
1

Performance Evaluation of GPU-accelerated HPC and AI
applications using HPCToolkit, TAU, and ParaTools Pro for
E4STM

Sameer Shende

Research Professor, University of Oregon

President and Director

ParaTools, Inc.

Presentation at EnergyHPC conference, Rice U., Houston

February 27, 2025

https://tinyurl.com/e4stut

2

TAU Performance System®

• Versatile profiling and tracing toolkit that supports:

– MPI, ROCm, CUDA, DPC++/SYCL (Level Zero), OpenCL, and
OpenMP (OpenMP Tools Interface for Target Offload), OpenACC

• Scalable, portable, performance evaluation toolkit for HPC and AI/ML workloads that supports:

– C++/C/DPC++, Fortran, Python

• Interfaces with Program Database Toolkit (PDT) and SALT-FM for instrumentation of source code.

• Supports PAPI, Likwid for hardware performance counter information

• Instrumentation includes support for PETSc (Perfstubs), XGC (CAMTIMERS), Kokkos, MPI,
pthread, event-based sampling, GPU runtimes

• A single tool (tau_exec) is used to launch un-instrumented, un-modified binaries

• TAU’s paraprof, pprof, perfexplorer for profile analysis; Vampir, Jumpshot, Perfetto.dev for traces

• http://tau.uoregon.edu

https://tau.uoregon.edu/

3

Using TAU’s Runtime Preloading Tool: tau_exec

• Preload a wrapper that intercepts the runtime system call and substitutes with another

o MPI

o OpenMP

o POSIX I/O

o Memory allocation/deallocation routines

o Wrapper library for an external package

• No modification to the binary executable!

• Enable other TAU options (communication matrix, OTF2, event-based sampling)

4

Profiling:

MPI: % mpirun -np 16 tau_exec -ebs ./a.out

• Pthread: % mpirun -np 16 tau_exec –T mpi,pthread –ebs ./a.out

• CUDA: % mpirun –np 16 tau_exec –T cupti –cupti ./a.out

• ROCM: % mpirun –np 16 tau_exec –rocm ./a.out

Analysis: % pprof –a –m | more; % paraprof (GUI)

Tracing:

• Vampir: MPI: % export TAU_TRACE=1; export TAU_TRACE_FORMAT=otf2

 % mpirun -np 16 tau_exec ./a.out; vampir traces.otf2 &

• Chrome/Jumpshot: % export TAU_TRACE=1; mpirun -np 64 tau_exec ./a.out

 % tau_treemerge.pl;

Chrome: % tau_trace2json tau.trc tau.edf –chrome –ignoreatomic –o app.json

 Chrome browser: chrome://tracing (Load -> app.json) or Perfetto.dev

• Jumpshot: tau2slog2 tau.trc tau.edf –o app.slog2; jumpshot app.slog2

TAU: Quickstart Guide

5

TAU Execution Command (tau_exec)
Uninstrumented execution

% mpirun -np 256 ./a.out

Track GPU operations

% mpirun -np 256 tau_exec –rocm ./a.out
% mpirun -np 256 tau_exec –cupti ./a.out
% mpirun -np 256 tau_exec –cupti -um ./a.out (for Unified Memory)
% mpirun –np 256 tau_exec –l0 ./a.out

% mpirun –np 256 tau_exec –opencl ./a.out

% mpirun –np 256 tau_exec –openacc ./a.out

Track MPI performance

% mpirun -np 256 tau_exec ./a.out

Track I/O, and MPI performance (MPI enabled by default)

% mpirun -np 256 tau_exec -io ./a.out

Track OpenMP and MPI execution (using OMPT for Intel v19+ or Clang 8+)

% export TAU_OMPT_SUPPORT_LEVEL=full;

% mpirun –np 256 tau_exec –T ompt,mpi -ompt ./a.out

Track memory operations

% export TAU_TRACK_MEMORY_LEAKS=1

% mpirun –np 256 tau_exec –memory_debug ./a.out (bounds check)

Use event based sampling (compile with –g)

% mpirun –np 256 tau_exec –ebs ./a.out

Also export TAU_METRICS=TIME,PAPI_L1_DCM… -ebs_resolution=<file | function | line>

6

Advanced
Instrumentation
Features of TAU

7

TAU Performance System®

Parallel performance framework and toolkit
• Supports all HPC platforms, compilers, runtime system
• Provides portable instrumentation, measurement, analysis

8

• How much time is spent in each application routine and outer loops? Within loops, what is the

contribution of each statement? What is the time spent in OpenMP loops? In kernels on

GPUs. How long did it take to transfer data between host and device (GPU)?

• How many instructions are executed in these code regions?

Floating point, Level 1 and 2 data cache misses, hits, branches taken? What is the extent of

vectorization for loops?

• How much time did my application spend waiting at a barrier in MPI collective operations?

• What is the memory usage of the code? When and where is memory allocated/de-allocated?

Are there any memory leaks? What is the memory footprint of the application? What is the

memory high water mark?

• How much energy does the application use in Joules? What is the peak power usage?

• What are the I/O characteristics of the code? What is the peak read and write bandwidth of

individual calls, total volume?

