
Performance Analysis of GPU-accelerated
Applications with HPCToolkit

John Mellor-Crummey

Rice University

2025 Energy HPC Conference

February 28, 2025

2

• Frontier compute nodes (OLCF)

• 1 AMD EPYC “Trento” CPU

• 4 MI250X AMD Radeon Instinct GPUs

• 4 Slingshot 11 endpoints

• Unified memory architecture

• Aurora compute nodes (ALCF)

• 2 Intel Xeon “Sapphire Rapids” processors

• 6 Intel Data Center GPU Max 1500

• 8 Slingshot 11 endpoints

• Unified memory architecture 

• El Capitan compute nodes (LLNL)

• 4 AMD MI300 APU

• 4 Slingshot 11 endpoints

• Unified memory architecture

DOE’s GPU-Accelerated Exascale Platforms

3

Outline
• Introduction to HPCToolkit performance tools

⏤Overview of HPCToolkit components and their workflow

⏤HPCToolkit's graphical user interfaces

• Analyzing the performance of GPU-accelerated codes with HPCToolkit

• Slides: Exawind (AMReX)

⏤Slides: LAMMPS at Exascale (Kokkos)

⏤Demo: GAMESS (OpenMP)

⏤Hands-on: Quicksilver (CUDA)

⏤Hands-on: TeaLeaf

4

Linux Foundation’s HPCToolkit Performance Tools
Collect profiles and traces of unmodified parallel CPU and GPU-accelerated applications

Understand where an application spends its time and why

call path profiles associate metrics with application source code contexts

analyze instruction-level performance within GPU kernels and attribute it to your source code

hierarchical traces to understand execution dynamics

Parallel programming models

across nodes: MPI, SHMEM, UPC++, …

within nodes: OpenMP, Kokkos, RAJA, HIP, DPC++, Sycl, CUDA, OpenACC, …

Languages

C, C++, Fortran, Python, …

Hardware

CPU cores and GPUs within a node

CPU: x86_64, Power, ARM

GPU: NVIDIA, AMD, Intel

5

Why HPCToolkit?
• Measure and analyze performance of CPU and GPU-accelerated applications

• Easy: profile unmodified application binaries

• Fast: low-overhead measurement

• Informative: understand where an application spends its time and why

⏤call path profiles associate metrics with application source code contexts

⏤optional hierarchical traces to understand execution dynamics

• Broad audience

⏤application developers

⏤framework developers

⏤runtime and tool developers

• Unlike vendor tools works with a wide range of CPUs and GPUs

6

How does HPCToolkit Differ from NVIDIA’s Tools?
• NVIDIA NSight Systems

⏤tracing of CPU and GPU streams

⏤analyze traces when you open them with the GUI

▪ long running traces are huge and thus extremely slow to analyze, limiting scalability

⏤designed for measurement and analysis within a node

• NVIDIA NSight Compute

⏤detailed measurement of kernels with counters and execution replay

⏤very slow measurement

⏤flat display of measurements within GPU kernels

• HPCToolkit

⏤supports more scalable tracing than Nsight Systems

▪ measure exascale executions across many GPUs and nodes

⏤scalable, parallel post-mortem analysis vs. non-scalable in-GUI analysis

⏤detailed reconstruction of estimates for calling context profiles within GPU kernels

7

HPCToolkit’s Workflow for GPU-accelerated Applications

8

HPCToolkit’s Workflow for GPU-accelerated Applications
Step	1:

• Ensure	that	compilers	record	line	mappings	

• host	compiler:	-g

• nvcc:	-lineinfo	

9

HPCToolkit’s Workflow for GPU-accelerated Applications
Step	2:

• hpcrun	collects	call	path	profiles	(and	

optionally,	traces)	of	events	of	interest

10

Measurement of CPU and GPU-accelerated Applications
• Sampling using Linux timers and hardware counter overflows on the CPU

• Callbacks when GPU operations are launched and (sometimes) completed

• Event stream for GPU operations

• PC Samples: NVIDIA (in progress: AMD, Intel)

• Binary instrumentation of GPU kernels on Intel GPUs for fine-grain measurement

11

Call Stack Unwinding to Attribute Costs in Context

Call path sample

instruction pointer

return address

return address

return address

Calling context tree

• Unwind when timer or hardware counter overflows

⏤measurement overhead proportional to sampling frequency rather than call frequency

• Unwind to capture context for events such as GPU kernel launches

12

hpcrun: Measure CPU and/or GPU activity
• GPU profiling

⏤hpcrun -e gpu=xxx <app> ….

