# The TAU Performance System: Advances in Performance Mapping

### Sameer Shende University of Oregon





John von Neumann - Institut für Computing

Zentralinstitut für Angewandte Mathematik



## Outline

- $\Box$  Introduction
- Motivation for performance mapping
- □ SEAA model
- □ Examples:
  - O POOMA II
  - 0 Uintah
- Conclusions

### Motivation

- Complexity
- Layered software
- Multi-level instrumentation
- Entities not directly in source
- Mapping
- User-level abstractions



### Hypothetical Mapping Example

### Particles distributed on surfaces of a cube





### Hypothetical Mapping Example Source

```
Particle* P[MAX]; /* Array of particles */
int GenerateParticles() {
 /* distribute particles over all faces of the cube */
 for (int face=0, last=0; face < 6; face++) {</pre>
   /* particles on this face */
   int particles on this face = num(face);
   for (int i=last; i < particles on this face; i++) {</pre>
     /* particle properties are a function of face */
     P[i] = ... f(face);
   last+= particles on this face;
```

### Hypothetical Mapping Example (continued)

```
int ProcessParticle(Particle *p) {
 /* perform some computation on p */
int main() {
 GenerateParticles();
 /* create a list of particles */
 for (int i = 0; i < N; i++)
   /* iterates over the list */
   ProcessParticle(P[i]);
```

How much time is spent processing face *i* particles?
 What is the distribution of performance among faces?

## No Performance Mapping versus Mapping

- Typical performance tools report performance with respect to routines
- Do not provide support for mapping

|       | , <i>c,t</i> 0,0,0 | profile       |              |                                                                             | •            |
|-------|--------------------|---------------|--------------|-----------------------------------------------------------------------------|--------------|
| File  | <u>V</u> alue      | <u>O</u> rder | <u>M</u> ode | <u>U</u> nits                                                               | <u>H</u> elp |
| 98.00 | %                  |               | 2            | n,c,t 0,0,0<br>ProcessParticles()<br>2.00% [] GenerateParticles()<br>main() |              |
|       |                    |               |              | close                                                                       |              |

Performance tools with SEAA mapping can observe performance with respect to scientist's programming and problem abstractions



| n            | ,c,t 0,0,0    | profile       |                                                    |                                                                                                                                                                                                                                  | • 🗋          |
|--------------|---------------|---------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| <u>F</u> ile | <u>¥</u> alue | <u>O</u> rder | <u>M</u> ode                                       | <u>U</u> nits                                                                                                                                                                                                                    | <u>H</u> elp |
| 79.39        | %             | 10            | 0.00%<br>6.50%<br>2.00%<br>2.00%<br>0.06%<br>0.05% | n,c,t 0,0,0<br>Cost of processing face #6<br>Cost of processing face #5<br>Cost of processing face #1<br>Cost of processing face #4<br>GenerateParticles()<br>Cost of processing face #2<br>Cost of processing face #3<br>main() |              |
|              |               |               |                                                    | close                                                                                                                                                                                                                            |              |

### Semantic Entities/Attributes/Associations

- □ New dynamic mapping scheme SEAA
  - $\ensuremath{\circ}$  Entities defined at any level of abstraction
  - $\boldsymbol{\circ}$  Attribute entity with semantic information
  - ${\rm O}$  Entity-to-entity associations
- □ Two association types:
  - Embedded extends data structure of associated object to store performance measurement entity
  - External creates an external look-up table using address of object as the key to locate performance measurement entity

### Tuning and Analysis Utilities (TAU)

- Performance system framework for scalable parallel and distributed high-performance computing
- General complex system computation model
   o nodes / contexts / threads
  - O Multi-level: system / software / parallelism
  - $\odot$  Measurement and analysis abstraction
- Integrated toolkit for performance instrumentation, measurement, analysis, and visualization
  - Portable performance profiling/tracing facility

### **TAU Performance System Architecture**



### Multi-Level Instrumentation in TAU

- □ Uses multiple instrumentation interfaces
- Shares information: cooperation between interfaces
- □ Targets a common performance model
- Taps information at multiple levels
   o source (manual annotation)
  - o preprocessor (PDT, OPARI/OpenMP)
  - o compiler (instrumentation-aware compilation)
  - O library (MPI wrapper library)
  - o runtime (DyninstAPI[U.Wisc, U.Maryland])
  - 0 virtual machine (JVMPI [Sun])

