
http://www.acl.lanl.gov/tau

TAU: New Directions

Sameer Shende
Department of Computer and Information Science,

University of Oregon

sameer@cs.uoregon.edu



http://www.acl.lanl.gov/tau

Overview

❑ Introduction to TAU (Tuning and Analysis Utilities)

❍ Goals and Challenges

❍ Architecture

❍ Instrumentation

❍ Measurement

❍ Analysis

❑ New research directions

❍ Multi-level instrumentation

❍ Micro-instrumentation

❍ Mapping performance data

❍ Hybrid execution models

❍ New measurement options

❍ Proposed extensions



http://www.acl.lanl.gov/tau

What is TAU?

❑ Performance analysis framework for scalable parallel

and distributed high performance computing

❑ Targets a general parallel computation model [HPC++]

❍ computer (SMP) nodes

❍ shared address space contexts

❍ threads of execution

❑ Integrated toolkit for performance instrumentation,

measurement, analysis and visualization

❑ Portable performance profiling and tracing toolkit

❑ Tools associated with TAU

❍ PDT (Program Database Toolkit)

❍ Distributed monitoring framework

❑ Uses portable, open interfaces



http://www.acl.lanl.gov/tau

Goal and Challeng es

Create robust performance technology for the
analysis and tuning of parallel software.

❑ Challenges

❍ different scalable computing platforms

❍ different programming languages and compilers

❍ different thread models and runtime systems

❍ different instrumentation strategies

❍ different measurement requirements

❍ common, portable framework for analysis

❍ extensible, retargetable tool technology

❍ complex set of requirements

❍ performance experimentation



http://www.acl.lanl.gov/tau

Architecture of T AU



http://www.acl.lanl.gov/tau

TAU Instrumentation

❑ Flexible, multiple instrumentation mechanisms

❍ source code

✰ manual (TAU API)

✰ automatic using PDT (tau_instrumentor)

❍ object code

✰ pre-instrumented libraries (ACLMPL)

✰ statically linked: MPI Profiling Interface
(libTauMpi.a)

❍ executable code

✰ dynamic instrumentation using DyninstAPI
(tau_run)

❍ virtual machine

✰ Java instrumentation using JVMPI and TAU shared
object dynamically loaded in the JVM

❑ Ability to combine multiple instrumentation options!



http://www.acl.lanl.gov/tau

TAU Measurement

❑ Configuration options

❍ High resolution wall clock time [PAPI, SGITIMERS]

❍ CPU time (user+system)

❍ Process virtual time (user) [PAPI]

❍ Hardware performance counters
(primary/sec. data cache misses, etc.) [PAPI, PCL]

❑ PAPI (Performance API) provides low-overhead access

to counters and timers (U. Tenn. Knoxville)

(http://icl.cs.utk.edu/projects/papi/)



http://www.acl.lanl.gov/tau

TAU Measurement

❑ Profiling

❍ aggregate summaries of performance metrics

❍ function-level, block-level, statement-level

❍ supports user-defined events

❍ measured process timing (as opposed to sampling)

❍ statistics (standard deviation)

❑ Tracing

❍ event logs

❍ same instrumentation for both profiling and tracing

❍ inter-process communication events

❍ trace merge and conversion

❍ output to Vampir trace format



http://www.acl.lanl.gov/tau

TAU Anal ysis

❑ Profile analysis

❍ pprof

✰ parallel profiler with text based display

❍ racy

✰ graphical interface to pprof

❑ Trace analysis

❍ Vampir

✰ trace analysis and visualization tool (Pallas GmbH)



http://www.acl.lanl.gov/tau

TAU Status

Available for download now (ver. TAU 2.8b10)

❑ Languages

❍ C++, C, F90, Java.

❍ HPF, pC++, HPC++, ZPL

❑ Platforms

❍ SGI, IBM, SUN, HP, Compaq, Alpha/Pentium Linux
clusters, PC Windows, Intel ASCI Red, Cray T3E

❑ Thread libraries

❍ pthread, OpenMP, Java, Windows, SMARTS, Tulip

❑ Communication libraries

❍ MPI, PVM, ACLMPL, Nexus, Tulip

❑ Compilers

❍ KAI’s KCC & Guide, PGI, SUN, IBM, SGI, GNU,
MS, Fujitsu, Cray

❑ 550 registered downloads (not users)



http://www.acl.lanl.gov/tau

Program Database T oolkit (PDT)



http://www.acl.lanl.gov/tau

Program Database T oolkit (PDT)

❑ Program code analysis framework for developing

source-based tools

❑ High-level interface to source code information

❑ Integrated toolkit for source code parsing, database

creation, and database query

❍ commercial grade front end parsers (EDG, Mutek)

❍ portable IL analyzer, database format, and access
API

❍ open software approach for tool development

❑ Target and integrate multiple source languages

❑ C++ version available. F90 version to be released soon.