• GPU PC sampling (NVIDIA GPU only)

⏤hpcrun -e gpu=nvidia,pc <app>

• CPU and GPU Tracing (in addition to profiling)

⏤hpcrun -e CPUTIME -e gpu=xxx -tt <app>

• Use hpcrun with MPI on Polaris

⏤mpiexec -n <ranks> … hpcrun -e gpu=xxx <app>

 xxx ∈ {nvidia,amd,opencl,level0}

13

HPCToolkit’s Workflow for GPU-accelerated Applications
Step	3:

• hpcstruct	recovers	program	structure	

about	lines,	loops,	and	inlined	functions

14

hpcstruct: Analyze CPU and GPU Binaries Using Multiple Threads

• Usage

hpcstruct [--gpucfg yes] <measurement-directory>

• What it does

• Recover program structure information

• Files, functions, inlined templates or functions, loops, source lines

• In parallel, analyze all CPU and GPU binaries that were measured by HPCToolkit

⏤typically analyze large application binaries with 16 threads

⏤typically analyze multiple small application binaries concurrently with 2 threads each

• Cache binary analysis results for reuse when analyzing other executions

NOTE: --gpucfg yes needed only for analysis of GPU binaries for interpreting PC samples on NVIDIA GPUs

15

HPCToolkit’s Workflow for GPU-accelerated Applications
Step	4:

• hpcprof/hpcprof-mpi	combines	

profiles	from	multiple	threads	and	
correlate	metrics	to	static	&	dynamic	
program	structure

16

hpcprof/hpcprof-mpi: Associate Measurements with Program Structure

• Analyze data from modest executions with multithreading (moderate scale)

hpcprof <measurement-directory>

• Analyze data from large executions with distributed-memory parallelism + multithreading (large scale)

mpiexec -n ${NODES} --ppn 1 —depth=128 \  
 hpcprof-mpi <measurement-directory>

17

HPCToolkit’s Workflow for GPU-accelerated Applications
Step	4:

• hpcviewer	-	interactively	explore	

profile	and	traces	for	GPU-accelerated	
applications

18

Code-centric Analysis with hpcviewer
• Profiling compresses out the temporal dimension

⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples

⏤N times per second, take a call path sample of each thread

⏤Organize the samples for each thread along a time line

⏤View how the execution evolves left to right

⏤What do we view? assign each procedure a color; view a depth slice of an execution

• function calls in full context

• inlined procedures

• inlined templates

• outlined OpenMP loops

• loops

source pane

navigation pane metric pane

view control

metric display

19

Understanding Temporal Behavior
• Profiling compresses out the temporal dimension

⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples

⏤N times per second, take a call path sample of each thread

⏤Organize the samples for each thread along a time line

⏤View how the execution evolves left to right

⏤What do we view? assign each procedure a color; view a depth slice of an execution

Time

Processes

Call

stack

20

Time-centric Analysis with hpcviewer
M

PI
 ra

nk
s,

O
pe

nM
P

Th
re

ad
s,

 G
PU

 s
tr

ea
m

s

Time

The color at a particular point in a
timeline indicates the CPU procedure
or GPU kernel active at that time at
the selected call stack depth

Depth view showing the history of calling contexts for the thread/GPU stream with the cursor

Call stack pane
shows full calling
context for the
cursor

Minimap indicates part of
execution trace shownA multi-level call stack based view of execution over time

21

Case Studies
• ExaWind

• GAMESS (OpenMP)

• Quicksilver (CUDA)

• PeleC (AMReX)

