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Abstract. The computational environment for estimation of unknowgioral
electrical conductivities of the human head, based onstgatieometry from seg-
mented MRI up t@562 resolution, is described. A finite difference alternatiing d
rection implicit (ADI) algorithm, parallelized using Opki, is used to solve the
forward problem describing the electrical field distrilutithroughout the head
given known electrical sources. A simplex search in the irdlithensional para-
meter space of tissue conductivities is conducted in pdrafling a distributed
system of heterogeneous computational resources. Theetloab and computa-
tional formulation of the problem is presented. Resultsiftest studies are pro-
vided, comparing retrieved conductivities to known san$ from simulation.
Performance statistics are also given showing both thenscaf the forward
problem and the performance dynamics of the distributecthea

1 Introduction

Tomographic techniques determine unknown complex coeffisiin PDESs govern-
ing the physics of the particular experimental modalityclsproblems are typically
non-linear and ill-poised. The first step in solving suchmrerse problem is to find a
numerical method to solve the direct (forward) problem. Whee physical model is
three-dimensional and geometrically complex, the forwsoidition can be difficult to
construct and compute. The second stage involves a seaadsacmulti-dimensional
parameter space of unknown model properties. The searclogsithe forward prob-
lem with chosen parameter estimates and a function thatrdigtes the error of the
forward calculation with an empirically measured resuls. the error residuals of lo-
cal inverse searches are minimized, the global searchndigies convergence to final
property estimates based on the robustness of parameter spapling.

Fundamental problems in neuroscience involving expertediemodalities like elec-
troencephalography (EEG) and magnetoencephalograpy jMiE®aturally expressed
as tomographicimaging problems. The difficult problemseirse localization and im-
pedance imaging require modeling and simulating the aatamtbioelectric fields. For-
ward calculations are necessary in the computational ftation of these problems.
Until recently, most practical research in this field hasedpfor analytical or semi-
analytical models of a human head in the forward calculatj@n2]. This is in contrast
to approaches that use realistic 3D head geometry for paspafssignificantly improv-
ing the accuracy of the forward and inverse solutions. Toald®ewever, requires that



the geometric information be available from MRI or CT scanih such image data,
the tissues of the head can be better segmented and moratetguepresented in the
computational model. Unfortunately, these realistic niodgechniques have intrinsic
computational complexities that grow as the image resmitticreases.

In source localization we are interested in finding the eleglt source generators
for the potentials that might be measured by EEG electroddisedscalp surface. Here,
the inverse search is looking for those sources (theiriposiind amplitude) on the cor-
tex surface whose forward solution most accurately dessribe electrical potentials
observed. The computational formulation of the sourcelipa@on problem assumes
the forward calculation is without error. However, thiswsgtion in turn assumes the
conductivity values of the modeled head tissues are knawgeheral, for any individ-
ual, they are not known. Thus, the impedance imaging proldemtually a predecessor
problem to source localization. In impedance imaging, trelise search finds those tis-
sue impedance values whose forward solution best matchasumeal scalp potentials
when experimental stimuli are applied. In either probleoyrse localization or im-
pedance imaging, solving the inverse search usually imgotkie large number of runs
of the forward problem. Therefore, computational methantstfie forward problem,
which are stable, fast and eligible for parallelizationvasl as intelligent strategies
and techniques for multi-parameter search, are of paratmoyortance.

To deal with complex geometries, PDE solvers use finite eferfi€E) or finite dif-
ference (FD) methods [3, 4]. Usually, for the geometry wiith ¢iven complexity level,
the FE methods are more economical in terms of the numberkofawns (the size of
the stiffness matrix A, is smaller, as homogeneous segndentst need a dense mesh)
and resulting computational cost. However, the FE meshrgénoa for a 3D, highly
heterogeneous subject with irregular boundaries (e.g.htiman brain) is a difficult
task. At the same time, the FD method with a regular cubedigrigénerally the eas-
iest method to code and implement. It is often chosen over Efaaals for simplicity
and the fact that MRI/CT segmentation map is also based obeddattice of nodes.
Many anatomical details (e.g., olfactory perforations andrnal auditory meatus) or
structural defects in case of trauma (e.g., skull crackspamattures) can be included
as the computational load is based on the number of elemedtsa on the specifics
of tissues differentiation. Thus, the model geometry aa@cyican be the same as the
resolution of MRI scans (e.dl,x 1 x 1mm).

In the present study we adopt a model based on FD methods aatlwct a distrib-
uted and parallel simulation environment for conductigiptimization through inverse
simplex search. FE simulation is used to solve for relagigehple phantom geometries
that we then apply as "gold standards" for validation.