### Program Database Toolkit (PDT)



### Performance Mapping in TAU

Supports both embedded and external associations:



## TAU Mapping API

- □ Source-Level API
  - TAU\_MAPPING(statement, key);
     TAU\_MAPPING\_OBJECT(funcIdVar);
     TAU\_MAPPING\_LINK(funcIdVar, key);
  - TAU\_MAPPING\_PROFILE (funcIdVar);
     TAU\_MAPPING\_PROFILE\_TIMER(timer, funcIdVar);
     TAU\_MAPPING\_PROFILE\_START(timer);
     TAU\_MAPPING\_PROFILE\_STOP(timer);

## Mapping in POOMA II

- POOMA [LANL] is a C++ framework for Computational Physics
- Provides high-level abstractions:
  - Fields (Arrays), Particles, FFT, etc.
- Encapsulates details of parallelism, datadistribution
- Uses custom-computation kernels for efficient expression evaluation [PETE]
- Uses vertical-execution of array statements to re-use cache [SMARTS]

### POOMA II Array Example

Binclude "Pooma/Arrays.h"

```
#include <iostream.h>
```

```
// The size of each side of the domain.
const. int. N = 3*1024:
```

#### lint main(

```
int
char *
```

// argument count argv[] // argument list

```
3(
```

// Initialize Pooma. Pooma::initialize(argc, argv):

```
// The array we'll be solving for
Array(2) A(\bar{N}, N), B(N,N), C(\bar{N},N), D(N,N), E(N,N);
```

argc,

// Must block since we're doing some scalar code (see Tutorial 4). Pooma::blockAndEvaluate();

```
A = 1.0:
B = 2.0:
C = 3.0:
D = 4.0:
E = 5.0:
A = B + C + D:
C = E - A + 2.0 * B:
D = A + C:
C = D + A - B:
A = 2.0 * D + E:
E = 1.5 * B - A :
```

Pooma::blockAndEvaluate():

```
cout << "D(1,1) = " << D(1,1) << endl:
cout << "D(9,9) = " << D(9,9) << endl;
```

```
// Clean up Pooma and report success.
Pooma::finalize():
return 0:
```

n Multidimensional array statements  $\Box$  A=B+C+D:

POOMA, PETE and SMARTS



# Using Synchronous Timers

| BACY •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <i>n,c</i>                                                       | ;,t 0,0,0 pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ofile                                                                             |                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>F</u> ile <u>C</u> onfigure <u>H</u> elp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>F</u> ile                                                     | <u>V</u> alue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>O</u> rder                                                                     | <u>M</u> ode   | Units Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Functions         mean       Image: Comparison of the second s | 99.81%                                                           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   | 0.14%<br>0.02% | n,c,t 0,0,0<br>void Pooma::blockAndEvaluate()<br>int main(int, char **)<br>bool Pooma::finalize(bool)<br>Inform &Inform::Inform(const char *, Inf<br>bool Pooma::initialize(const Pooma::Op<br>C = E - A + 2.0 * B;<br>Pooma::Options &Pooma::Options::Opt                                                                                                                                                                                                                                                     |
| n,c,t 0,0,1 profile         File       Value       Order       Mode       Units         n,c,t 0,0,1       run ExpressionKernel <array< td="">         14.89%       run ExpressionKernel<array< td="">         14.51%       run ExpressionKernel<array< td="">         14.20%       run ExpressionKernel<array< td="">         10.80%       run ExpressionKernel<array< td="">         9.69%       run ExpressionKernel<array< td="">         9.16%       run ExpressionKernel<array< td="">         0.04%       schedule_private() void ()         _startoff() void (Thread *)</array<></array<></array<></array<></array<></array<></array<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <2, View<2, View<2, View<2, View<2, View<2, View<2, View<2, View | w0 <array<br>w0<array<br>w0<array<br>w0<array<br>w0<array<br>w0<array< th=""><th>•<br/><u>H</u>elp<br/>2, d<br/>2, d<br/>2, d<br/>2, d<br/>2, d<br/>2, d<br/>2, d<br/>2, d</th><th></th><th>A = 1.0;<br/>bool Pooma::finalize()<br/>void Pooma::debugLevel(int)<br/>Inform &amp;Inform::Inform(const char *, sto<br/>Inform::ID_t Inform::open(Inform::Conte<br/>void Inform::setup(const char *) Inform<br/>void Inform::setOutputLevel(Inform::Le<br/>bool Pooma::initialize(int &amp;, char **&amp;, bc<br/>Pooma::Scheduler_t &amp;Pooma::schedule<br/>A = B + C + D;<br/>C = D + A - B;<br/>E = 1.5 * B - A ;<br/>A = 2.0 * D + E ;<br/>void Pooma::-::cleanup_s()<br/>D = A + C;<br/>Pooma::Options &amp;Pooma::Options::Opt<br/>B = 2.0</th></array<></array<br></array<br></array<br></array<br></array<br> | •<br><u>H</u> elp<br>2, d<br>2, d<br>2, d<br>2, d<br>2, d<br>2, d<br>2, d<br>2, d |                | A = 1.0;<br>bool Pooma::finalize()<br>void Pooma::debugLevel(int)<br>Inform &Inform::Inform(const char *, sto<br>Inform::ID_t Inform::open(Inform::Conte<br>void Inform::setup(const char *) Inform<br>void Inform::setOutputLevel(Inform::Le<br>bool Pooma::initialize(int &, char **&, bc<br>Pooma::Scheduler_t &Pooma::schedule<br>A = B + C + D;<br>C = D + A - B;<br>E = 1.5 * B - A ;<br>A = 2.0 * D + E ;<br>void Pooma::-::cleanup_s()<br>D = A + C;<br>Pooma::Options &Pooma::Options::Opt<br>B = 2.0 |
| close                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   |                | close                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