• LAMMPS (Kokkos) at exascale

22

ExaWind: Wakes from Three Turbines over Time

Figure credit: Jon Rood, NREL

23

ExaWind: Visualization of a Wind Farm Simulation

Figure credit: Jon Rood, NREL

24

ExaWind: Execution Traces on Frontier Collected with HPCToolkit
Traces on roughly ~70K MPI ranks for ~17minutes

Before: MPI waiting (bad), shown in red After: MPI overhead negligible*

*replaced non-blocking send/recv with ialltoallvFigure credits: Jon Rood, NREL

25

ExaWind Testimonials for HPCToolkit
I just wanted to mention we’ve been using HPCToolkit a lot for our ExaWind application on
Frontier, which is a hugely complicated code, and your profiler is one of the only ones we’ve found
that really lets us easily instrument and then browse what our application is doing at runtime
including GPUs. As an example, during a recent hackathon we had, we improved our large scale
performance by 24x by understanding our code better with HPCToolkit and running it on 1000s of
nodes while profiling. We also recently improved upon this by 10% for our total runtime.

- Jon Rood NREL (5/31/2024)

One big thing for us is that we can’t overstate how complicated ExaWind is in general, and how
complicated it is to build, so finding out that HPCToolkit could easily profile our entire application
without a ton of instrumentation during the build process, and be able to profile it on a huge
amount of Frontier with line numbers and visualizing the trace was really amazing to us.

- Jon Rood NREL (6/3/2024)

26

LAMMPS on Frontier: Executions with Kernel Duration of Milliseconds

27

LAMMPS on Frontier: Executions with Kernel Duration of Milliseconds

28

LAMMPS on Frontier: Executions with Kernel Duration of Milliseconds

29

LAMMPS on Frontier: Executions with Kernel Duration of Milliseconds

30

LAMMPS on Frontier: Executions with Kernel Duration of Milliseconds

31

LAMMPS on Frontier: 8K nodes, 64K MPI ranks + 64K GPU tiles

Kernel duration of microseconds

32

Case Study: GAMESS
• General Atomic and Molecular Electronic Structure System (GAMESS)

⏤general ab initio quantum chemistry package

• Calculates the energies, structures, and properties of a wide range of chemical systems

• Experiments

• GPU-accelerated nodes at a prior Perlmutter hackathon

• Single node with 4 GPUs

• Five nodes with 20 GPUs

Perlmutter node at a glance

AMD Milan CPU

4 NVIDIA A100 GPUs

256 GB memory

33

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

• Profiling compresses out the temporal dimension

⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples

⏤N times per second, take a call path sample of each thread

⏤Organize the samples for each thread along a time line

⏤View how the execution evolves left to right

⏤What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS original All CPU threads and GPU streams

34

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

• Profiling compresses out the temporal dimension

⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples

⏤N times per second, take a call path sample of each thread

⏤Organize the samples for each thread along a time line

⏤View how the execution evolves left to right

⏤What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS original All CPU threads and GPU streams

35

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

• Profiling compresses out the temporal dimension

⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples

⏤N times per second, take a call path sample of each thread

⏤Organize the samples for each thread along a time line

⏤View how the execution evolves left to right

⏤What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS original All GPU streams, whole execution

36

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

• Profiling compresses out the temporal dimension

⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples

⏤N times per second, take a call path sample of each thread

⏤Organize the samples for each thread along a time line

⏤View how the execution evolves left to right

⏤What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS original GPU streams: 1 iteration

GPU load imbalance due to triangular iteration spaces

37

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

• Profiling compresses out the temporal dimension

⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples

⏤N times per second, take a call path sample of each thread

⏤Organize the samples for each thread along a time line

⏤View how the execution evolves left to right

⏤What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS original

38

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension

⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples

⏤N times per second, take a call path sample of each thread

⏤Organize the samples for each thread along a time line

⏤View how the execution evolves left to right

⏤What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS improved CPU Threads and GPU Streams