❑ http://www .acl.lanl.go v/pdtoolkit



http://www.acl.lanl.gov/tau

New Resear ch Directions

❑ Multi-level instrumentation

❑ Micro-instrumentation

❑ Mapping performance data

❑ Hybrid execution models

❑ New measurement options

❑ Proposed extensions



http://www.acl.lanl.gov/tau

Multi-le vel instrumentation

❑ Combine instrumentation APIs

❍ executable (DyninstAPI) + source code

❍ virtual machine (JVMPI) + library level (MPI
Wrapper)

❍ automated source code (PDT) + library level (MPI)

❑ Better coverage and level of abstraction



http://www.acl.lanl.gov/tau

Micr o-instrumentation

❑ Crossing “routine” boundaries for instrumentation

❑ Basic block, statement level probes

❑ Problems:

❍ Optimizations may be affected

❍ How do we profile in the presence of code
transforming optimizations?

❍ Source to source translations (ZPL+TAU)

❍ Compiler transformations

❍ Instrumentation using mapping tables after
optimizations have been applied

❍ How should compilers and performance tools
“share” mapping information?

❍ New mapping models for performance data



http://www.acl.lanl.gov/tau

Mapping P erformance Data

❑ Traditional mapping scenarios [Irvin/Miller, Adve et.al]

❍ one-one (straightforward)

❍ one-many (aggregate costs)

❍ many-one (amortize/aggregate costs)

❍ many-many (aggregate)

❑ Real life situations have some more information

(optimizations)

❑ How can we use that to refine mapping models?



http://www.acl.lanl.gov/tau

TAU Mapping of Async hronous
Execution

❑ POOMA II and SMARTS



http://www.acl.lanl.gov/tau

Mapping Async hronous Ex ecutions

❑ All Array statements (composed into iterates) map to

the ExpressionKernel class (many - one mapping)

❑ Each Iterate has its own object

❑ Profiling at the level of iterate objects reveals statement

level profile

❑ Mapping asynchronous performance data to the array

statements



http://www.acl.lanl.gov/tau

POOMA+SMARTS: Without Mappings

❑ Expression Templates produce long names

(embedding the parse tree of the expression in the

expression evaluation template)



http://www.acl.lanl.gov/tau

Without Mappings

❑ “Array=constant” expressions take 29.2 %

(lumped together for A=1, B=2, C=3, D=4, E=5)

❑ “C=E-A+2*B” is incomprehensible (big expression)



http://www.acl.lanl.gov/tau

Mapping P erformance Data using T AU

❑ Time spent in each statement (A=1, B=2, C=3, D=4...)

❑ Works in presence of asynchronous execution

❑ Across different “compute” threads

❑ Closing the semantic-gap!



http://www.acl.lanl.gov/tau

Hybrid e xecution models

❑ Mixed model programming merge execution models

❑ Threads + MPI (pthreads+MPI, OpenMPI, mpiJava)

❑ Problems:

❍ Incomplete information

❍ MPI doesn’t know about threads, threads don’t
know which node they’re running on

❍ TAU allows different modules to “advertise” all
information they know and “share” it

❍ Sender doesn’t know which thread in the receiver
received the message and vice versa

❍ Matching sends and receives during post-
processing allows for execution model “corrections”

❑ Problems for message passing and shared memory

programs are well understood in isolation

❑ When models are mixed, we encounter different kinds

of problems



http://www.acl.lanl.gov/tau

TAU suppor ts OpenMP+MPI

❑ Vampir [http://www.pallas.de] is used to visualize TAU

traces



http://www.acl.lanl.gov/tau

Integrated P erformance Vie ws



http://www.acl.lanl.gov/tau

Profiling MPI+Ja va

❑ No changes to the Java source/bytecode/JVM!

❑ JVMPI+MPI (mixed-model programming)



http://www.acl.lanl.gov/tau

Tracing mpiJa va



http://www.acl.lanl.gov/tau

Dynamic CallT ree



http://www.acl.lanl.gov/tau

New Measurement Options

❑ Fast access to wall-clock time using PAPI

❍ TAU overhead measured at 830 nanosecs per entry
or exit (Profiling with g++ -O2 PIII/550MHz Linux
2.4.0-test4 Kernel)

❑ CPU Time measurements for multi-threaded

applications using Linux

❑ Thread-safe hardware performance counters [PAPI]

❑ TAU generic thread layer interfaces with PAPI for

supporting thread-safe counters for all thread packages

supported by TAU



http://www.acl.lanl.gov/tau

Future W ork & Pr oposed Extensions

❑ TAU free probe class server for SPM

❑ Dyninst support for MPI applications in TAU

❑ Cheetah runtime system

❑ UPS (Unified Parallel Software)

❑ OpenMP hooks for instrumentation

❑ Distributed monitoring framework

❑ DPCL support

❑ Application codes



http://www.acl.lanl.gov/tau

Conc lusions

❑ Complex parallel computing environments require

robust program analysis tools

❍ portable, cross-platform, multi-level, integrated

❍ able to bridge and reuse existing technology

❍ technology savvy

❑ TAU offers a performance technology framework for

complex parallel computing systems

❍ flexible instrumentation and measurement

❍ extendable profile and trace performance analysis

❍ integration with other performance technology



http://www.acl.lanl.gov/tau

Ackno wledgments