• How does the application scale? What is the efficiency, runtime breakdown of performance

across different core counts?

Application Performance Engineering using TAU

9

Instrumentation

• Direct and indirect performance observation

• Instrumentation invokes performance measurement

• Direct measurement with probes

• Indirect measurement with periodic sampling or hardware performance

counter overflow interrupts

• Events measure performance data, metadata, context, etc.

• User-defined events

Interval (start/stop) events to measure exclusive & inclusive duration

Atomic events take measurements at a single point

Measures total, samples, min/max/mean/std. deviation statistics

Context events are atomic events with executing context

Measures above statistics for a given calling path

10

Instrumentation

• Source instrumentation using a preprocessor

– Add timer start/stop calls in a copy of the source code.

– Use SALT-FM or Program Database Toolkit (PDT) for parsing source code.

– Requires recompiling the code using TAU shell scripts (tau_cc.sh, tau_f90.sh)

– Selective instrumentation (filter file) can reduce runtime overhead and narrow instrumentation focus.

• Compiler-based instrumentation

– Use system compiler to add a special flag to insert hooks at routine entry/exit.

– TAU LLVM plugin for selective instrumentation at the LLVM IR level before codegen.

– Requires recompiling using TAU compiler scripts (tau_cc.sh, tau_f90.sh…)

• Runtime preloading of TAU’s Dynamic Shared Object (DSO)

– No need to recompile code! Use mpirun tau_exec ./app with options.

Add hooks in the code to perform measurements

11

Using Instrumentation of Source Code in TAU using PDT

TAU supports several measurement and thread options
Phase profiling, profiling with hardware counters, MPI library, CUDA…

Each measurement configuration of TAU corresponds to a unique stub makefile and library that is generated
when you configure it

To instrument source code automatically using PDT

Choose an appropriate TAU stub makefile in <arch>/lib:
 (or module load tau…)

% export TAU_MAKEFILE=$TAU/Makefile.tau-papi-mpi-pdt

% export TAU_OPTIONS=‘-optVerbose …’ (see tau_compiler.sh)

% export PATH=$TAUDIR/x86_64/bin:$PATH

Use tau_f90.sh, tau_cxx.sh, tau_upc.sh, or tau_cc.sh as F90, C++, UPC, or C compilers respectively:

% mpif90 foo.f90 changes to

% tau_f90.sh foo.f90

Set runtime environment variables, execute application and analyze performance data:
% pprof (for text based profile display)

% paraprof (for GUI)

12

TAU Configurations available
% module load tau

% ls $TAU/Makefile*

/packages/tau-2.34/x86_64/lib/Makefile.tau-intel-papi-mpi-pthread-pdt

/packages/tau-2.34/x86_64/lib/Makefile.tau-intel-papi-ompt-mpi-pdt-openmp

/packages/tau-2.34/x86_64/lib/Makefile.tau-papi-mpi-pdt

/packages/tau-2.34/x86_64/lib/Makefile.tau-papi-pdt

/packages/tau-2.34/x86_64/lib/Makefile.tau-papi-pthread-pdt

/packages/tau-2.34/x86_64/lib/Makefile.tau-papi-tbb-pdt

For an uninstrumented binary:

% mpirun –np 16 tau_exec –T mpi,papi,pdt ./a.out

Picks the configuration represented by

/packages/tau-2.34/x86_64/lib/Makefile.tau-intel-papi-mpi-pdt

To use OpenMP instrumentation:

% export TAU_OMPT_SUPPORT_LEVEL=full

% export OMP_NUM_THREADS=<N>

% mpirun –np 16 tau_exec –T ompt,mpi –ompt –ebs ./a.out

To use TAU’s source code instrumentation:

% export TAU_MAKEFILE=/packages/tau-2.34/x86_64/lib/Makefile.tau-intel-papi-mpi-pdt

% make CC=tau_cc.sh F90=tau_f90.sh CXX=tau_cxx.sh ; mpirun –np 16 ./a.out

% pprof –a | more

% paraprof

% paraprof --pack foo.ppk
Copy it to your local machine and launch: % paraprof foo.ppk

13

TAU’s Legacy Static Analysis System:

Program Database Toolkit (PDT)

Application

/ Library

C / C++

parser

Fortran parser

F77/90/95

C / C++

IL analyzer

Fortran

IL analyzer

Program

Database

Files

IL IL

DUCTAPE
TAU

instrumentor
Automatic source

instrumentation

.

.

.

Closed source C/C++ parser based

on obsolete version of Edison

Design Group compiler

Based on an old, modified version of GFortran.

