
1

Parallel Performance Evaluation
Tools for HPC Systems:

PerfSuite, PAPI, TAU, KOJAK, and Vampir
Tutorial at Linux Cluster Institute 2008

NCSA, UIUC

April 28, 2008

Sameer Shende, Rick Kufrin

sameer@cs.uoregon.edu, rkufrin@ncsa.uiuc.edu

University of Oregon and NCSA, UIUC

2

Outline

• Introduction to performance evaluation

• PAPI

• PerfSuite

• TAU

• Vampir/VNG

• Jumpshot

• KOJAK/Scalasca

• Eclipse PTP



2

3

Workshop Goals

• This tutorial is an introduction to portable performance evaluation tools.

• You should leave here with a better understanding of…
– Concepts and steps involved in performance evaluation
– Using PerfSuite to analyze your application’s performance
– How to collect and analyze data from hardware performance counters
– How to instrument your programs with TAU

– Automatic instrumentation at the routine level and outer loop level
– Manual instrumentation at the loop/statement level

– Measurement options provided by TAU
– Environment variables used for choosing metrics, generating performance data
– How to use the TAU’s profile browser, ParaProf
– How to use TAU’s database for storing and retrieving performance data
– General familiarity with TAU’s use for Fortran, C++,C, MPI for mixed language

programming
– How to generate trace data in different formats
– How to analyze trace data using Vampir, Jumpshot, and KOJAK
– Facilities provided by the Eclipse PTP integrated development environment for

parallel programs

4

More Information

• PAPI References:
– PAPI documentation page available from the PAPI website:
     http://icl.cs.utk.edu/papi/

• PerfSuite References:
– Documentation available from the PerfSuite website:
    http://perfsuite.ncsa.uiuc.edu/

• TAU References:
– TAU Users Guide and papers available from the TAU website:

http://www.cs.uoregon.edu/research/tau/

• VAMPIR References
– VAMPIR-NG website
    http://www.vampir-ng.de/

• KOJAK References
– KOJAK documentation page
    http://www.fz-juelich.de/zam/kojak/documentation/

• Eclipse PTP References
– Documentation available from the Eclipse PTP website:
    http://www.eclipse.org/ptp/



3

5

Performance Evaluation

• Profiling
– Presents summary statistics of performance metrics

– number of times a routine was invoked
– exclusive, inclusive time/hpm counts spent executing it
– number of instrumented child routines invoked, etc.
– structure of invocations (calltrees/callgraphs)
– memory, message communication sizes also tracked

• Tracing
– Presents when and where events took place along a global

timeline
– timestamped log of events
– message communication events (sends/receives) are tracked

– shows when and where messages were sent
– large volume of performance data generated leads to more perturbation

in the program

6

Definitions – Profiling

• Profiling
– Recording of summary information during execution

– inclusive, exclusive time, # calls, hardware statistics, …

– Reflects performance behavior of program entities
– functions, loops, basic blocks
– user-defined “semantic” entities

– Very good for low-cost performance assessment
– Helps to expose performance bottlenecks and hotspots
– Implemented through

– sampling: periodic OS interrupts or hardware counter traps
– instrumentation: direct insertion of measurement code



4

7

Definitions – Tracing

• Tracing
– Recording of information about significant points (events) during

program execution
– entering/exiting code region (function, loop, block, …)
– thread/process interactions (e.g., send/receive message)

– Save information in event record
– timestamp
– CPU identifier, thread identifier
– Event type and event-specific information

–  Event trace is a time-sequenced stream of event records
–  Can be used to reconstruct dynamic program behavior
– Typically requires code instrumentation

8

Event Tracing: Instrumentation, Monitor, Trace

1 master

2 worker

3 ...

void worker {
  trace(ENTER, 2);
  ...
  recv(A, tag, buf);
  trace(RECV, A);
  ...
  trace(EXIT, 2);
}

void master {
  trace(ENTER, 1);
  ...
  trace(SEND, B);
  send(B, tag, buf);
  ...
  trace(EXIT, 1);
}

MONITOR 58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

CPU A:

CPU B:

Event definition

timestamp



5

9

Event Tracing: “Timeline” Visualization

1 master
2 worker
3 ...

58 A ENTER 1
60 B ENTER 2
62 A SEND B
64 A EXIT 1
68 B RECV A

...

69 B EXIT 2
...

main
master
worker

58 60 62 64 66 68 70

B

A

10

Steps of Performance Evaluation

• Collect basic routine-level timing profile to determine
where most time is being spent

• Collect routine-level hardware counter data to determine
types of performance problems

• Collect callpath profiles to determine sequence of events
causing performance problems

• Conduct finer-grained profiling and/or tracing to pinpoint
performance bottlenecks
– Loop-level profiling with hardware counters
– Tracing of communication operations



6

11

PAPI

• Performance Application Programming Interface
– The purpose of the PAPI project is to design, standardize

and implement a portable and efficient API to access the
hardware performance monitor counters found on most
modern microprocessors.

