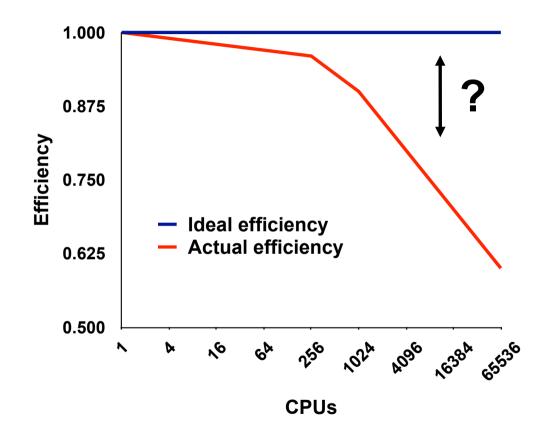
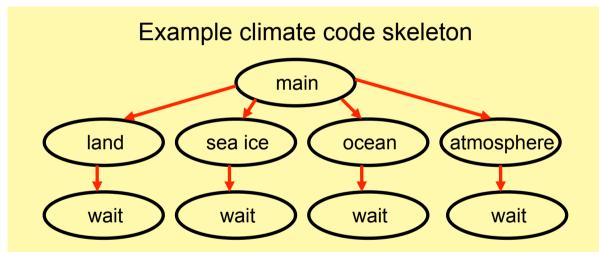
Differential Analysis with HPCToolkit

John Mellor-Crummey Rice University

2025 Energy HPC Conference February 28, 2025



The Problem of Scaling

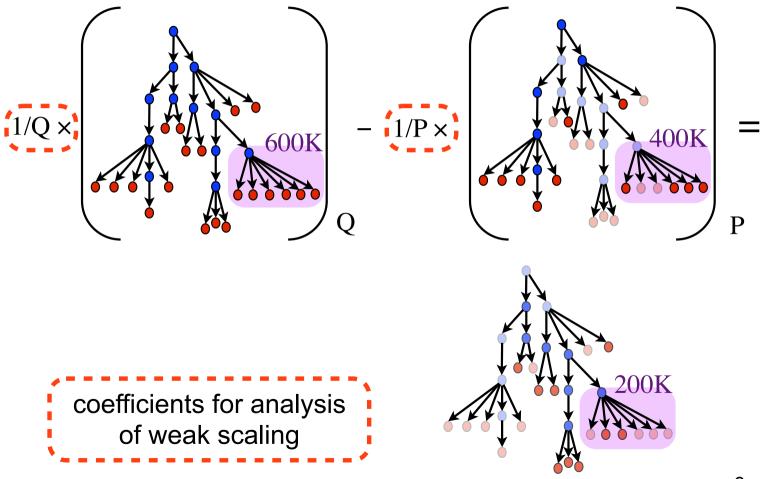

Note: higher is better

Goal: Automatic Scaling Analysis

- Pinpoint scalability bottlenecks
- Guide user to problems
- Quantify the magnitude of each problem
- Diagnose the nature of the problem

Challenges for Pinpointing Scalability Bottlenecks

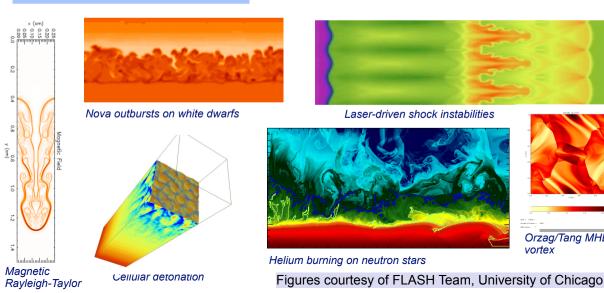
- Parallel applications
 - modern software uses layers of libraries
 - performance is often context dependent

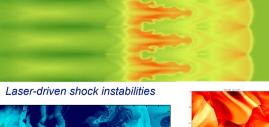

Monitoring

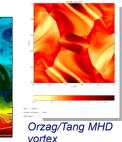
- bottleneck nature: computation, data movement, synchronization?
- 2 pragmatic constraints
 - acceptable data volume
 - low perturbation for use in production runs