• GFortran’s non-modular design makes use as a

library difficult and does not support modern Fortran

Text-based database files enumerating all functions, statements, types

14

Automatic Source Instrumentation using PDT

tau_instrumentor

Parsed

program

Instrumentation

specification file

Instrumented

copy of source

TAU source

analyzer
Application

source

15

• PDT has usability issues

– Not compatible with any C++ features beyond C++11

– Closed source — so have to ship large binary blobs to end users

– PDB file requirement to serialize all types to textual description presents problems with modern C++ with
deeply-templated types (large number of types with long description length)

• PDT has maintainability issues

– Closed source – developers must sign NDA, limits number of developers involved

– PDT instrumentor mixes EDG parser and PDT client code in same codebase — difficult to upgrade to
new versions

– Difficult to support for new C++ features

– Major EDG release makes numerous breaking changes to API, which would require a from-scratch
rewrite to adopt

• Fortran support

– Based on older GFortran parser that does not support modern Fortran features

Problems with PDT

16

Flang-based Instrumentation

SALT is implemented as a Flang Frontend Plugin which receives the Fortran

parse tree from flang –fc1 after parse tree generation and before the semantics

stage.

flang flang -fc1
LLVM

assembler

Parser Semantics
Lower to

FIR

Lower to

MLIR
Lower to

LLVM IR

17

SALT plugin for Flang: NASA SBIR Phase I

• Phase I proof-of-concept implements instrumentation for performance

monitoring.

• SALT Visitor visits each node of parse tree
• Identifies programs/subprograms for instrumentation

• Identifies source locations for inserting variable declarations and timer start/stop code for

TAU timers
• Not all parse tree node types in Flang have associated source position data.
• Scans into children of a given node to find source position data in subnodes.

• Phase I focused specifically on instrumentation.

18

Profiling and Tracing

• Tracing shows you when the events take

place on a timeline

Profiling Tracing

• Profiling shows you how much

(total) time was spent in each routine

• Profiling and tracing

Profiling shows you how much (total) time was spent in each routine

Tracing shows you when the events take place on a timeline

19

Inclusive vs. Exclusive values
■ Inclusive

■ Information of all sub-elements aggregated into single value

■ Exclusive
■ Information cannot be subdivided further

Inclusive Exclusive

int foo()
{
 int a;
 a = 1 + 1;

 bar();

 a = a + 1;
 return a;

}

20

How much data do you want?

Limited

Profile

Flat

Profile

Loop

Profile

Callsite

Profile

Callpath

Profile

Trace

O(KB) O(TB)

21

Performance Data Measurement

Direct via Probes Indirect via Sampling

• Exact

measurement

• Fine-grain control

• Calls inserted

into code

• No code modification

• Minimal effort

• Relies on debug

symbols (-g)

Call

START(‘potential’)

// code

Call

STOP(‘potential’)

22

Sampling

Running program is periodically interrupted to take

measurement

Timer interrupt, OS signal, or HWC overflow

Service routine examines return-address stack

Addresses are mapped to routines using symbol

table information

Statistical inference of program behavior

Not very detailed information on highly volatile

metrics

Requires long-running applications

Works with unmodified executables

Time

main foo(0) foo(1) foo(2) int main()
{
 int i;

 for (i=0; i < 3; i++)
 foo(i);

 return 0;
}

void foo(int i)
{

 if (i > 0)
 foo(i – 1);

}

Measurement

t9t7t6t5t4t1 t2 t3 t8

23

Instrumentation

Measurement code is inserted such that every event of

interest is captured directly

Can be done in various ways

Advantage:

Much more detailed information

Disadvantage:

Processing of source-code / executable

necessary

Large relative overheads for small functions

Time

Measurement int main()
{
 int i;

 for (i=0; i < 3; i++)
 foo(i);

 return 0;
}

void foo(int i)
{

 if (i > 0)
 foo(i – 1);

}

Time

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11t12t13 t14

main foo(0) foo(1) foo(2)

TAU_START(“main”);

TAU_STOP(“main”);

TAU_START(“foo”);

TAU_STOP(“foo”);

24

ParaProf Profile Browser

% paraprof

25

ParaProf Profile Browser

26

Inclusive Measurements

27

Exclusive Time

28

Callpath Profiling

% export TAU_CALLPATH=1

% export TAU_CALLPATH_DEPTH=100

29

ParaProf Function Window

30

Callsite Profiling and Tracing

% export TAU_CALLSITE=1

31

ParaProf Callpath Thread Relations Window

Shows the contribution of parents and children for each routine (marked by an arrow)

32

ParaProf Callpath Thread Relations Window

33

Identifying Collective Wait States: Thread Callpath Relations Window

MPI Collective Sync is the time spent in a barrier operation inside a collective

34

ParaProf Thread Comparison Window

Comparing Rank 118 with 22.

Right click on “node 118” -> Add node to comparison window

35

ParaProf Function Window

36

Tracing: Jumpshot (ships with TAU)

% export TAU_TRACE=1; mpirun –np 256 tau_exec ./a.out

% tau_treemerge.pl; tau2slog2 tau.trc tau.edf –o app.slog2

 % jumpshot app.slog2

37

Tracing: Chrome Browser or Perfetto.dev

% export TAU_TRACE=1

% mpirun –np 256 tau_exec ./a.out
% tau_treemerge.pl; tau_trace2json tau.trc tau.edf –chrome –ignoreatomic –o app.json

 Chrome browser: chrome://tracing (Load -> app.json)

 Perfetto.dev (open the UI)

38

Perfetto.dev Trace Browser: Kokkos

% export TAU_TRACE=1; mpirun –np 64 tau_exec –rocm ./a.out;

% tau_treemerge.pl;

% tau_trace2json tau.trc tau.edf –chrome –ignoreatomic –o app.json

39

Perfetto.dev

40

Perfetto.dev Trace Browser

CUDA streams Flow Events

41

Vampir [TU Dresden] Timeline: Kokkos

% export TAU_TRACE=1; export TAU_TRACE_FORMAT=otf2

% tau_exec -T ompt –ompt ./a.out

% vampir traces.otf2 &

42

Event Based Sampling (EBS)

% mpirun -n 16 tau_exec –ebs a.out

Uninstrumented!