• Parallel Tools Consortium project started in 1998

• Developed by University of Tennessee, Knoxville

• http://icl.cs.utk.edu/papi/

12

PAPI Counter Interfaces

      PAPI provides 3 interfaces to  the underlying
counter hardware:
1. The low level interface manages hardware events in

user defined groups called EventSets, and provides
access to advanced features.

2. The high level interface provides the ability to start,
stop and read the counters for a specified list of
events.

3. Graphical and end-user tools provide facile data
collection and visualization.



7

13

3rd Party and GUI Tools

PAPI Low Level

Machine 
Specific

Layer

Portable
Layer

PAPI Machine Dependent Substrate

PAPI Implementation

PAPI High Level

Hardware Performance Counters

Operating System

Kernel Extension

14

PAPI Hardware Events

• Preset Events
– Standard set of over 100 events for application performance

tuning
– No standardization of the exact definition
– Mapped to either single or linear combinations of native

events on each platform
– Use papi_avail utility to see what preset events are available

on a given platform

• Native Events
– Any event countable by the CPU

– Same interface as for preset events

– Use papi_native_avail utility to see all available native events

• Use papi_event_chooser utility to select a compatible set
of events



8

15

PAPI High-level Interface

• Meant for application programmers wanting coarse-
grained measurements

• Calls the lower level API

• Allows only PAPI preset events

• Easier to use and less setup (less additional code) than
low-level

• Supports 8 calls in C or Fortran:

PAPI_flips

PAPI_flops

PAPI_num_counters

PAPI_ipc

PAPI_accum_countersPAPI_read_counters

PAPI_stop_countersPAPI_start_counters

16

PAPI High-level Example

 #include "papi.h”
 #define NUM_EVENTS 2
 long_long values[NUM_EVENTS];

 unsigned int Events[NUM_EVENTS]={PAPI_TOT_INS,PAPI_TOT_CYC};

  /* Start the counters */

  PAPI_start_counters((int*)Events,NUM_EVENTS);

  /* What we are monitoring… */

  do_work();

  /* Stop counters and store results in values */

  retval = PAPI_stop_counters(values,NUM_EVENTS);



9

17

Low-level Interface

• Increased efficiency and functionality over the high level
PAPI interface

• Obtain information about the executable, the hardware,
and the memory environment

• Multiplexing

• Callbacks on counter overflow

• Profiling

• About 60 functions

18

PAPI Low-level Example

#include "papi.h”
#define NUM_EVENTS 2
int Events[NUM_EVENTS]={PAPI_FP_INS,PAPI_TOT_CYC};
int EventSet;
long_long values[NUM_EVENTS];
/* Initialize the Library */
retval = PAPI_library_init(PAPI_VER_CURRENT);
/* Allocate space for the new eventset and do setup */
retval = PAPI_create_eventset(&EventSet);
/* Add Flops and total cycles to the eventset */
retval = PAPI_add_events(EventSet,Events,NUM_EVENTS);
/* Start the counters */
retval = PAPI_start(EventSet);

do_work();  /* What we want to monitor*/

/*Stop counters and store results in values */
retval = PAPI_stop(EventSet,values);



10

19

PAPI Data and Instruction
Range Qualification

• Implemented a generalized PAPI interface for data structure and
instruction address range qualification

• Applied that interface to the specific instance of the Itanium2
platform

• Extended an existing PAPI call, PAPI_set_opt(), with the
capability of specifying starting and ending addresses of data
structures or instructions to be instrumented

     option.addr.eventset = EventSet;
   option.addr.start = (caddr_t)array;
   option.addr.end = (caddr_t)(array + size_array);
   retval = PAPI_set_opt(PAPI_DATA_ADDRESS, &option);

• An instruction range can be set using PAPI_INSTR_ADDRESS

• papi_native_avail was modified to list events that support data
or instruction address range qualification.

20

Component PAPI (PAPI-C)

• Goals:
– Support simultaneous access to on- and off-processor

counters
– Isolate hardware dependent code in a separable ‘substrate’

module
– Extend platform independent code to support multiple

simultaneous substrates
– Add or modify API calls to support access to any of several

substrates
– Modify build environment for easy selection and

configuration of multiple available substrates

• Will be released as PAPI 4.0



11

21

Extension to PAPI to
Support Multiple Substrates

PAPI Low Level

Machine
Specific
Layer

Portable
Layer

PAPI High Level

PAPI Machine Dependent
Substrate

Hardware Performance Counters

Operating System

Kernel
Extension

Hardware Independent Layer

PAPI Machine Dependent
Substrate

Off-Processor Hardware Counters

Operating System

Kernel
Extension

22

PAPI-C Status

• PAPI 3.9 pre-release available with documentation

• Implemented Myrinet substrate (native counters)