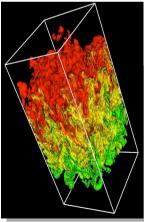
Performance Analysis with Expectations

- You have performance expectations for your parallel code
 - strong scaling: linear speedup
 - weak scaling: constant execution time
- Put your expectations to work
 - measure performance under different conditions
 - e.g., different levels of parallelism or different inputs
 - express your expectations as an equation
 - compute the deviation from expectations for each calling context
 - for both inclusive and exclusive costs
 - correlate the metrics with the source code
 - explore the annotated call tree interactively


Pinpointing and Quantifying Scalability Bottlenecks



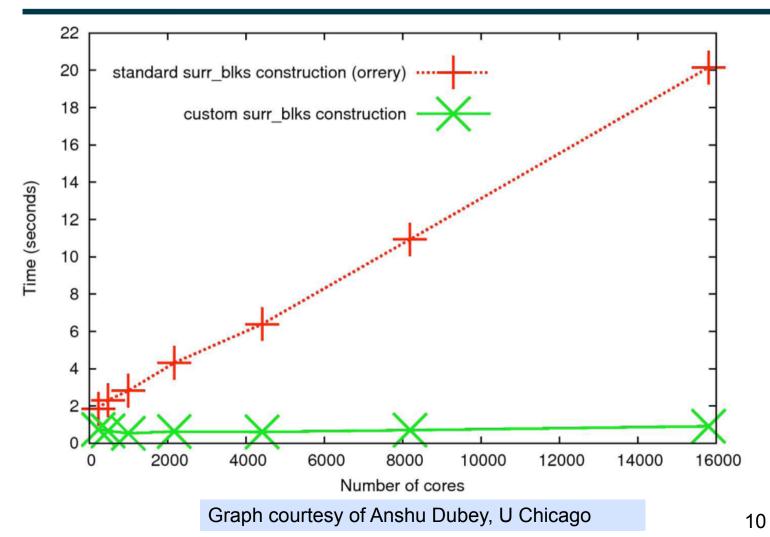

Scalability Analysis Demo


Code: Simulation: **Platform: Experiment:** Scaling type:

University of Chicago FLASH white dwarf detonation **Blue Gene/P** 8192 vs. 256 processors weak

Rayleigh-Taylor instability

Scalability Analysis of Flash (Demo)