### Form of Expression Templates in POOMA

10.3 2.064 2.064 2064221 run Expr 0 essionKernel<Array<2, View0<Array<2, double, Brick>::This\_t>::NewT\_t, View0 <Array<2, double, Brick>::This\_t>::NewEngineTag\_t>, OpAssign, ConstArray<2,</pre> View0<ConstArray<2, MakeReturn<BinaryNode<OpSubtract, BinaryNode<OpMultipl</pre> y, Scalar<double>, Reference<ArrayCreateLeaf<2, double, Brick>::ArrayLeaf\_t >>, Reference<ArrayCreateLeaf<2, double, Brick>::ArrayLeaf\_t>>>::T\_t, Expre ssionTag<MakeReturn<BinaryNode<OpSubtract, BinaryNode<OpMultiply, Scalar<do uble>, Reference<ArrayCreateLeaf<2, double, Brick>::ArrayLeaf\_t>>, Referenc e<ArrayCreateLeaf<2, double, Brick>::ArrayLeaf\_t>>>::Tree\_t>>::This\_t>::New T\_t, ViewO<ConstArray<2, MakeReturn<BinaryNode<OpSubtract, BinaryNode<OpMul tiply, Scalar<double>, Reference<ArrayCreateLeaf<2, double, Brick>::ArrayLe af\_t>>, Reference<ArrayCreateLeaf<2, double, Brick>::ArrayLeaf\_t>>>::T\_t, E xpressionTag<MakeReturn<BinaryNode<OpSubtract, BinaryNode<OpMultiply, Scala r<double>, Reference<ArrayCreateLeaf<2, double, Brick>::ArrayLeaf\_t>>, Refe rence<ArrayCreateLeaf<2, double, Brick>::ArrayLeaf\_t>>>::Tree\_t>>::This\_t>: :NewEngineTag\_t>, KernelTag<View0<Array<2, double, Brick>::This\_t>::Type\_t, View0<ConstArray<2, MakeReturn<BinaryNode<OpSubtract, BinaryNode<OpMultipl</pre> y, Scalar<double>, Reference<ArrayCreateLeaf<2, double, Brick>::ArrayLeaf\_t >>, Reference<ArrayCreateLeaf<2, double, Brick>::ArrayLeaf\_t>>>::T\_t, Expre ssionTag<MakeReturn<BinaryNode<OpSubtract, BinaryNode<OpMultiply, Scalar<do uble>, Reference<ArrayCreateLeaf<2, double, Brick>::ArrayLeaf\_t>>, Referenc e<ArrayCreateLeaf<2, double, Brick>::ArrayLeaf\_t>>>::Tree\_t>>::This\_t>::Typ e\_t>::Kernel\_t>

### Mapping Problem

- □ One-to-many upward mapping
- Traditional methods of mapping (ammortization/aggregation) lack resolution and accuracy!