File: point_solver.F90

Line: 2705

43

ParaProf

Click on Columns:

to sort by incl time

Open binvcrhs

Click on Sample

% export TAU_SAMPLING=1

44

ParaProf

45

Callstack Sampling in TAU

% export TAU_SAMPLING=1; export TAU_EBS_UNWIND=1

46

TAU – Callstack Sampling

% export TAU_SAMPLING=1; export TAU_EBS_UNWIND=1

47

TAU Context Event Window

TAU tracks the data transfers between the host and the GPU.

48

TAU’s tracking of Python and MPI

TAU can observe events in closed-source vendor libraries (e.g., in MPI_Bcast)!

49

Deep Learning: Tensorflow

% tau_python –ebs nt3_baseline_keras2.py (CANDLE)

50

TAU – Context Events

Bytes written to each file

Write bandwidth per file

% mpirun –np 16 tau_python -io ./foo.py

51

ParaProf 3D Profile Browser

52

TAU – ParaProf 3D Visualization

% paraprof app.ppk

Windows -> 3D Visualization -> Bar Plot (right pane)

53

TAU – 3D Communication Window

% export TAU_COMM_MATRIX=1; mpirun … tau_exec ./a.out

% paraprof ; Windows -> 3D Communication Matrix

54

TAU’s Support for Runtime Systems

MPI
PMPI profiling interface

MPI_T tools interface using performance and control variables

Pthread
Captures time spent in routines per thread of execution

OpenMP
OMPT tools interface to track salient OpenMP runtime events

Opari source rewriter

Preloading wrapper OpenMP runtime library when OMPT is not supported

OpenACC
OpenACC instrumentation API

Track data transfers between host and device (per-variable)

Track time spent in kernels

55

TAU’s Support for Runtime Systems (contd.)

OpenCL

OpenCL profiling interface

Track timings of kernels

Intel® OneAPI

Level Zero

Track time spent in kernels executing on GPU

Track time spent in OneAPI runtime calls

CUDA

Cuda Profiling Tools Interface (CUPTI)

Track data transfers between host and GPU

Track access to uniform shared memory between host and GPU

ROCm

Rocprofiler and Roctracer instrumentation interfaces

Track data transfers and kernel execution between host and GPU

Kokkos

Kokkos profiling API

Push/pop interface for region, kernel execution interface

Python

Python interpreter instrumentation API

Tracks Python routine transitions as well as Python to C transitions

56

Examples of Multi-Level Instrumentation

MPI + OpenMP

MPI_T + PMPI + OMPT may be used to track MPI and OpenMP

MPI + HIP

PMPI + Roctracer interfaces

ROCprofiler+ MPI

ROCm Rocprofiler+ PMPI MPI interface

Kokkos + OpenMP

Kokkos profiling API + OMPT to transparently track events

Kokkos + pthread + MPI

Kokkos + pthread wrapper interposition library + PMPI layer

Python + ROCTracer + MPI

Python + ROCm Roctracer + MPI profiling interface

MPI + OpenCL

PMPI + OpenCL profiling interfaces

57

Binary instrumentation of libraries: Work in progress

% tau_run a.out –o a.inst

instruments a binary. Other flags –T <tags>, -f <selective instrumentation file>
% tau_run -l /path/to/libhdf5.so.310 –o libhdf5.so.310

 instruments a DSO
% tau_exec ./a.out

 executes the uninstrumented application with the instrumented shared object.

Works on x86_64. Issues with aarch64:
https://github.com/dyninst/dyninst/issues/1708 and https://github.com/dyninst/dyninst/pull/1712
To use with DyninstAPI 13 on x86_64:
1. Load spack: spack/share/spack/setup-env.sh
2. Install dyninst: spack install dyninst@13 %gcc@11
3. Configure tau with dyninst:

3.1 spack find -p dyninst boost tbb elfutils
3.2 Copy the paths for each package into the configure line

3.3 ./configure -bfd=download -dyninst=<dir> -tbb=<dir> -boost=<dir> -elf=<dir>; <set paths>; make install

https://github.com/dyninst/dyninst/issues/1708
https://github.com/dyninst/dyninst/pull/1712

58

Binary instrumentation of libraries: HDF5

59

TAU – Event Based Sampling (EBS)

% export TAU_SAMPLING=1

60

TAU – Callpath Profiling

% export TAU_CALLPATH=1; export TAU_CALLPATH_DEPTH=100

61

TAU Atomic Events

62

TAU – Context Events

Bytes written to each file

Write bandwidth per

file

63

ParaProf Comparison Window

Comparing Rank 0 with 5.