2 Mathematical Description of the Problem

The relevant frequency spectrum in EEG and MEG is typica#jow 1k H z, and
most studies deal with frequencies betwéeh and 100H z. Therefore, the physics
of EEG/MEG can be well described by the quasi-static appnakion of Maxwell’s
equations, the Poisson equation. The electrical forwantllpm can be stated as fol-
lows: given the positions and magnitudes of current soyesvell as geometry and



electrical conductivity of the head volung2 calculate the distribution of the electrical
potential on the surface of the head (scdlfp). Mathematically, it means solving the
linear Poisson equation [1]:

V'U(xvyaz)v¢(x7yvz) =5, (1)

in 2 with no-flux Neumann boundary conditions on the scalp:

onIp. Hereo = o;;(z, y, z) is an inhomogeneous tensor of the head tissues conduc-
tivity and S is the source current. Having computed potentigls, y, z) and current
densities] = —o(V¢), the magnetic field3 can be found through the Biot-Savart law.
We do not consider anisotropy or capacitance effects (tter lbecause the frequencies
of interest are too small), but they can be included in agitédrward manner. (Eq.(1)
becomes complex-valued, and complex admittivity shoulddsz.)

We have built a finite difference forward problem solver fay. £1) and (2) based
on the multi-component alternating directions implicitg algorithm [7,8]. It is a
generalization of the classic ADI algorithm as describedHigischer et al [6], but
with improved stability in 3D (the multi-component FD ADItseme is uncondition-
ally stable in 3D for any value of the time step [8]). The alggon has been extended to
accommodate anisotropic tissues parameters and souoassdribe the electrical con-
ductivity in the heterogeneous biological media withiniaesy geometry, the method
of the embedded boundaries has been used. Here an objeterekiris embedded into
a cubic computational domain with extremely low condutyivialues in the external
complimentary regions. This effectively guarantees tlageeno current flows out of the
physical area (the Neuman boundary conditions, Eq.(2gtisrally satisfied). The idea
of the iterative ADI method is to find the solution of Eq. (1)daf2) as a steady state
of the appropriate evolution problem. At every iteratiogpsthe spatial operator is split
into the sum of three 1D operators, which are evaluatedraitaely at each sub-step.
For example, the difference equationsidirection is given as [8]

PP — (7 + o7 + o}
T

wherer is a time step and, , . iS a notation for the appropriaie) spatial difference
operator (for the problems with variable coefficients itppeximated on a “staggered”
mesh). Such a scheme is accurat®te?) + O(Az?). In contrast with the classic ADI
method, the multi-component ADI uses the regularizatioe@ging) for evaluation of
the variable at the previous instant of time.

Parallelization of the ADI algorithm is straightforwards & consists of nests of
independent loops over “bars” of voxels for solving the etfifee 1D problem (Eq. (3))
at each iteration. These loops can be easily unrolled int@dhmemory multiprocessor
environment. It is worth noting, that the ADI algorithm cae &lso easily adapted for
solving PDEs describing other tomographic modalities.drtipular, we have used itin
other related studies, for example , in simulation of phatogration (diffusion ) in a
human head in near-infrared spectroscopy of brain injueshematomas.

+ 0o (7 T) 4+ 6, (87) + 6.(8) = S, (3)




The inverse problem for the electrical imaging modality tias general tomo-
graphic structure. From the assumed distribution of thel isaue conductivitiess;;,
and the given injection current configuratian,it is possible to predict the set of poten-
tial measurement valueg? , given a forward model' (Eq. (1), (2)), as the nonlinear
functional [5, 6]:

' = F(oy(w,y,2)). (4)
Then an appropriate objective function is defined, whichcdbss the difference
between the measureld, and predicted dat&?, and a search for the global minimum
is undertaken using advanced nonlinear optimization atyus. In this paper, we used
the simple least square error norm:

N 1/2
E= (Z (¢F — vf) : (5)
i=1
where N is a total number of the measuring electrodes. To solve timdirmear opti-
mization problem in Eq.(5) , we employed the downhill sinxaheethod of Nelder and
Mead as implemented by Press et al[3]. In the strictest s¢hisemeans finding the
conductivity at each node of the discrete mesh. In simplifiediels with the constrains
imposed by the segmented MRI data, one needs to know onlyvérage regional
conductivities of a few tissues, for example, scalp, sladiebrospinal fluid (CSF) and
brain, which significantly reduces the demensionality ef parameter space in the in-
verse search, as well as the number of iterations in convgtgia local minimum. To
avoid the local minima, we used a statistical approach. mherse procedure was re-
peated for hundreds sets of conductivity guesses from apipte fisiological intervals,
and then the solutions closest to the global minimum satgtivere selected using the
simple critireall < Eipreshoid-