## POOMA II Mappings

- Each work packet belongs to an ExpressionKernel object
- Each statement's form associated with timer in the constructor of ExpressionKernel
- ExpressionKernel class extended with embedded timer
- Timing calls and entry and exit of run() method start and stop per object timer

## **Results of TAU Mappings**

### Per-statement profile!

| n,c,t 0,0,1 profile                      |              |                                            | •            |  |  |  |  |  |  |  |
|------------------------------------------|--------------|--------------------------------------------|--------------|--|--|--|--|--|--|--|
| <u>F</u> ile <u>V</u> alue <u>O</u> rder | <u>M</u> ode | <u>U</u> nits                              | <u>H</u> elp |  |  |  |  |  |  |  |
|                                          | n,c,t 0,     | 0,1                                        | A            |  |  |  |  |  |  |  |
| 15.63%                                   | C = E -      | - A + 2.0 ^ B;                             |              |  |  |  |  |  |  |  |
| 12.09%                                   | A = B ·      | + C + D;                                   |              |  |  |  |  |  |  |  |
| 11.97%                                   | C = D ·      | + A – B;                                   |              |  |  |  |  |  |  |  |
| 11.37%                                   | E = 1.5      | 5*B-A;                                     |              |  |  |  |  |  |  |  |
| 11.10%                                   | A = 2.0      | )*D+E;                                     |              |  |  |  |  |  |  |  |
| 9.71%                                    | D = A -      | + C;                                       |              |  |  |  |  |  |  |  |
| 5.67%                                    | A = 1.0      | );                                         |              |  |  |  |  |  |  |  |
| 5.67%                                    | D = 4.0      | );                                         |              |  |  |  |  |  |  |  |
| 5.60%                                    | B = 2.0      |                                            |              |  |  |  |  |  |  |  |
| 5.59%                                    | C = 3.0      | );                                         |              |  |  |  |  |  |  |  |
| 5.57%                                    | E = 5.0      |                                            |              |  |  |  |  |  |  |  |
| 0.02%                                    | sched        | ule private() void ()                      |              |  |  |  |  |  |  |  |
|                                          | lterate      | <fastasync>::execute() void ()</fastasync> |              |  |  |  |  |  |  |  |
|                                          | starte       | off() void (Thread *)                      |              |  |  |  |  |  |  |  |
|                                          |              |                                            |              |  |  |  |  |  |  |  |
|                                          |              |                                            | 11           |  |  |  |  |  |  |  |
| close                                    |              |                                            |              |  |  |  |  |  |  |  |





□ Helps bridge the semantic-gap!

### Uintah

- □ U. of Utah, C-SAFE ASCI Level 1 Center
- Component-based framework for modeling and simulation of the interactions between hydrocarbon fires and high-energy explosives and propellants [Uintah]
- Work-packets belong to a higher-level task that a scientist understands
  - 0 e.g., "interpolate particles to grid"

### Without Mapping

BACY Task execution [MPIScheduler::execute()] profile • • [ Configure Help File Value Mode File Units Help Task execution [MPIScheduler::execute()] **Functions** 84.26% mean mean Function Legend • 🔳 79.91% n.c.t 0.0.0 MPI Type indexed() n.c.t 0.0.0 81.36% n.c.t 1.0.0 MPI Type size() n,c,t 1,0,0 81.91% n.c.t 2.0.0 MPI Type vector() n,c,t 2,0,0 86.63% n.c.t 3.0.0 MPI Waitall() n.c.t 3.0.0 81.59% n.c.t 4.0.0 Recv Dependency [MPI n,c,t 4,0,0 89.58% n.c.t 5.0.0 Reductions [MPISchedu n,c,t 5,0,0 84.00% n,c,t 6,0,0 Send Dependency [MPI n,c,t 6,0,0 89.11% n.c.t 7.0.0 Task Graph Output [MP n,c,t 7,0,0 Task execution [MPISch Test Some [MPISchedu Topological Sort [MPISc mean profile main() void (int, char \*\*) • Help File Value Order Mode close mean 84.26% Task execution [MPIScheduler::execute()] 6.77% MPI Waitall() close 3.51% MPIScheduler::gatherParticles 1.21% MPI Probe() MPIScheduler::gatherParticles profile • 0.95% MPI Finalize() File Value Mode Units Help 0.68% MPI Allreduce() 0.53% MPI Type indexed() MPIScheduler::gatherParticles 0.44% main() void (int, char \*\*) 3.51% mean 0.33% MPIScheduler::scatterParticles 0.28% Initial Send Recv [MPIScheduler::execute()] 3.97% n.c.t 0.0.0 0.18% MPIScheduler::execute() 3.26% n.c.t 1.0.0 0.14% MPI Isend() 3.51% n,c,t 2,0,0 0.14% Topological Sort [MPIScheduler::execute()] 3.32% n.c.t 3.0.0 0.13% MPI Recv() 3.39% n.c.t 4.0.0 0.10% Recv Dependency [MPIScheduler::execute()] 3.95% n.c.t 5.0.0 0.10% MPI Testsome() 3.34% n,c,t 6,0,0 0.08% MPI Irecv() 3.33% n.c.t 7.0.0 0.06% Send Dependency [MPIScheduler::execute()] 0.06% MPI Init()  $\triangleleft$ close close