• Implemented ACPI temperature sensor substrate

• Working on Inifinband and Cray Seastar substrates (access to
Seastar counters not available under Catamount but expected under
CNL)

• Asked by Cray engineers for input on desired metrics for next
network switch

• Tested on HPC Challenge benchmarks

• Tested platforms include Pentium III, Pentium 4, Core2Duo, Itanium
(I and II) and AMD Opteron

• Installed and tested on ARL MSRC Linux clusters and ASC MSRC
SGI Altix



12

23

PAPI-C New Routines

• PAPI_get_component_info()

• PAPI_num_cmp_hwctrs()

• PAPI_get_cmp_opt()

• PAPI_set_cmp_opt()

• PAPI_set_cmp_domain()

• PAPI_set_cmp_granularity()

24

PAPI-C Building and Linking

• CPU components are automatically detected by configure and
included in the build

• CPU component assumed to be present and always configured as
component 0

• To include additional components, use configure option

     --with-<cmp> = yes

• Currently supported components
– with-acpi = yes
– with-mx = yes
– with-net = yes

• The make process compiles and links sources for all requested
components into a single library



13

25

Myrinet MX Counters

ROUTE_DISPERSION
OUT_OF_SEND_HANDLES
OUT_OF_PULL_HANDLES
OUT_OF_PUSH_HANDLES
MEDIUM_CONT_RACE
CMD_TYPE_UNKNOWN
UREQ_TYPE_UNKNOWN
INTERRUPTS_OVERRUN
WAITING_FOR_INTERRUPT_DMA
WAITING_FOR_INTERRUPT_ACK
WAITING_FOR_INTERRUPT_TIMER
SLABS_RECYCLING
SLABS_PRESSURE
SLABS_STARVATION
OUT_OF_RDMA_HANDLES
EVENTQ_FULL
BUFFER_DROP
MEMORY_DROP
HARDWARE_FLOW_CONTROL
SIMULATED_PACKETS_LOST
LOGGING_FRAMES_DUMPED
WAKE_INTERRUPTS
AVERTED_WAKEUP_RACE
DMA_METADATA_RACE

REPLY_SEND
REPLY_RECV
QUERY_UNKNOWN
DATA_SEND_NULL
DATA_SEND_SMALL
DATA_SEND_MEDIUM
DATA_SEND_RNDV
DATA_SEND_PULL
DATA_RECV_NULL
DATA_RECV_SMALL_INLINE
DATA_RECV_SMALL_COPY
DATA_RECV_MEDIUM
DATA_RECV_RNDV
DATA_RECV_PULL
ETHER_SEND_UNICAST_CNT
ETHER_SEND_MULTICAST_CNT
ETHER_RECV_SMALL_CNT
ETHER_RECV_BIG_CNT
ETHER_OVERRUN
ETHER_OVERSIZED
DATA_RECV_NO_CREDITS
PACKETS_RESENT
PACKETS_DROPPED
MAPPER_ROUTES_UPDATE

ACK_NACK_FRAMES_IN_PIPE
NACK_BAD_ENDPT
NACK_ENDPT_CLOSED
NACK_BAD_SESSION
NACK_BAD_RDMAWIN
NACK_EVENTQ_FULL
SEND_BAD_RDMAWIN
CONNECT_TIMEOUT
CONNECT_SRC_UNKNOWN
QUERY_BAD_MAGIC
QUERY_TIMED_OUT
QUERY_SRC_UNKNOWN
RAW_SENDS
RAW_RECEIVES
RAW_OVERSIZED_PACKETS
RAW_RECV_OVERRUN
RAW_DISABLED
CONNECT_SEND
CONNECT_RECV
ACK_SEND
ACK_RECV
PUSH_SEND
PUSH_RECV
QUERY_SEND
QUERY_RECV

LANAI_UPTIME
COUNTERS_UPTIME
BAD_CRC8
BAD_CRC32
UNSTRIPPED_ROUTE
PKT_DESC_INVALID
RECV_PKT_ERRORS
PKT_MISROUTED
DATA_SRC_UNKNOWN
DATA_BAD_ENDPT
DATA_ENDPT_CLOSED
DATA_BAD_SESSION
PUSH_BAD_WINDOW
PUSH_DUPLICATE
PUSH_OBSOLETE
PUSH_RACE_DRIVER
PUSH_BAD_SEND_HANDLE_MAGIC
PUSH_BAD_SRC_MAGIC
PULL_OBSOLETE
PULL_NOTIFY_OBSOLETE
PULL_RACE_DRIVER
ACK_BAD_TYPE
ACK_BAD_MAGIC
ACK_RESEND_RACE
LATE_ACKh