3 Computational Design

The solution approach maps to a hierarchical computatidasign that can benefit
both from parallel parametric search and parallel forwaaltdations. Fig. 1 gives
a schematic view of the approach we applied in a distributedrenment of paral-
lel computing clusters. The master controller is respdaditr launching new inverse
problems with guesses of conductivity values. Upon conietthe inverse solvers
return conductivity solutions and error results to the miagtach inverse solver runs
on a compute server. GiveN compute serversy inverse solves can be simultane-
ously active, each generating forward problems that canrryarallel, depending on
the number of processors available. The system designsatlesvnumber of compute
servers and the number of processors per server to be dgwidedo execution, thus
trading off inverse search parallelism versus forward faebspeedup.

At the University of Oregon, we have access to a computatsysiems environ-
ment consisting of four multiprocessor clusters. Clus@ustl, Clust2, andClust3 are
8-processor IBM p655 machines and clusthust4 is a 16-processor IBM p690 ma-
chine. All machines are shared-memory multiprocessorsingnthe Linux operating
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Fig. 1. Schematic view of the parallel computational system

Table 1. Tissues parameters in 4-shell modes[2]

Tissue typéo (2~ 'm ™~ 1)|Radius(cm)Reference
Brain 0.25 8 Geddes(1967)
Csf 1.79 8.2 Daumann(1997)
Skull 0.018 8.7 Law(1993)
Scalp 0.44 9.2 Burger(1943)

system. The clusters are connected by a high-speed gigigitriet network. In our
experiments below, we treated each machine as a separapeitserver running one
inverse solver. The forward problem was parallelized usipgnMP and run on eight
(Clust1-3) and sixteenClust4) processors. The master controller can run on any net-
worked machine in the environment. In our study, the magistroller ran on Clust2.

4 Computational Results

The forward solver was tested and validated against a 4-sbieérical phantom, and
low (64 x 64 x 44) and high(256 x 256 x 176) resolution human MRI data. For com-
parison purposes, the MRI data where segmented into ontyifsue types their values
were set to those in the spherical model (cl. Table 1). Whenameputed potentials at
standard locations for the29 electrodes configuration montage on the spherical phan-
tom and compared the results with the analytical solutigrejailable for a 4-shell
spherical phantom we observed good agreement, save for somee discrepancies
(average error is no more than a few percents) caused by thle onentation effects
(the cubic versa spherical symmetry).

Similarly, we found the good agreement for spherical phastbetween our results
and the solution of the Poisson equation using the standaM packages such as
FEMLAB. Also, we have performed a series of computationsdiectric potentials
and currents inside a human head with surgical or traumataings in the skull. We
found that generally low resolutios4 x 64 x 44 voxels) is not enough for accurate



9
— ideal _ 16§ — lIdeal _
8 -+ 64x64x44 IBM-8P ] -0 64X64x44 IBM-16P
o 128x128x88 14 e 128x128x88
71 -=- 256x256x176 1 -=- 256x256x176
12f

=N 6r
2 g 107
@ 5r - E
3 PR S, & sf -
n - g =% -

4+ L. n - .

& - .
- 6 - 88 ali0-m0- =0
3 & o gu8len
o a O i
it
2 “
ol &%
= 2 3 4 5 6 7 8 9 2 4 6 8 10 12 14 16
Number of processors Number of nrocessors

Fig. 2. Speed-up of the forward solver for different problem sizeara8-processor (left) and a
16-processor (right) IBM machines

description of the current and potentials distributiorotigh the head, as the coarse
discretization creates artificial shunts for currents (iyain the skull). With increased
resolution (28 x 128 x 88 or 256 x 256 x 176 voxels) our model has been shown
to be capable to capture the fine details of current/potiergthstribution caused by
the structural perturbation. However, the computatioeguirements of the forward
calculation increase significantly.

The forward solver was parallelized using OpenMP. The perémce speedups for
64 x 64 x 44,128 x 128 x 88 and256 x 256 x 176 sized problems on the IBM p655 (8
processors) and p690 (16 processors) machines are showgn i Fhe performance is
reasonable at present, but we believe there are still apdiioins that can be made. The
importance of understanding the speedup performance ociub&r compute servers
is to allow flexible allocation of resources between invense forward processing.