Right click on “node 5” -> Add node to comparison window

64

ParaProf Comparison Window

65

ParaProf’s Topology Display Window

66

ParaProf Topology Display

67

ParaProf’s Scalable 3D Visualization

786,432 ranks

68

TAU Hands-On

69

TAU Exercise #1:
Event Based Sampling (EBS)

70

Using ParaTools Pro for E4S image on AWS with Adaptive Computing’s On-
Demand Data Center (ODDC)

STEP 1: Go to https://tinyurl.com/e4stut

STEP 2: Reserve an instance and login to:
https://paratools.adaptivecomputing.com

with the credentials. Firefox recommended.

https://tinyurl.com/e4stut
https://paratools.adaptivecomputing.com/

71

CoMD: TAU with event-based sampling (EBS)

% cd examples/CoMD/src-mpi

% make; cd ../bin

72

CoMD: TAU with event-based sampling (EBS)

% qsub comd.qsub

% qstat –u $USER

% qsub tau.qsub

% qstat –u $USER

73

CoMD: TAU’s paraprof visualizer

% paraprof &

74

CoMD: TAU’s paraprof visualizer

Right click on Node 0, Thread 0
and choose Show Thread
Statistics Table (third option)

75

TAU’s ParaProf Profile Browser: Thread Statistics Table

Click on columns to sort (e.g.,
Inclusive)

Expand nodes and right click on a
sample and

Select “Show Source Code”

76

TAU’s ParaProf Profile Browser: Source Code Browser

The application spent

4.8 seconds at line 198 in
ljForce.c in MPI rank 0. TAU
collected 160 samples at this line
of code.

It is within five levels of for
loops!

There was no change to
source code,
build system, or the
application binary!

77

TAU Exercise #2:
Instrumenting PETSc application using TAU’s

Perfstubs interface

78

Launching the binary using tau_exec –ebs

cd ~/examples/petsc-cpu
./compile.sh

qsub tau.qsub

qstat
After it completes:

paraprof &

79

TAU’s ParaProf Profile Browser: Source Code Browser

qsub tau.qsub

qstat -u $USER

After it completes

ls

paraprof &

80

TAU’s paraprof browser with PETSc performance profile

paraprof

Choose
Show thread statistics table by
right clicking on
node 0, thread 0.

81

Using pprof: TAU’s text based profile browser

pprof –a | more

Here we see PETSc timers
translated into TAU timers using
the Perfstubs library.

No modification to the source,
build system, or the binary!

82

Generating Traces

% cp /tmp/trace.qsub .

% ./compile.sh

% qsub trace.qsub

% qstat

% firefox https://perfetto.dev &
Click -> Trace Viewer -> Open the UI ->

Open Trace File -> navigate to app.json

Open the four trace rows (one for each rank)

Use wasd keys to widen/shrink/left/right

scroll

https://perfetto.dev/

83

What it was doing

cd ~/examples/petsc-cuda; vi ex50.qsub
Comment out previous CALLPATH options

export TAU_TRACE=1

% qsub ex50.qsub

% tau_treemerge.pl

% tau_trace2json tau.trc tau.edf –chrome \
 -ignoreatomic –o app.json

Open Firefox, load Perfetto.dev

trace visualizer and open app.json
wasd keys to widen/shrink/left/right

84

Visualizing Traces with https://Perfetto.dev

wasd
W = widen
S = Shrink
A = Left
D = Right

85

Generating Traces with Vampir

% cp /tmp/vampir.qsub .

% ./compile.sh (only needs to be done once)

% qsub vampir.qsub

% export PATH=/tmp/vampir/bin:$PATH

% vampir traces.otf2 &
(No need to merge or convert traces)

86

Vampir [TU Dresden]

87

Generating callpath profiles
Edit tau.qsub

add
export TAU_CALLPATH=1

export TAU_CALLPATH_DEPTH=100

export TAU_PROFILE_FORMAT=merged

mpirun …

% qsub tau.qsub

% qstat

% paraprof tauprofile.xml

88

Generating Traces

Edit tau.qsub
Comment out previous CALLPATH options

export TAU_TRACE=1

export TAU_TRACE_FORMAT=otf2

% qsub tau.qsub

% export PATH=/tmp/vampir/bin:$PATH

% vampir traces.otf2 &
(No need to merge or convert traces)

89

TAU Exercise #5:
CUDA instrumentation using CUPTI

(CUDA Profiling Tools Interface)

90

PETSc CUDA

% cd ~/examples/petsc-cuda

% cp /tmp/cupti.qsub .

% qsub cupti.qsub

% qstat

After it completes:

% paraprof tauprofile.xml &

91

PETSc CUDA: What it was doing

% cd ~/examples/petsc-cuda

% ./compile.sh

Edit the qsub file:

spack load tau+cuda

export TAU_PROFILE_FORMAT=merged

mpiexec tau_exec –T cupti,mpi –cupti –ebs ./ksp…

% qsub *.qsub

% paraprof tauprofile.xml &

92

Generating Traces

% cp /tmp/trace-cuda.qsub .