26

Multiple Measurements

• HPCC HPL benchmark on Opteron with 3 performance metrics:
– FLOPS; Temperature; Network Sends/Receives

– Temperature is from an on-chip thermal diode



14

27

Multiple Measurements

• HPCC HPL benchmark on Opteron with 3 performance metrics:
– FLOPS; Temperature; Network Sends/Receives

– Temperature is from an on-chip thermal diode

28

• TAU (U Oregon) http://tau.uoregon.edu/

• HPCToolkit (Rice Univ) http://hipersoft.cs.rice.edu/hpctoolkit/

• KOJAK (UTK, FZ Juelich)  http://icl.cs.utk.edu/kojak/

• PerfSuite (NCSA)  http://perfsuite.ncsa.uiuc.edu/

• Titanium (UC Berkeley)
http://www.cs.berkeley.edu/Research/Projects/titanium/

• SCALEA (Thomas Fahringer, U Innsbruck)
http://www.par.univie.ac.at/project/scalea/

• Open|Speedshop (SGI) http://oss.sgi.com/projects/openspeedshop/

• SvPablo (UNC Renaissance Computing Institute)
http://www.renci.unc.edu/Software/Pablo/pablo.htm

Tools that use PAPI
Most users access PAPI from higher-level tools



15

Introduction to PerfSuite
Rick Kufrin

rkufrin@ncsa.uiuc.edu

Tutorial 1: Parallel Performance Evaluation Tools for HPC Systems:
PerfSuite, PAPI, TAU, KOJAK and Vampir

9th LCI International Conference on High-Performance Clustered Computing
Urbana, Illinois, April 28, 2008

30

Performance Analysis in Practice

• Observation: many application developers don’t use performance tools at all
(or rarely)

• Why?
– Learning curve can be steep
– Results can be difficult to understand
– Investment (time) can be substantial
– Maturity/availability of various tools
– Not everyone is a computer scientist

• Although it’s the norm for vendor-supplied tools to be available for proprietary
HPC operating systems, Linux is just beginning to catch up with contributions
from the open source community (independent or vendor-supported).



16

31

PerfSuite Approach

• Design Goals
– Remove the barriers to the initial steps of performance analysis (don’t

make it hard)
– Separate data collection from presentation
– Machine-independent representation
– Focus on the “Big Picture” (remember the 80/20 rule?)

• A primary goal is to provide an “entry point” that can help you to
decide how to proceed

32

What Does PerfSuite Provide?

• Overall hardware performance event counts for all or a portion of
your application

• Profiling with statistical sampling using either time- or event-based
triggers

– Generalization of the approach used by gprof

• Flexible XML-based output along with various techniques for display,
manipulation, combining, transformation

• Information about processor in use (type, cache/TLB specs, etc) –
this data is stored along with measurement

• Functionality available through easy-to-use command line tool that
can be used with most applications without need for modification

• Also available through several libraries for finer control



17

33

PerfSuite and XML

• In PerfSuite, nearly all data (input, output, configuration, etc) is represented
as XML (eXtensible Markup Language) documents

• This provides the ability to manipulate & transform the data in many ways
using standard software / skills

• Machine-independent (no binary files)
– ...opens the data up to the user

• There are numerous high-quality XML-aware libraries available from either
compiled or interpreted languages that can make it easy to transform the
data for your needs

• Web browsers (e.g. Mozilla, IE) have built-in XML capabilities

34

PerfSuite Counter-Related Software

• Four performance counter-related utilities:
– psconfig - configure / select performance events
– psinv - query events and machine information
– psrun - generate raw counter or statistical profiling data from an unmodified binary
– psprocess - pre- and post-process data

• Four libraries (shared and static)
– libperfsuite – the “core” library that can be used standalone and will be built

regardless of the availability of other software
– libpshwpc – HardWare Performance Counter library, also built regardless of other

software. Without counter support, will only perform time-based profiling through
profil().  A version suitable for threaded programs is available (_r suffix).

– libpshwpc_mpi – a convenience library based on the MPI standard PMPI
interface.



18

Command-Line Tools
psinv

psrun

psprocess

psconfig

36

psinv: processor inventory

• Lists information about the
characteristics of the computer

• This same information is also
stored in psrun XML output
and is useful for later
generating derived metrics (or
for remembering where you
ran your program!)

