://sites.google.com/site/lbathen/research/perf

perf_event Hardware Event Counters
• PERF_COUNT_HW_CPU_CYCLES

• PERF_COUNT_HW_INSTRUCTIONS

• PERF_COUNT_HW_CACHE_REFERENCES

• PERF_COUNT_HW_CACHE_MISSES

• PERF_COUNT_HW_BRANCH_INSTRUCTIONS

• PERF_COUNT_HW_BRANCH_MISSES

• PERF_COUNT_HW_BUS_CYCLES

• PERF_COUNT_HW_STALLED_CYCLES_FRONTEND

• PERF_COUNT_HW_STALLED_CYCLES_BACKEND

• PERF_COUNT_HW_REF_CPU_CYCLES

5

perf_event Hardware Cache Events
• Hardware cache

— PERF_COUNT_HW_CACHE_L1D

— PERF_COUNT_HW_CACHE_L1I

— PERF_COUNT_HW_CACHE_LL

— PERF_COUNT_HW_CACHE_DTLB

— PERF_COUNT_HW_CACHE_ITLB

— PERF_COUNT_HW_CACHE_BPU

— PERF_COUNT_HW_CACHE_NODE

• Operations

— PERF_COUNT_HW_CACHE_OP_READ

— PERF_COUNT_HW_CACHE_OP_WRITE

— PERF_COUNT_HW_CACHE_OP_PREFETCH

• Results

— PERF_COUNT_HW_CACHE_RESULT_ACCESS

— PERF_COUNT_HW_CACHE_RESULT_MISS

6

perf_event Software Events
• PERF_COUNT_SW_CPU_CLOCK

• PERF_COUNT_SW_TASK_CLOCK

• PERF_COUNT_SW_PAGE_FAULTS

• PERF_COUNT_SW_CONTEXT_SWITCHES

• PERF_COUNT_SW_CPU_MIGRATIONS

• PERF_COUNT_SW_PAGE_FAULTS_MIN

• PERF_COUNT_SW_PAGE_FAULTS_MAJ

• PERF_COUNT_SW_ALIGNMENT_FAULTS

• PERF_COUNT_SW_EMULATION_FAULTS

7

Measuring Other Hardware Events
• See the full list of available events with

— hpcrun -L

• Perf events are grouped by categories indicated by a prefix

— ix86arch::<event> // Intel architecture

— perf::<event> // perf_event builtin

— bdw_ep::<event> // Broadwell EP specific

— …

• For convenience

— you may omit the category prefix, e.g. “perf::”

— you may specify counter names using lower case

8

Multiplexing Events
• In a single execution, you can measure more hardware events

than the number of hardware counters available per thread

• If you specify more events than counters available

— perf_events will automatically multiplex them

• How multiplexing works with Linux perf_event subsystem

— at any time, the number of events being collected will not exceed

the number of hardware counters available per thread

— the kernel will partition events into sets that can be monitored

simultaneously using hardware counter resources

— the kernel will monitor one set of events for a while then switch

to another

— monitoring of event sets is scheduled in round-robin fashion

— while multiplexing is convenient, there is some loss of accuracy

– my advice: multiplexing is fine for casual execution analysis

9

Controlling perf_event Sampling Frequency

• Automatic

— HPCToolkit samples perf_event counters min(300x/second,

maximum Linux allows)

– may be higher than necessary for long executions

 reducing the frequency will reduce measurement overhead

• Specify frequency

— use the @f<freq> suffix for an event to specify frequency

– hpcrun -e CYCLES@f100 -e INSTRUCTIONS@f200 …

— Specify a different default frequency using the -c option

– example: sample both CYCLES and INSTRUCTION 200x per second

 hpcrun -c f200 -e CYCLES -e INSTRUCTIONS

• Specify period

— Use the @<period> suffix for an event to specify a period

– hpcrun -e CYCLES@1000000 -e INSTRUCTIONS@5000000 …

10

Recommended

11

Topics
• Events for CPU performance measurement

• Kernel sampling

• Context recycling for dynamic threads

12

Topics
• Events for CPU performance measurement

• Kernel sampling

• Context recycling for dynamic threads

Kernel Sampling in HPCToolkit
• When sampling using the Linux perf_event subsystem

— sample user space activity

— sample kernel space activity

• When a thread is active in the kernel, the user calling context
is frozen

• Attribute kernel activity to the point where it occurred in the
user calling context

— form a calling context that has

– user calling context as the prefix

– kernel calling context as the suffix

13

Kernel Sampling Yields Insight

14

• Q: Why is MPI
communication
bandwidth so  
low on node  
(6-9 GB/s)?

user space

kernel space

Investigating MPI Performance with Kernel Sampling

• A: Bounded by single
thread memory
bandwidth

• Memcpy 12 GB/s

• Stream (1T) 8-9 GB/s

• Stream (OMP) 60 GB/s

Platform

• Intel Broadwell

• Infiniband network

Measure Thread Blocking using perf_events

15

Example: Thread Blocking in “tar”

16

hpcrun -e CYCLES -e BLOCKTIME -e PAGE-FAULTS tar xzf \
~/Downloads/eclipse-rcp-indigo-linux-gtk-x86_64.tar.gz

17

A Few More Things
• Events for CPU performance measurement

• Differential performance analysis (useful for CPU and GPU)

• Kernel sampling

• Context recycling for dynamic threads

Context Recycling for Short-lived Threads

• Problem

— some codes create many short-

lived threads

– DCA+ 160 ranks generated 1.2M

thread profiles and traces

— time-centric views of such codes

are problematic

18

• Solution

— when a thread completes, put its

(CCT, trace) in a free list

— when a new thread starts, look for

an available (CCT, trace) pair to
augment

— create a new one only if needed

Credit: Laksono Adhianto

DCA+ using Context Recycling
DCA+ 10 ranks, 12 threads each with context recycling

19Credit: Laksono Adhianto