39

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension

⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples

⏤N times per second, take a call path sample of each thread

⏤Organize the samples for each thread along a time line

⏤View how the execution evolves left to right

⏤What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS improved

40

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension

⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples

⏤N times per second, take a call path sample of each thread

⏤Organize the samples for each thread along a time line

⏤View how the execution evolves left to right

⏤What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS improved with better manual distribution of work in input

41

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension

⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples

⏤N times per second, take a call path sample of each thread

⏤Organize the samples for each thread along a time line

⏤View how the execution evolves left to right

⏤What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS improved adding Rank 0 Thread 0 to GPU streams

42

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension

⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples

⏤N times per second, take a call path sample of each thread

⏤Organize the samples for each thread along a time line

⏤View how the execution evolves left to right

⏤What do we view? assign each procedure a color; view a depth slice of an execution

1 CPU Stream, 2 GPU Streams: 6 Iterations

43

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension

⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples

⏤N times per second, take a call path sample of each thread

⏤Organize the samples for each thread along a time line

⏤View how the execution evolves left to right

⏤What do we view? assign each procedure a color; view a depth slice of an execution

44

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension

⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples

⏤N times per second, take a call path sample of each thread

⏤Organize the samples for each thread along a time line

⏤View how the execution evolves left to right

⏤What do we view? assign each procedure a color; view a depth slice of an execution

45

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension

⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples

⏤N times per second, take a call path sample of each thread

⏤Organize the samples for each thread along a time line

⏤View how the execution evolves left to right

⏤What do we view? assign each procedure a color; view a depth slice of an execution

46

Case Study: Quicksilver
• Proxy application that represents some elements of LLNL’s Mercury workload

• Solves a simplified dynamic Monte Carlo particle transport problem

• Attempts to replicate memory access patterns, communication patterns, and branching or
divergence of Mercury for problems using multigroup cross sections

• Parallelization: MPI, OpenMP, and CUDA

• Performance Issues

• load imbalance (for canned example)

• latency bound table look-ups

• a highly branchy/divergent code path

• poor vectorization potential

47

Quicksilver: Detailed analysis within a Kernel using PC Sampling

48

Quicksilver: Detailed analysis within a Kernel using PC Sampling

49

Analysis of PeleC using PC Sampling on an NVIDIA GPU

9.4% GPU stalls

outside the loop

mostly memory

stalls

Improvement:

pass udata components as scalars

https://github.com/AMReX-Combustion/PelePhysics/pull/192

4% speedup on PeleC PMF drm19 test case

Cause:

passed udata structure pointer to lambda capture

CPU

context

GPU

context

50

Key Metrics for GPU Kernels
• GPUOP: GPU operation time (kernel launch, copies, etc.)

• GXCOPY:* GPU copies of various kinds

• GKER: GPU kernel time

• GKER:FGP_ACT: fine grain parallelism actual (active warps per SM)

• GKER:FGP_MAX: maximum possible fine-grain parallelism (max warps per SM)

• GKER:BLK_THR: threads per block

• GKER:BLK_SM: block shared memory

• GKER:OCC_THR: theoretical thread occupancy

51

Metrics for GPU Kernels with PC Samples
• GINS: GPU instructions

• GINS:STL_ANY: GPU instruction stalls for any reason

• GINS:STL_IFET: GPU instruction stalls for instruction fetch

• GINS:STL_GMEM: GPU instruction stalls for global memory

• GINS:STL_CMEM: GPU instruction stalls for constant memory

• GINS:STL_IDEP: GPU instruction stalls for instruction dependences

• GINS:STL_PIPE: GPU instruction pipeline stalls

• GINS:STL_MTHR: GPU instruction stalls for memory throttling

• GSAMP:EXP: expected number of samples

• GSAMP:TOT: total number of samples recorded

• GSAMP:UTIL: GPU utilization = (PC samples expected) / (PC samples total)

52

HPCToolkit Resources

• Documentation

⏤User manual for HPCToolkit: http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf

⏤Cheat sheet: https://gitlab.com/hpctoolkit/hpctoolkit/-/wikis/HPCToolkit-cheat-sheet