• x86/x86-64 version also shows
processor features and
descriptions

• Lists available hardware
performance events

titan:~3% psinv -v
System Information -
Processors:             2
Total Memory:           2007.16 MB
System Page Size:       16.00 KB

Processor Information -
Vendor:                 Intel
Processor family:       IPF
Model (Type):           Itanium
Revision:               6
Clock Speed:            800.136 MHz

Cache and TLB Information -
Cache levels:           3
Caches/TLBs:            7

Cache Details -
Level 1:
        Type:           Data
        Size:           16 KB
        Line size:      32 bytes
        Associativity:  4-way set associative

        Type:           Instruction
        Size:           16 KB
        Line size:      32 bytes
        Associativity:  4-way set associative



19

37

psinv: PAPI event summary

PAPI Standard Event Information -
Standard events: 43
Non-derived events: 26
Derived events: 17

PAPI Standard Event Details -
Non-derived:
        PAPI_BR_INS:    Branch instructions
        PAPI_BR_PRC:    Conditional branch instructions correctly predicted
        PAPI_L1_DCA:    Level 1 data cache accesses
        PAPI_L1_DCM:    Level 1 data cache misses
        PAPI_L1_ICM:    Level 1 instruction cache misses
        PAPI_L2_DCA:    Level 2 data cache accesses
        PAPI_L2_DCR:    Level 2 data cache reads
        PAPI_L2_DCW:    Level 2 data cache writes
        PAPI_L2_ICM:    Level 2 instruction cache misses
        PAPI_L2_STM:    Level 2 store misses
        PAPI_L2_TCM:    Level 2 cache misses
Derived:
        PAPI_BR_MSP:    Conditional branch instructions mispredicted
        PAPI_BR_NTK:    Conditional branch instructions not taken
        PAPI_BR_TKN:    Conditional branch instructions taken
        PAPI_FLOPS:     Floating point instructions per second
        PAPI_FP_INS:    Floating point instructions
        PAPI_L1_DCH:    Level 1 data cache hits

38

psrun: performance measurement

• Hardware performance counting and profiling with unmodified
dynamically-linked executables

• Available for x86, x86-64, em64t, and ia64

• POSIX threads support

• Automatic multiplexing

• Can be used with MPI

• Optionally collects resource usage

• Supports all PAPI standard events

• Input/Output = XML documents (can request plain text)



20

39

Cookbook for psrun usage

 # First, be sure to set all paths properly (can do in .cshrc/.profile)

  % set PSDIR=/opt/perfsuite

  % source $PSDIR/bin/psenv.csh

  # Use psrun on your program to generate the data,

  # then use psprocess to produce an HTML file (default is plain text)

  % psrun myprog

  % psprocess --html myprog.12345.xml > myprog.html

  # Take a look at the results

  % your-web-browser myprog.html

  # Second run, but this time profiling instead of counting

  % psrun –C -c papi_profile_cycles.xml myprog

  % psprocess -e myprog myprog.67890.xml

40

Advanced psrun use

• psrun supports a few options that can be useful in working with shared or
distributed memory programs:

• -p / --pthreads
- uses a POSIX thread-aware variant of the library that captures thread creation

and measures performance of each, depositing the results in an XML document
with the thread ID embedded:

• -f / --fork
- monitors child processes that are created.  Not enabled by default.

• -a / --annotate
- inserts an XML “element” with a user-supplied annotation (text)



21

41

psprocess: post-process results

• This style of output is customizable
by you.

• By default, the information it
contains and its visual appearance
are based on PerfSuite-provided
defaults, but these can be easily
replaced to suit your needs.

• This output is generated by
psprocess using XML
Transformations.  The stylesheet is
in the share/perfsuite/xml/pshwpc
subdirectory, with a “xsl” file
extension

42

psprocess: text mode (default)

PerfSuite Hardware Performance Summary Report
Version      : 1.0
Created      : Mon Dec 30 11:31:53 AM Central Standard Time 2002
Generator    : psprocess 0.5
XML Source   : /u/ncsa/anyuser/performance/psrun-ia64.xml

Execution Information
===========================
Date         : Sun Dec 15 21:01:20 2002
Host         : user01

Processor and System Information
===========================
Node CPUs    : 2
Vendor       : Intel
Family       : IPF
Model        : Itanium
CPU Revision : 6
Clock (MHz)  : 800.136
Memory (MB)  : 2007.16
Pagesize (KB): 16



22

43

psprocess: text mode, cont.

Cache Information
==========================
Cache levels : 3
--------------------------------
Level 1
Type         : data
Size (KB)    : 16
Linesize (B) : 32
Assoc        : 4
Type         : instruction
Size (KB)    : 16
Linesize (B) : 32
Assoc        : 4
--------------------------------
Level 2
Type         : unified
Size (KB)    : 96
Linesize (B) : 64
Assoc        : 6

The reports (text or HTML)
generated by psprocess have
several sections, covering:

•Report creation details
•Run details
•Machine information
•Raw counter listings
•Counter explanations and index
•Derived metrics
•Run annotation defined by you

Derived metrics are evaluated at
run-time and can be extended (text
mode only)

44

psprocess: text mode, cont.