hpcviewer: FLASH/white dwarf: IBM BG	J/P, weak 256->8192	
2 Driver_initFlash.F90 🛛 🔍 local_tree_build.F90		
<pre>206 !First pass only add lrefine = 1 blocks to tree(207 !Second pass add the rest of the blocks. 208 Do ipass = 1,2 209 210 lnblocks_old = lnblocks 211 proc = mype 212 !Loop through all processors 213 Do iproc = 0, nprocs-1 214 215 If (iproc == 0) Then 216 off_proc = .False.</pre>	s)	
217 Else		
S Calling Context View 🛛 🚴 Callers View 👬 Flat View		
	% scalability loss 🔻	C E
] ⊕ ♣ 🊱 f∞ 🕅 ﷺ A* A-	% scalability loss ▼ 2.46e+01 100 %	
]		256/WALLCLOCK (u
Cope Experiment Aggregate Metrics	2.46e+01 100 %	256/WALLCLOCK (u 5.07e+08
I ⊕ I I I I I I I I I I I I I I I I I I	2.46e+01 100 % 2.46e+01 100 %	256/WALLCLOCK (u 5.07e+08 : 5.07e+08 :
 	2.46e+01 100 % 2.46e+01 100 % 1.41e+01 57.5%	256/WALLCLOCK (u 5.07e+08 : 5.07e+08 : 4.46e+08 {
 	2.46e+01 100 % 2.46e+01 100 % 1.41e+01 57.5% 1.04e+01 42.5%	256/WALLCLOCK (u 5.07e+08 : 5.07e+08 : 4.46e+08 { 6.02e+07 :
 	2.46e+01 100 % 2.46e+01 100 % 1.41e+01 57.5% 1.04e+01 42.5% 8.58e+00 34.9%	256/WALLCLOCK (u 5.07e+08 : 5.07e+08 : 4.46e+08 § 6.02e+07 : 3.45e+07
 	2.46e+01 100 % 2.46e+01 100 % 1.41e+01 57.5% 1.04e+01 42.5% 8.58e+00 34.9% 8.58e+00 34.9%	256/WALLCLOCK (u 5.07e+08 : 4.46e+08 { 6.02e+07 : 3.45e+07 3.45e+07
 	2.46e+01 100 % 2.46e+01 100 % 1.41e+01 57.5% 1.04e+01 42.5% 8.58e+00 34.9% 8.58e+00 34.9% 6.85e+00 27.9%	256/WALLCLOCK (u 5.07e+08 : 5.07e+08 : 4.46e+08 & 6.02e+07 : 3.45e+07 3.45e+07 3.42e+07
 	2.46e+01 100 % 2.46e+01 100 % 1.41e+01 57.5% 1.04e+01 42.5% 8.58e+00 34.9% 8.58e+00 34.9% 6.85e+00 27.9% 5.56e+00 22.6%	256/WALLCLOCK (u 5.07e+08 : 4.46e+08 & 6.02e+07 : 3.45e+07 3.45e+07 3.42e+07 2.87e+06
 	2.46e+01 100 % 2.46e+01 100 % 1.41e+01 57.5% 1.04e+01 42.5% 8.58e+00 34.9% 8.58e+00 34.9% 6.85e+00 27.9% 5.56e+00 22.6% 5.45e+00 22.2%	256/WALLCLOCK (u 5.07e+08 : 4.46e+08 & 6.02e+07 : 3.45e+07 3.45e+07 3.42e+07 2.87e+06 9.75e+05
 Image: A to A t	2.46e+01 100 % 2.46e+01 100 % 1.41e+01 57.5% 1.04e+01 42.5% 8.58e+00 34.9% 8.58e+00 34.9% 6.85e+00 27.9% 5.56e+00 22.6% 5.45e+00 22.2% 5.18e+00 21.1%	256/WALLCLOCK (u 5.07e+08 : 4.46e+08 : 6.02e+07 : 3.45e+07 3.45e+07 3.42e+07 2.87e+06 9.75e+05 8.40e+05
Image: Constraint of the second s	2.46e+01 100 % 2.46e+01 100 % 1.41e+01 57.5% 1.04e+01 42.5% 8.58e+00 34.9% 6.85e+00 34.9% 6.85e+00 27.9% 5.56e+00 22.6% 5.45e+00 22.2% 5.18e+00 21.1%	256/WALLCLOCK (u 5.07e+08 : 5.07e+08 : 4.46e+08 & 6.02e+07 : 3.45e+07 3.45e+07 3.42e+07 2.87e+06 9.75e+05 8.40e+05 8.25e+05
 Image: A to a constraint of the second secon	2.46e+01 100 % 2.46e+01 100 % 1.41e+01 57.5% 1.04e+01 42.5% 8.58e+00 34.9% 6.85e+00 34.9% 6.85e+00 27.9% 5.56e+00 22.6% 5.45e+00 22.2% 5.18e+00 21.1% 5.18e+00 21.1%	256/WALLCLOCK (u 5.07e+08 : 5.07e+08 : 4.46e+08 & 6.02e+07 : 3.45e+07 3.45e+07 3.42e+07 2.87e+06 9.75e+05 8.40e+05 8.25e+05 8.25e+05

Scalability Analysis

- Difference call path profile from two executions
 - different number of nodes
 different
 - number of threads
- Pinpoint and quantify scalability bottlenecks within and across nodes