⏤User manual for hpcviewer: https://hpctoolkit.gitlab.io/hpcviewer

⏤Tutorial videos

▪ http://hpctoolkit.org/training.html

▪ recorded demo of GPU analysis of Quicksilver: https://youtu.be/vixa3hGDuGg

▪ recorded tutorial presentation including demo with GPU analysis of GAMESS: https://vimeo.com/781264043

• Software

⏤Download hpcviewer GUI binaries for your laptop, desktop, cluster, or supercomputer

▪ OS: Linux, Windows, MacOS

▪ Processors: x86_64, aarch64, ppc64le

▪ http://hpctoolkit.org/download.html

⏤Install HPCToolkit on your Linux desktop, cluster, or supercomputer using Spack

▪ http://hpctoolkit.org/software-instructions.html

http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf
https://gitlab.com/hpctoolkit/hpctoolkit/-/wikis/HPCToolkit-cheat-sheet
https://hpctoolkit.gitlab.io/hpcviewer
http://hpctoolkit.org/training.html
https://youtu.be/vixa3hGDuGg
https://vimeo.com/781264043
http://hpctoolkit.org/download.html
http://hpctoolkit.org/software-instructions.html

53

Some Hpcviewer Tips

54

Information for Using Hpcviewer

• Filtering GPU traces

• Can use the filter menu to select what execution traces you want to see

• cpu only, gpu, a mix

• type a string or a regular expression in the chooser select or unselect the new set

• only traces that exceed a minimum number of samples

• Filtering GPU calling context tree nodes to hide clutter

• hide individual CCT nodes: e.g. lines that have no source code mapping library@0x0f450

• hide subtrees: MPI implementation, implementation of CUDA primitives

• When inspecting GPU activity, be aware that hpcviewer has two modes

• expose GPU traces or not

• means: when displaying GPU trace lines, don’t just show GPU activity if the time in the middle of a pixel is in a
GPU operation. instead, show the first (if any) GPU operation between the time in the middle of the pixel and the
middle of the next pixel

• why? GPU activity is so short, it may be hard to find if we don’t “expose” where it is

• downside: makes the GPU appear more active than it is

• can correct the statistics by turning the mode off

• mode can be selected from <File>:<Preferences>:<Traces>

55

Quicksilver Hand-on Notes

56

Select the Tab “Trace: qs”

57

Use the Filter to “Uncheck all” and Check “GPU” streams

58

See Load Imbalance Across the Four GPUs

59

The Profile View in the other “PC Sampling” Database

60

Hands-on Tutorial Examples
%git clone https://github.com/hpctoolkit/hpctoolkit-tutorial-
examples

%cd hpctoolkit-tutorial-examples/gpu/nvidia

%ls

% arborx.kokkos lammps.kokkos quicksilver.cuda

https://github.com/hpctoolkit/hpctoolkit-tutorial-examples
https://github.com/hpctoolkit/hpctoolkit-tutorial-examples

61

Analyzing Quicksilver Traces
Using a measurement database with profiles and traces

• Select the Trace tab “Trace: qs”

• Identifying the traces

• Select a pixel on a trace line

• Look at legend on the top of the display, which reports the location of the “cross hair”

• Is this a CPU or GPU trace line?

• Repeat this a few times to identify what each of the trace lines represents

• Notice that each time you select a colored pixel on a trace line, you will be shown the function
call stack in the rightmost pane

• At the top of the pane is a “depth” indicator, that indicates what level in the call stack you are
viewing. The selected level will also be highlighted

• You can change the depth of your view by using the depth up/down, typing a depth, or simply
selecting a frame in the call stack at the desired depth

• You can select above the call stack frame to show the call stacks at the deepest depth

• If a sample doesn’t have an entry at the selected depth, its deepest frame will be shown

62

Analyzing Quicksilver Traces
Using a measurement database with profiles and traces

• Zoom in on a region in a trace by selecting it in the trace display

• Use the back button to undo a zoom

• Use the control buttons at the top of the trace pane to

• expand or contract the pane

• move left, right, up, or down

• Keep an eye on the minimap in the lower right corner of the display to know what
part of the trace you are viewing

• Use the home button to reset the trace view to show the whole trace

63

Analyzing Quicksilver Traces
Using a measurement database with profiles and traces

• Select the Trace tab “Trace: qs”

• Configure filtering

• Use the Filter menu to select Filter Execution Contexts

• In the filtering menu, select "Uncheck all"

• Now, in the empty box preceded by "Filter:", type "GPU" and then click "Check all”

• Select "OK".