Index Description                                   Counter Value
=================================================================
1 Conditional branch instructions mispredicted.....    4831072449
4 Floating point instructions......................   86124489172
5 Total cycles.....................................  594547754568
6 Instructions completed........................... 1049339828741

Statistics
=================================================================
Graduated instructions per cycle...................         1.765
Graduated floating point instructions per cycle....         0.145
Level 3 cache miss ratio (data)....................         0.957
Bandwidth used to level 3 cache (MB/s).............       385.087
% cycles with no instruction issue.................        10.410
% cycles stalled on memory access..................        43.139
MFLOPS (cycles)....................................       115.905
MFLOPS (wallclock).................................       114.441



23

45

Creating user-defined metrics

• psprocess allows the creation of user-defined metrics

• User-defined metrics are stored in a file of your choice that contains expression
templates (syntax is reminiscent of MathML)

• Select/use via PS_HWPC_METRICS environment variable or “-m” option to
psprocess

<?xml version="1.0" encoding="UTF-8" ?>
<psmetrics class="hwpc">
 <metric namespace="PAPI" type="ratio">
        <name>PS_RATIO_GINS_CYC</name>
        <description lang="en_US">Graduated instructions per cycle</description>
        <definition>
            <apply>
                <divide>
                    <ci>PAPI_TOT_INS</ci>
                    <ci>PAPI_TOT_CYC</ci>
                </divide>
            </apply>
        </definition>
    </metric>
</psmetrics>

46

Advanced psprocess use

• psprocess is meant to be a “generic” processor for different XML document types
generated by PerfSuite.  For hardware counting, the most common type is
<hwpcreport>

• Individual documents can be combined into a “multi-document” with the option –c / -
-combine.  With hardware counter data, psprocess summarizes the information
contained in them with descriptive statistics (mean, max, min, sum, stddev)

• -s LIST is a very useful option to be used with profiling runs.  LIST is a comma-
separated list of modules, files, functions, lines used to limit the amount
of output

• -t THRESHOLD is also helpful in limiting the output of profiling runs. THRESHOLD is a
number that specifies the minimum % of samples required for a given entry to be
displayed.  Example: “-t 2” means “don’t show me anything that didn’t account for
at least 2% of the samples collected”

• psprocess help output (“-h”) lists all available options and types



24

47

Configuring PerfSuite

• All PerfSuite runs are configured according to an XML document that
specifies what is to be measured

– if you don’t specify a custom configuration, a default is used

• A custom configuration document (file) is supplied in one of two ways
– psrun option “-c filename”
– PS_HWPC_CONFIG environment variable, which can be set to filename

• Creating new configuration files is easy, and can be done with either
a text editor or the tool “psconfig”

48

Example configuration

<?xml version="1.0" encoding="UTF-8" ?>
<ps_hwpc_eventlist class="PAPI">
  <ps_hwpc_event type="preset" name="PAPI_BR_MSP" />
  <ps_hwpc_event type="preset" name="PAPI_BR_PRC" />
  <ps_hwpc_event type="preset" name="PAPI_BR_TKN" />
  <ps_hwpc_event type="preset" name="PAPI_FP_INS" />
  <ps_hwpc_event type="preset" name="PAPI_TOT_CYC" />
  <ps_hwpc_event type="preset" name="PAPI_TOT_INS" />
  <ps_hwpc_event type="preset" name="PAPI_L1_DCA" />
  <ps_hwpc_event type="preset" name="PAPI_L1_DCM" />
  <ps_hwpc_event type="preset" name="PAPI_L1_ICR" />
  <ps_hwpc_event type="preset" name="PAPI_L1_TCM" />
  <ps_hwpc_event type="preset" name="PAPI_L2_DCA" />
  <ps_hwpc_event type="preset" name="PAPI_L2_DCM" />
</ps_hwpc_eventlist>

You can edit this file like any text file

The XML document root element “ps_hwpc_eventlist” indicates
this configuration is to be used for aggregate counting (not
profiling)



25

49

Configuring for profiling

• Setting up for profiling is similar to counting - all you have to do is modify the XML
configuration document:

• The XML document “root element” is now <ps_hwpc_profile>, not
<ps_hwpc_eventlist>

• You can supply an optional “threshold”, or sampling rate

• Only one event is allowed in the document

• psconfig does not yet support profiling, need to edit by hand

<?xml version="1.0" encoding="UTF-8" ?>

<ps_hwpc_profile class="PAPI">

  <ps_hwpc_event type="preset" name="PAPI_BR_MSP“ threshold="100000" />

</ps_hwpc_profile>

50

psconfig: graphical configuration

• Graphical user
interface makes it
easy to select events

• Can read in or write
out valid XML
documents to be
used by psrun

• Provides text
description of events
with mouse click

• Searching capabilities
• Profiling not yet

supported



26

51

Searching events with psconfig

• Selecting “Edit”,
“Search Events…”
brings up a window like
this that allows you to
search events for
keywords

• Can restrict the search
to only events available
on your computer

• The search is based on
the event’s description,
not it’s standard event
name
(PAPI_TOT_CYC)

52

Browsing default event configurations

• Selecting “File”, “Default Hardware Event Configurations…” brings up the directory
with pre-selected configuration documents

• Opening one of them will show you which events will be used

• You can base custom configuration files using these as a start



27

53

Using processor “native events”

• It’s easy to work with native events in addition to PAPI standard
events by modifying the configuration file slightly.