### Using External Associations

- When task is created, a timer is created with the same name
- Two level mappings:
   Level 1: <task name, timer>
   Level 2: <task name, patch, timer>

## Using Task Mappings



# **Tracing Uintah Execution**

| - VAMPIR - Global Timeline    |    |                     |              |      |      |       |      |      |          |       |      |         |       |        |     |          |       |          |      |                                            |
|-------------------------------|----|---------------------|--------------|------|------|-------|------|------|----------|-------|------|---------|-------|--------|-----|----------|-------|----------|------|--------------------------------------------|
|                               |    |                     |              |      | S    | us32_ | bigb | ar.p | ov: G    | lobal | Time | line (1 | 0.0 u | s - 40 | .29 | 3 s =    | 40.29 | 3 s)     |      |                                            |
|                               | er | E.E.                | 10.0 s       | E.C. | E.E. | 40    | 2    | :0.0 | S        | 40    | E.C. |         | 30.   | JS     |     | EE.      | 40    | ce.      | 40.0 | IDIF                                       |
| Process U 26 00               | 60 | 00                  | 49           | 00   | 00   | 49    | 00   |      | 00       | 49    | 00   | 00      | 49    | 90     |     | 99       | 49    | 00       | 20   | TAU_DEFAULT                                |
| Process 1 28 65               |    | 33 55               | 49           | 56   | 55   | 49    | 56   |      | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   |                                            |
| Process 2 28 65               |    | 33 55               | 49           | 56   | 55   | 49    | 56   |      | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   | SerialMPM::actuallyInitialize              |
| Process 3 28 65               |    | 3 55                | 49           | 56   | 55   | 49    | 56   |      | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   | Serial MPM::interpolateParticlesToGrid     |
| Process 4 28 65               |    | 55                  | 49           | 56   | 55   | 49    | 56   |      | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   | Contact::exMomInterpolated                 |
| Process 5 28 65               |    | 1 <mark>3</mark> 55 | 49           | 56   | 55   | 49    | 56   |      | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   | Serial MPM::compute Stress Tensor          |
| Process 6 28 65               |    | 35                  | 43 49        | 56   | 55   | 49    | 56   |      | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   | Serial MPM::compute Internal Heat Rate     |
| Process 7 28 65               |    | 15                  | 43 49        | 56   | 55   | 49    | 56   |      | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   | Serial MPM::solveEquations Motion          |
| Process 8 28 65               |    | 80 55               | 49           | 56   | 55   | 49    | 56   |      | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   | Serial MPM::integrateAcceleration          |
| Process 9 28 65               |    | 55                  | 49           | 56   | 55   | 49    | 56   |      | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   | Contact::exMom Integrated                  |
| Brooses 10 22 65              |    | 242 EE              | 40           | 56   | 55   | 40    | 50   |      | EE.      |       | 50   | 55      | 40    | 56     |     | EE       | 40    | CC.      | 26   | SerialMPM::interpolateToParticlesAndUpdate |
| Plucess IU 20 00              |    | 20 20<br>00 FF      | 49           | 00   | 00   | 43    | 00   |      | 00<br>55 | 49    | 00   | 00      | 43    | 00     |     | 00<br>65 | 49    | 00       | 20   |                                            |
| Process 11 28 65              |    | 53 55               | 49           | 56   | 55   | 49    | 55   |      | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   |                                            |
| Process 12 28 65              |    | 43 55               | 49           | 56   | 55   | 49    | 56   |      | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   |                                            |
| Process 13 28 65              |    | 43 55               | 49           | 56   | 55   | 49    | 56   | ł    | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   |                                            |
| Process 14 <mark>28 65</mark> |    | 55                  | <b>43</b> 49 | 56   | 55   | 49    | 56   |      | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   |                                            |
| Process 15 <mark>2865</mark>  |    | 55                  | 43 49        | 56   | 55   | 49    | 56   |      | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   |                                            |