In the inverse search the initial simplex was constructedoanly based upon the
mean conductivity values (cl. Table 1) and their standardadiens as it is reported
in the related biomedical literature. In the present testistwe did not use the real
experimental human data, instead , we simulated the expetahset of the reference
potentialsV’ in Eq. 5 using our forward solver with the mean conductiviyues from
Table 1, which had been assumed to be true, but not known gy fioioa user running
the inverse procedure. The search was stopped when one oriteria were met. The
first is when the decrease in the error function is fractilyrethaller than some toler-
ance parameter. The second is when the number of steps dfithkes exceeds some
maximum value. During the search, the conductivities wergstrained to stay within
their pre-defined plausible ranges. If the simplex algamitdttempted to step outside of
the acceptable range, then the offending conductivity wastrto the nearest allowed
value. Our procedure had the desired effect of guiding theckebased on prior knowl-
edge. Some number of solution sets included conductivitiaswere separated from
the bulk of the distribution. These were rejected as owtlibased on the significant
larger square error norm in Eqg. (5) (i.e., the solution sedsviltered according to the
criteria ' < Eypresnola)- We have found empirically that settifg, -csnoiq = 14V in
most of our runs produced a fair percentage of solutionedimshe global minimum.

The distribution of the retrieved conductivities is showrFig. 3 (right). The fact
that the retrieved conductivities for the intracraniasties (CSF and brain) have wider
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Fig. 3. Results of the inverse search. Dynamics of the individuatce(left) and statistics of the
retrieved conductivities for about 200 initial random gaess The actual number of the solutions
shown is 71, their error function is less than 1 microvolt

distributions is consistent with the intuitive physicapéanation that the skull, as having
the lowest conductivity, shields the currents injected oy $calp electrodes from the
deep penetration into the head. Thus, the deep intraciissaks are interrogated less
in comparison with the skull and scalp. The dynamics of aividdal inverse search
convergence for a random initial guesses is shown in Figef3)(IOne can see the
conductivities for the extra cranial tissue and skull cogirgy faster than the brain
tissues, due to the better interrogation by the injecteceotr

After filtering data according to the error norm magnitude,fitted the individual
conductivities to the normal distribution. The mean regtconductivitiesr (2~ 1m=1)
and their standard deviationss (2~ 1m~1) are: Brain (0.24 / .01), CSF (1.79/ .03),
Skull (0.0180 / .0002), and Scalp (0.4400 / .0002) It is iesting to compare these
values to the "true" conductivities from Table 1. We can semlent estimates for the
scalp and skull conductivities and a little bit less acoeiesttimates for the intracranial
tissues. Although we have not yet done runs with the realmtise included, the simi-
lar investigation in Ref. 2 for a spherical phantom suggesisnoise will lead to some
deterioration of the distributions and more uncertaintthia results. In general, it still
will allow the retrieval of the unknown tissue parameters.

Finally, in Fig. 4 we present the dynamics of the performavfdée inverse search
in our distributed multi-cluster computational envirorméd=our curves with different
markers show the dynamics of the inverse solution flux at tastem controller. One can
see that Clust4 on average returns the inverse solutioe madast as the other clusters,
as would be expected. Note, however, the time to invers¢isnlalso depends on both
forward speed and convergence rate. The markers seated ‘&etto" error function
line represent solutions that contribute to the final soludistribution, with the rest of
the solutions rejected as outliers. In average, the thrpugivas 12 minutes per one
inverse solution fod28 x 128 x 88 MRI resolution. More intelligent schemes of the
search with intermediate learning from the guiding proseitls smaller resolution to
control (narrow) the range of the initial guesses in simatatvith the higher resolution
are under investigation.
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5 Conclusion

We have built an accurate and robust 3D Poisson solver based=®M ADI algo-
rithm for modeling electrical and optical problems in hetggneous biological tissues.
We focus in particular on modeling the conductivity propesbf the human head. The
computational formulation utilizes realistic head geawyetbtained from segmented
MRI datasets. The results presented here validate our FOWoaph for impedance
imaging and provide a performance assessment of the garatlalistributed compu-
tation.

In the future, we will enhance the computational framewoitknadditional cluster
resources that the naturally scalable inverse search @anQus intent is to evolve
the present interprocess communication (IPC) socketebesde to one that uses grid
middleware support, allowing the impedance imaging pnogta more easily access
available resources and integrate with neurocimaging wan]

The authors wish to thank Dr. V.M. Volkov, of Institute of Mematics, Belarus
Academy of Sciences, for providing many ideas and fruitfatdssions on the multi-
component ADI algorithm.
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