• Instead of using the XML attributes type=“preset”
name=“PAPI_EVENTNAME”, use the attribute type=“native” and
enclose the event name as the content of the element

• Can be used with profiling configurations

<ps_hwpc_event type=“native”>NOPS_RETIRED<ps_hwpc_event>
<ps_hwpc_event type=“native”>BACK_END_BUBBLE_ALL</ps_hwpc_event>

54

PerfSuite environment variables

• PS_HWPC: “off” or “on”, controls whether measurement takes place at all (for API)

• PS_HWPC_CONFIG: set to the name of the XML event file created with psconfig or
“by hand”. A default is used if not set

• PS_HWPC_FILE: controls the prefix of the XML output document (default “psrun”)

• PS_HWPC_ANNOTATION - adds an arbitrary “note” to the XML output

• PS_HWPC_DOMAIN: controls whether counting at user or system level (or both)

• PS_HWPC_THRESHOLD: sets threshold for profiling

• PS_HWPC_FORMAT: “text” or “xml”, controls whether output is in an XML document
or plain text (similar to a psprocess report)

• PSRUN_DOFORK: if set (to anything), monitors child processes also

“psrun –h” will show a complete listing of recognized variables



28

Libraries / API

libperfsuite

libpshwpc

56

PerfSuite library access (API)

• All of the functionality is also available from within your program
(C/C++/Fortran) through a small API

• Same XML documents are read, same XML documents are written,
small additional functionality

• Why would you want to use this?
– Primarily to gain finer control over where measurements are taken in

your program.  For example, you might defer measurement until program
initialization has completed

• For complex uses, you are probably better off using an “industrial-
strength” performance library

• The intent of the API is to “abstract out” the process of performance
measurement to a very high level



29

57

libperfsuite: core library

• This library is available regardless of the presence of hardware counter support

• Small number of useful routines callable from either C or FORTRAN (use “PSF_” instead of “ps_”
with FORTRAN)

– int ps_cpuspeed         (double *mhz);
– int ps_cpuusage         (pid_t pid, ps_time_t *utime,

                         ps_time_t *stime);
– int ps_dmemusage        (float *total_mb, float *used_mb,

                         float *free_mb);
– int ps_memusage         (pid_t pid, float *vsize_mb,

                         float *rss_mb);
– int ps_procstat         (pid_t pid,

                         ps_procstat_t *p);
– int ps_rtc              (unsigned long long *rtcval);
– int ps_rtcinit          (void);
– const char *ps_strerror (int code);

• #include <perfsuite.h> (or “fperfsuite.h”)

58

libpshwpc: hardware counter API

• The libpshwpc API contains six
routines that you can call from your
C/C++ or Fortran program.

• Call “init” once, call “start”, “read” and
“suspend” as many times as you like.
Call “stop” (supplying a file name
prefix of your choice) to get the
performance data XML document.

• Optionally, call “shutdown”.

• Example programs demonstrating
use are installed in PerfSuite
“examples” subdirectory.

• Additional routines
ps_hwpc_numevents() and
ps_hwpc_eventnames() allow
querying current configuration

C / C++
ps_hwpc_init (void)

ps_hwpc_start (void)

ps_hwpc_read (long long *values)

ps_hwpc_suspend (void)

ps_hwpc_stop (char *prefix)

ps_hwpc_shutdown (void)

Fortran
call psf_hwpc_init (ierr)

call psf_hwpc_start (ierr)

call psf_hwpc_read (integer*8 values,
                 ierr)

call psf_hwpc_suspend (ierr)

call psf_hwpc_stop (prefix, ierr)

call psf_hwpc_shutdown (ierr)



30

59

Example FORTRAN API use

include 'fperfsuite.h'

call PSF_hwpc_init(ierr)

call PSF_hwpc_start(ierr)

do j = 1, n

   do i = 1, m

      do k = 1, l

         c(i,j) = c(i,j) + a(i,k)*b(k,j)

      end do

   end do

end do

call PSF_hwpc_stop('perf', ierr)

call PSF_hwpc_shutdown(ierr)

% ifort -c matmult.f -I/opt/perfsuite/include

% ifort matmult.o -L /usr/apps/tools/perfsuite/lib/intel
    -L/usr/apps/tools/papi/lib -lpshwpc -lperfsuite -lpapi

Application Example

Example acknowledgement:

Felix Wolf, Julich Supercomputing Centre



31

61

Application Example: CX3D

• Fortran 90 / MPI code (Forschungszentrum Juelich) that simulates
Czochralski crystal growth.