% qsub trace-cuda.qsub

% qstat

% firefox https://perfetto.dev &
Click -> Trace Viewer -> Open the UI ->

Open Trace File -> navigate to app.json

Open the four trace rows (one for each rank)

Use wasd keys to widen/shrink/left/right

scroll

https://perfetto.dev/

93

Visualizing Traces with https://Perfetto.dev

wasd
W = widen
S = Shrink
A = Left
D = Right

94

TAU Exercise #6:
paraprof 3D display

95

TAU paraprof

cd ~/examples/tau

paraprof demo.ppk &

Choose 3D Visualization

96

TAU paraprof 3D visualization

Choose Bar Plot and move

Function and Thread

Sliders

First mouse button to rotate

Second mouse button to

translate (left to right)

Scroll wheel (or +/- keys) to
zoom in.

Try Scatter plot next

97

TAU paraprof: 3D Scatter Plot

98

Reference

99

Installing and Configuring TAU

•Installing PDT:
– wget tau.uoregon.edu/pdt_lite.tgz

– ./configure –prefix=<dir>; make ; make install

•Installing TAU:
– wget tau.uoregon.edu/tau.tgz; tar zxf tau.tgz; cd tau-2.<ver>

– wget http://tau.uoregon.edu/ext.tgz ; tar xf ext.tgz

– ./configure -bfd=download -pdt=<dir> -papi=<dir> -mpi
–pthread –c++=mpicxx –cc=mpicc –fortran=mpif90
–dwarf=download –unwind=download –otf=download
–iowrapper –papi=<dir>

– make install

•Using TAU:
– export TAU_MAKEFILE=<taudir>/x86_64/lib/Makefile.tau-<TAGS>

– make CC=tau_cc.sh CXX=tau_cxx.sh F90=tau_f90.sh

100

Compile-Time Options

•Optional parameters for the TAU_OPTIONS environment variable:
% tau_compiler.sh

-optVerbose Turn on verbose debugging messages

-optCompInst Use compiler based instrumentation

-optNoCompInst Do not revert to compiler instrumentation if source
 instrumentation fails.

-optTrackIO Wrap POSIX I/O call and calculates vol/bw of I/O operations
 (Requires TAU to be configured with –iowrapper)

-optTrackGOMP Enable tracking GNU OpenMP runtime layer (used without –opari)

-optMemDbg Enable runtime bounds checking (see TAU_MEMDBG_* env vars)

-optKeepFiles Does not remove intermediate .pdb and .inst.* files

-optPreProcess Preprocess sources (OpenMP, Fortran) before instrumentation

-optTauSelectFile=”<file>" Specify selective instrumentation file for tau_instrumentor

-optTauWrapFile=”<file>" Specify path to link_options.tau generated by tau_gen_wrapper

-optHeaderInst Enable Instrumentation of headers

-optTrackUPCR Track UPC runtime layer routines (used with tau_upc.sh)

-optLinking="" Options passed to the linker. Typically
 $(TAU_MPI_FLIBS) $(TAU_LIBS) $(TAU_CXXLIBS)

-optCompile="" Options passed to the compiler. Typically
 $(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)

-optPdtF95Opts="" Add options for Fortran parser in PDT (f95parse/gfparse) …

101

Compile-Time Options (contd.)

•Optional parameters for the TAU_OPTIONS environment variable:
% tau_compiler.sh

-optShared Use TAU’s shared library (libTAU.so) instead of static library (default)

-optPdtCxxOpts=“” Options for C++ parser in PDT (cxxparse).

-optPdtF90Parser=“” Specify a different Fortran parser

-optPdtCleanscapeParser Specify the Cleanscape Fortran parser instead of GNU gfparser

-optTau=“” Specify options to the tau_instrumentor

-optTrackDMAPP Enable instrumentation of low-level DMAPP API calls on Cray

-optTrackPthread Enable instrumentation of pthread calls

See tau_compiler.sh for a full list of TAU_OPTIONS.

…

102

Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_CALLPATH 0 Setting to 1 turns on callpath profiling

TAU_TRACK_MEMORY_FOO
TPRINT

0 Setting to 1 turns on tracking memory usage by sampling periodically the resident set size
and high water mark of memory usage

TAU_TRACK_POWER 0 Tracks power usage by sampling periodically.

TAU_CALLPATH_DEPTH 2 Specifies depth of callpath. Setting to 0 generates no callpath or routine information,
setting to 1 generates flat profile and context events have just parent information (e.g.,
Heap Entry: foo)

TAU_SAMPLING 1 Setting to 1 enables event-based sampling.

TAU_TRACK_SIGNALS 0 Setting to 1 generate debugging callstack info when a program crashes

TAU_COMM_MATRIX 0 Setting to 1 generates communication matrix display using context events

TAU_THROTTLE 1 Setting to 0 turns off throttling. Throttles instrumentation in lightweight routines that are
called frequently

TAU_THROTTLE_NUMCALLS 100000 Specifies the number of calls before testing for throttling

TAU_THROTTLE_PERCALL 10 Specifies value in microseconds. Throttle a routine if it is called over 100000 times and
takes less than 10 usec of inclusive time per call

TAU_CALLSITE 0 Setting to 1 enables callsite profiling that shows where an instrumented function was
called. Also compatible with tracing.