• Now, the Trace View will show only trace lines for the GPUs.

• Inspect the trace data

• Is the work load balanced across the GPUs? How can you tell?

• Bring up the filter menu again. Select "Uncheck all". Type in "RANK 3" in the Filter box. Select thread

0 and the GPU context. Select “OK”.

• Move the call stack to depth 2

• What CPU function is Rank 3 thread 0 executing when the GPU is idle?

• Does this suggest any optimization opportunities?

64

Analyzing the Quicksilver Summary Profile
Using a measurement database with profiles and traces

• Select the Profile Tab “Profile: qs”

• Use the column selector to deselect and hide the two REALTIME columns

• Select the GPU OPS column, which represents time spent in all GPU operations

• Select the button to show the “hot path” according to the selected column

• the hot path of parent will continue into a child as long as the child accounts for
50% or more of the parent’s cost

• The hot path will select “CycleTrackingKernel” — a GPU kernel that consumes 100%
of the GPU cost in this profile

• Use the button to graph “GPU OPS (I)” — inclusive GPU operations across the
profiles

• Are the GPU operations balanced or not across the execution contexts (ranks)?

65

Analyzing the Quicksilver Summary Profile
• You will notice that for quicksilver, HPCToolkit doesn’t report any data copies between

the host and device

• The quicksilver code uses “unified memory” so that all of the data movement occurs
between CPU and GPU using page faults rather than explicit copies

• Today’s GPU hardware doesn’t support attribution of page faults to individual
instructions

• We could profile them, but not attribute them to code

66

Analyzing Quicksilver PC Samples
Using a measurement database with traces that was collected *with* PC sampling enabled

Using the default top-down view of the profile

• Select the column “GINS (I)” to focus on the measurement of inclusive GPU Instructions

• Select use the flame button to look at where the instructions are executed

• In the call stack revealed, you will <gpu kernel> placeholder that separates CPU activity (above) from GPU kernel

activity (below)

• Below the <gpu kernel> placeholder you will see the function calls, inlined functions, loops and statements in

HPCToolkit’s reconstruction of calling contexts within the CycleTrackingKernel

• Using the bottom-up view of the profile

• Select the bottom-up tab of above the control pane

• Select the GINS STL_ANY (E) column, which will sort the functions by the exclusive GPU instruction stalls within that

function

• Scroll right to see which of the types of contributing types of stalls accounts for most of the STL_ANY amount

• Select the function that has the most exclusive stalls

• Select the the hot path to see where this function is called from.

• Where do the calls to the costly function come from?

• Does there appear to be an opportunity to reduce the number of calls to this function?

67

Filtering Tips to Hide Unwanted Implementation Details

• Filter “descendants-only” of CCT nodes with names *MPI* to hide the details of
MPI implementation in profiles and traces

• Filter internal details of RAJA and SYCL templates to suppress unwanted detail
using a “self-only” filter

68

Other Databases to Inspect

69

Other Performance Databases
See /tmp/hpctoolkit-databases for each of the following

• Quicksilver PC Sampling

• QMCPACK CPU prototype: a Quantum Monte Carlo code

• inspect performance data from an early prototype on 32 MPI ranks x 32
threads per rank

• Deepware-rtm: Reverse time migration using Pytorch

• trace data shows forward and backward phases utilizing a GPU

• PC sampling measurements shows GPU stencil computations

• PeleC: a turbulent combustion code being used to simulate jet aircraft engines

• large data from 2025 NERSC hackathon run on 16 CPUs + 16 GPU