| Process 16 <mark>28 65</mark> |    | <mark>43</mark> 55  | 49           | 56   | 55   | 49    | 56   |      | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   |                                            |
| Process 17 28 65              |    | <b>43</b> 55        | 49           | 56   | 55   | 49    | 56   |      | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   |                                            |
| Process 18 28 65              |    | 55                  | 49           | 56   | 55   | 49    | 56   |      | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   |                                            |
| Process 19 28 65              |    | 43 55               | 49           | 56   | 55   | 49    | 56   |      | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   |                                            |
| Process 20 28 65              |    | 43 55               | 49           | 56   | 55   | 49    | 56   |      | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   |                                            |
| Process 21 28 65              |    | 43 55               | 49           | 56   | 55   | 49    | 56   |      | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   |                                            |
| Brocoss 22 28 65              |    | 55                  | 40           | 56   | 55   | 40    | 56   |      | 55       | 10    | 56   | 55      | /0    | 56     |     | 55       | 10    | 56       | 26   |                                            |
| Process 22 20 00              |    | 55                  | 42 40        | 00   | 55   | 40    | 50   |      | 55       | 40    | 50   |         | 40    | 50     |     | 55       | 40    | ou<br>re | 20   |                                            |
| Process 23 26 00              |    | 00                  | 40 40        | 00   | 00   | 49    | 00   |      | 00<br>55 | 49    | 00   | 00      | 49    | 00     |     | 00<br>55 | 49    | 00       | 20   |                                            |
| Process 24 28 65              |    | 55                  | 43           | 56   | 55   | 49    | 56   |      | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   |                                            |
| Process 25 28 65              |    | 55                  | 43 9         | 56   | 55   | 49    | 56   |      | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   |                                            |
| Process 26 28 65              |    | 55                  | 49           | 56   | 55   | 49    | 56   |      | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   |                                            |
| Process 27 <mark>28 65</mark> |    | 55                  | 49           | 56   | 55   | 49    | 56   |      | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   |                                            |
| Process 28 <mark>28 65</mark> |    | 55                  | 49           | 56   | 55   | 49    | 56   |      | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   |                                            |
| Process 29 <mark>28 65</mark> |    | 55                  | 49           | 56   | 55   | 49    | 56   |      | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   |                                            |
| Process 30 28 65              |    | 55                  | <b>43</b> 49 | 56   | 55   | 49    | 56   |      | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   |                                            |
| Process 31 28 65              |    | 55                  | <b>43</b> 49 | 56   | 55   | 49    | 56   |      | 55       | 49    | 56   | 55      | 49    | 56     |     | 55       | 49    | 56       | 26   |                                            |
|                               |    |                     |              |      |      |       |      |      |          |       |      |         |       |        |     |          |       |          |      |                                            |

### Two-Level Mappings: Tasks+Patch



### Conclusions

- □ New performance mapping model (SEAA)
- □ Application of SEAA to:
  - o asynchronously executed work packets in POOMA
    o packet-task-patch mapping in Uintah
- Mapping performance data helps bridge the gap in understanding performance data
- □ Complex mapping problems

O cross-context mapping

### Information

- □ TAU (http://www.acl.lanl.gov/tau)
- PDT (http://www.acl.lanl.gov/pdtoolkit)
- Tutorial at SC'01: M11
   B. Mohr, A. Malony, S. Shende, "Performance Technology for Complex Parallel Systems" Nov. 7, 2001, Denver, CO.
- □ LANL, NIC Booth, SC'01.

### Support Acknowledgement

TAU and PDT support:
 Department of Engergy (DOE)
 DOE 2000 ACTS contract
 DOE MICS contract
 DOE ASCI Level 3 (LANL, LLNL)

O DARPA

 $\odot$  NSF National Young Investigator (NYI) award