TAU_PROFILE_FORMAT Profile Setting to “merged” generates a single file. “snapshot” generates xml format

TAU_METRICS TIME Setting to a comma separated list generates other metrics. (e.g.,
ENERGY,TIME,P_VIRTUAL_TIME,PAPI_FP_INS,PAPI_NATIVE_<event>:<subevent>)

TAU’s Runtime Environment Variables

103

Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_TRACE_FORMAT Default Setting to “otf2” turns on TAU’s native OTF2 trace generation (configure with –
otf=download)

TAU_EBS_UNWIND 0 Setting to 1 turns on unwinding the callstack during sampling (use with tau_exec –ebs
or TAU_SAMPLING=1)

TAU_EBS_RESOLUTION line Setting to “function” or “file” changes the sampling resolution to function or file level
respectively.

TAU_TRACK_LOAD 0 Setting to 1 tracks system load on the node

TAU_SELECT_FILE Default Setting to a file name, enables selective instrumentation based on exclude/include lists
specified in the file.

TAU_OMPT_SUPPORT_LEVEL basic Setting to “full” improves resolution of OMPT TR6 regions on threads 1.. N-1. Also,
“lowoverhead” option is available.

TAU_OMPT_RESOLVE_ADDRESS_
EAGERLY

1 Setting to 1 is necessary for event based sampling to resolve addresses with OMPT.
Setting to 0 allows the user to do offline address translation.

Runtime Environment Variables

104

Environment Variable Default Description

TAU_TRACK_MEMORY_LEAKS 0 Tracks allocates that were not de-allocated (needs –optMemDbg or tau_exec
–memory)

TAU_EBS_SOURCE TIME Allows using PAPI hardware counters for periodic interrupts for EBS (e.g.,
TAU_EBS_SOURCE=PAPI_TOT_INS when TAU_SAMPLING=1)

TAU_EBS_PERIOD 100000 Specifies the overflow count for interrupts

TAU_MEMDBG_ALLOC_MIN/MAX 0 Byte size minimum and maximum subject to bounds checking (used with
TAU_MEMDBG_PROTECT_*)

TAU_MEMDBG_OVERHEAD 0 Specifies the number of bytes for TAU’s memory overhead for memory
debugging.

TAU_MEMDBG_PROTECT_BELOW/AB
OVE

0 Setting to 1 enables tracking runtime bounds checking below or above the
array bounds (requires –optMemDbg while building or tau_exec –memory)

TAU_MEMDBG_ZERO_MALLOC 0 Setting to 1 enables tracking zero byte allocations as invalid memory
allocations.

TAU_MEMDBG_PROTECT_FREE 0 Setting to 1 detects invalid accesses to deallocated memory that should not
be referenced until it is reallocated (requires –optMemDbg or tau_exec –
memory)

TAU_MEMDBG_ATTEMPT_CONTINUE 0 Setting to 1 allows TAU to record and continue execution when a memory
error occurs at runtime.

TAU_MEMDBG_FILL_GAP Undefined Initial value for gap bytes

TAU_MEMDBG_ALINGMENT Sizeof(int) Byte alignment for memory allocations

TAU_EVENT_THRESHOLD 0.5 Define a threshold value (e.g., .25 is 25%) to trigger marker events for
min/max

Runtime Environment Variables

105

• US Department of Energy (DOE)

– ANL

– Office of Science contracts, ECP

– SciDAC, LBL contracts

– LLNL-LANL-SNL ASC/NNSA contract

– Battelle, PNNL and ORNL contract

• NASA SBIR

• Department of Defense (DoD)

– PETTT, HPCMP

• National Science Foundation (NSF)

– SI2-SSI, Glassbox

• CEA, France

• Industry: AWS, AMD, IBM, ARM, Intel, NVIDIA

• Partners:

–University of Oregon

–The Ohio State University

–ParaTools, Inc.

–University of Tennessee, Knoxville

–T.U. Dresden, GWT

–Jülich Supercomputing Center

Support Acknowledgements

106

Acknowledgment

• This material is based upon work supported by the U.S. Department of Energy, Office of

Science, Office of Advanced Scientific Computing Research, Next-Generation Scientific

Software Technologies program, under contract number DE-AC02-06CH11357. DOE SBIR DE-

SC0022502.

• https://science.osti.gov/ascr

• https://pesoproject.org

• https://ascr-step.org

• https://hpsf.io

• https://www.energy.gov/technologytransitions/sbirsttr

https://science.osti.gov/ascr
https://pesoproject.org/
https://ascr-step.org/
https://hpsf.io/
https://www.energy.gov/technologytransitions/sbirsttr

107

Thank you

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and
hardware technology, to support the nation’s exascale computing imperative.