hpcviewer: FLASH/white dwa	arf: IBM BG/P, weak 256->8192
ک Driver_initFlash.F90 👳 local_tree_build.F90	
206 !First pass only add lrefine = 1 blocks 207 !Second pass add the rest of the blocks 208 Do ipass = 1,2	
209 210 Inblocks_old = Inblocks 211 proc = mype 212 !Loop through all processors 213 Do iproc = 0, nprocs-1 214 214 215 If (iproc == 0) Then 216 off_proc = .False.	significant scaling losses caused by passing data around
217 Else Calling Context View ಔ 🔦 Callers View ∰ Flat View 1 ♣ I I I I I I I I I I I I I I I I I I	a ring of processors
cope	% scalability loss 🔻 256/WALLCLOCK (u
Experiment Aggregate Metrics	2.46e+01 100 % 5.07e+08
▼flash	2.46e+01 100 % 5.07e+08
driver_evolveflash	1.41e+01 57.5% 4.46e+08
▼ 🛱 driver_initflash	1.04e+01 42.5% 6.02e+07
🔻 🖶 grid_initdomain	8.58e+00 34.9% 3.45e+07
+ Ergna_mitaomain	8.58e+00 34.9% 3.45e+07
▼ 🕞 gr_expanddomain	8.58e+00 34.9% 3.45e+07 8.58e+00 34.9% 3.45e+07
▼ B⇒gr_expanddomain ▼loop at gr_expandDomain.F90: 119	
▼ 🕞 gr_expanddomain	8.58e+00 34.9% 3.45e+07
▼ B⇒gr_expanddomain ▼loop at gr_expandDomain.F90: 119	8.58e+00 34.9% 3.45e+07 6.85e+00 27.9% 3.42e+07
▼ ⊯ gr_expanddomain ▼loop at gr_expandDomain.F90: 119 ▼ ⊯ amr_refine_derefine	8.58e+00 34.9% 3.45e+07 6.85e+00 27.9% 3.42e+07 5.56e+00 22.6% 2.87e+06
 ♥ @gr_expanddomain ♥ loop at gr_expandDomain.F90: 119 ♥ ֎mr_refine_derefine ♥ ֎mr_morton_process ♥ ֎ find_surrblks ♥ ֎ local_tree_build 	8.58e+00 34.9% 3.45e+07 6.85e+00 27.9% 3.42e+07 5.56e+00 22.6% 2.87e+06 5.45e+00 22.2% 9.75e+05 5.18e+00 21.1% 8.40e+05 5.18e+00 21.1% 8.25e+05
▼ 除 gr_expanddomain ▼loop at gr_expandDomain.F90: 119 ▼ 除 amr_refine_derefine ▼ 除 amr_morton_process ▼ 除 find_surrblks	8.58e+00 34.9% 3.45e+07 6.85e+00 27.9% 3.42e+07 5.56e+00 22.6% 2.87e+06 5.45e+00 22.2% 9.75e+05 5.18e+00 21.1% 8.40e+05 5.18e+00 21.1% 8.25e+05
 ♥ ➡ gr_expanddomain ♥ loop at gr_expandDomain.F90: 119 ♥ ➡ amr_refine_derefine ♥ ➡ amr_morton_process ♥ ➡ find_surrblks ♥ ➡ local_tree_build 	8.58e+00 34.9% 3.45e+07 6.85e+00 27.9% 3.42e+07 5.56e+00 22.6% 2.87e+06 5.45e+00 22.2% 9.75e+05 5.18e+00 21.1% 8.40e+05 5.18e+00 21.1% 8.25e+05 1 5.18e+00 21.1%
 ♥ ➡ gr_expanddomain ♥ loop at gr_expandDomain.F90: 119 ♥ ➡ amr_refine_derefine ♥ ➡ amr_morton_process ♥ ➡ find_surrblks ♥ ➡ local_tree_build ♥ loop at local_tree_build.F90: 211 	8.58e+00 34.9% 3.45e+07 6.85e+00 27.9% 3.42e+07 5.56e+00 22.6% 2.87e+06 5.45e+00 22.2% 9.75e+05 5.18e+00 21.1% 8.40e+05 5.18e+00 21.1% 8.25e+05 216 5.18e+00 21.1%

Improved Flash Scaling of AMR Setup

Using Differential Performance Analysis

- The example shown was a hand-crafted database created using a single MPI rank from each of two executions at different scales
- You can do strong or weak scaling analysis on your own by
 - providing two measurement directories to hpcprof/hpcprof-mpi
 - writing an equation to compute the scaling loss from one to the other

or a worker thread did the work