Thank you to all collaborators in the ECP and broader computational science communities. The
work discussed in this presentation represents creative contributions of many people who are
passionately working toward next-generation computational science.

https://www.exascaleproject.org

https://www.exascaleproject.org/

108

	Slide 1: Performance Evaluation of GPU-accelerated HPC and AI applications using HPCToolkit, TAU, and ParaTools Pro for E4STM
	Slide 2: TAU Performance System®
	Slide 3: Using TAU’s Runtime Preloading Tool: tau_exec
	Slide 4: TAU: Quickstart Guide
	Slide 5: TAU Execution Command (tau_exec)
	Slide 6
	Slide 7: TAU Performance System®
	Slide 8: Application Performance Engineering using TAU
	Slide 9: Instrumentation
	Slide 10: Instrumentation
	Slide 11: Using Instrumentation of Source Code in TAU using PDT
	Slide 12: TAU Configurations available
	Slide 13: TAU’s Legacy Static Analysis System: Program Database Toolkit (PDT)
	Slide 14: Automatic Source Instrumentation using PDT
	Slide 15: Problems with PDT
	Slide 16: Flang-based Instrumentation
	Slide 17: SALT plugin for Flang: NASA SBIR Phase I
	Slide 18: Profiling and Tracing
	Slide 19: Inclusive vs. Exclusive values
	Slide 20: How much data do you want?
	Slide 21: Performance Data Measurement
	Slide 22: Sampling
	Slide 23: Instrumentation
	Slide 24: ParaProf Profile Browser
	Slide 25: ParaProf Profile Browser
	Slide 26: Inclusive Measurements
	Slide 27: Exclusive Time
	Slide 28: Callpath Profiling
	Slide 29: ParaProf Function Window
	Slide 30: Callsite Profiling and Tracing
	Slide 31: ParaProf Callpath Thread Relations Window
	Slide 32: ParaProf Callpath Thread Relations Window
	Slide 33: Identifying Collective Wait States: Thread Callpath Relations Window
	Slide 34: ParaProf Thread Comparison Window
	Slide 35: ParaProf Function Window
	Slide 36: Tracing: Jumpshot (ships with TAU)
	Slide 37: Tracing: Chrome Browser or Perfetto.dev
	Slide 38: Perfetto.dev Trace Browser: Kokkos
	Slide 39: Perfetto.dev
	Slide 40: Perfetto.dev Trace Browser
	Slide 41: Vampir [TU Dresden] Timeline: Kokkos
	Slide 42: Event Based Sampling (EBS)
	Slide 43: ParaProf
	Slide 44: ParaProf
	Slide 45: Callstack Sampling in TAU
	Slide 46: TAU – Callstack Sampling
	Slide 47: TAU Context Event Window
	Slide 48: TAU’s tracking of Python and MPI
	Slide 49: Deep Learning: Tensorflow
	Slide 50: TAU – Context Events
	Slide 51: ParaProf 3D Profile Browser
	Slide 52: TAU – ParaProf 3D Visualization
	Slide 53: TAU – 3D Communication Window
	Slide 54: TAU’s Support for Runtime Systems
	Slide 55: TAU’s Support for Runtime Systems (contd.)
	Slide 56: Examples of Multi-Level Instrumentation
	Slide 57: Binary instrumentation of libraries: Work in progress
	Slide 58: Binary instrumentation of libraries: HDF5
	Slide 59: TAU – Event Based Sampling (EBS)
	Slide 60: TAU – Callpath Profiling
	Slide 61: TAU Atomic Events
	Slide 62: TAU – Context Events
	Slide 63: ParaProf Comparison Window
	Slide 64: ParaProf Comparison Window
	Slide 65: ParaProf’s Topology Display Window
	Slide 66: ParaProf Topology Display
	Slide 67: ParaProf’s Scalable 3D Visualization
	Slide 68
	Slide 69
	Slide 70: Using ParaTools Pro for E4S image on AWS with Adaptive Computing’s On-Demand Data Center (ODDC)
	Slide 71: CoMD: TAU with event-based sampling (EBS)
	Slide 72: CoMD: TAU with event-based sampling (EBS)
	Slide 73: CoMD: TAU’s paraprof visualizer
	Slide 74: CoMD: TAU’s paraprof visualizer
	Slide 75: TAU’s ParaProf Profile Browser: Thread Statistics Table
	Slide 76: TAU’s ParaProf Profile Browser: Source Code Browser
	Slide 77
	Slide 78: Launching the binary using tau_exec –ebs
	Slide 79: TAU’s ParaProf Profile Browser: Source Code Browser
	Slide 80: TAU’s paraprof browser with PETSc performance profile
	Slide 81: Using pprof: TAU’s text based profile browser
	Slide 82: Generating Traces
	Slide 83: What it was doing
	Slide 84: Visualizing Traces with https://Perfetto.dev
	Slide 85: Generating Traces with Vampir
	Slide 86: Vampir [TU Dresden]
	Slide 87: Generating callpath profiles
	Slide 88: Generating Traces
	Slide 89
	Slide 90: PETSc CUDA
	Slide 91: PETSc CUDA: What it was doing
	Slide 92: Generating Traces
	Slide 93: Visualizing Traces with https://Perfetto.dev
	Slide 94
	Slide 95: TAU paraprof
	Slide 96: TAU paraprof 3D visualization
	Slide 97: TAU paraprof: 3D Scatter Plot
	Slide 98: Reference
	Slide 99: Installing and Configuring TAU
	Slide 100: Compile-Time Options
	Slide 101: Compile-Time Options (contd.)
	Slide 102: TAU’s Runtime Environment Variables
	Slide 103: Runtime Environment Variables
	Slide 104: Runtime Environment Variables
	Slide 105: Support Acknowledgements
	Slide 106: Acknowledgment
	Slide 107: Thank you
	Slide 108