• Spatial decomposition across processors can be specified at runtime.

• We’ll look at the steps involved in using PerfSuite on 8 processors to obtain
profiling and counting information.

• The application measures elapsed time internally with system_clock().  For
the 8-proc run, the measured wall clock time for a 4x2 decomposition is
40.88 secs.

• We can also measure parallel runs using gprof by using the environment
variable GMON_OUT_PREFIX to override the default “gmon.out” filename.

62

Profile Procedure

• We have two executables: one compiled for gprof-style profiling and the
other compiled as normal with symbols retained (-g).

• Run with mpirun as usual
– gprof runs produce 8 ${GMON_OUT_PREFIX}.PID files that can be

looked at individually or first combined with “-s” into a “gmon.sum” file
that can be post-processed as usual

– psrun runs produce 8 XML documents that can be post-processed with
psprocess

• Note: gprof also retains the call graph information (psrun does not)



32

63

Profiling Results (gprof summary)

%   cumulative   self              self     total

 time   seconds   seconds    calls  ms/call  ms/call  name

 76.79    246.25   246.25     8000    30.78    30.93  velo_

  9.01    275.15    28.90     8000     3.61     3.64  temp_

  3.74    287.14    11.99     8000     1.50     1.50  curr_

  2.04    293.68     6.54                             gmpi_net_lookup

  1.81    299.49     5.81                             gm_ntoh_u8

  1.31    303.69     4.21                            MPID_RecvComplete

  0.75    306.12     2.42                             _gm_ntoh_u8

  0.71    308.38     2.27     8008     0.28     0.32  bound_

% time attributed to the highest routine (velo) ranges from 79.21 to 74.42.

$ gprof –s cx.gprof ${GMON_OUT_PREFIX}.*

$ gprof –s cx.gprof gmon.sum

64

Profiling Results (psprocess individual)

Profile Information

========================================================================

Class                        : PAPI

Event                        : PAPI_TOT_CYC (Total cycles)

Period                       : 30600000

Samples                      : 4012

Domain                       : user

Run Time                     : 40.65 (seconds)

Min Self %                   : (all)

Module Summary

------------------------------------------------------------------------

Samples   Self %  Total %  Module

   3942   98.26%   98.26%  /u/ncsa/rkufrin/apps/cx3d/cx

     69    1.72%   99.98%  /opt/gm/lib/libgm.so.0.0.0

      1    0.02%  100.00%  /lib/tls/libpthread-0.34.so



33

65

Profiling Results (psprocess, cont’d)

File Summary

--------------------------------------------------------------------------------

Samples   Self %  Total %  File

   3182   79.31%   79.31%  /u/ncsa/rkufrin/apps/cx3d/velo.f

    384    9.57%   88.88%  /u/ncsa/rkufrin/apps/cx3d/temp.f

    164    4.09%   92.97%  /u/ncsa/rkufrin/apps/cx3d/testin.f

    143    3.56%   96.54%  /u/ncsa/rkufrin/apps/cx3d/curr.f

     53    1.32%   97.86%  ./include/gm_send_queue.h

     23    0.57%   98.43%  ??

     22    0.55%   98.98%  /u/ncsa/rkufrin/apps/cx3d/bound.f

     15    0.37%   99.35%  /u/ncsa/rkufrin/apps/cx3d/csendxs.f

     14    0.35%   99.70%  ./libgm/gm_send.c

     10    0.25%   99.95%  /u/ncsa/rkufrin/apps/cx3d/crecvxs.f

      1    0.02%   99.98%  ./libgm/gm_ptr_hash.c

      1    0.02%  100.00%  ./libgm/gm_hash.c

Function Summary

--------------------------------------------------------------------------------

Samples   Self %  Total %  Function

   3182   79.31%   79.31%  velo

    384    9.57%   88.88%  temp

    164    4.09%   92.97%  testin

    143    3.56%   96.54%  curr

     54    1.35%   97.88%  gm_send_with_callback

66

Profiling Results (psprocess, cont’d)

Function:File:Line Summary

--------------------------------------------------------------------------------

Samples   Self %  Total %  Function:File:Line

    687   17.12%   17.12%  velo:/u/ncsa/rkufrin/apps/cx3d/velo.f:232

    535   13.33%   30.46%  velo:/u/ncsa/rkufrin/apps/cx3d/velo.f:260

    509   12.69%   43.15%  velo:/u/ncsa/rkufrin/apps/cx3d/velo.f:210

    378    9.42%   52.57%  velo:/u/ncsa/rkufrin/apps/cx3d/velo.f:356

    189    4.71%   57.28%  velo:/u/ncsa/rkufrin/apps/cx3d/velo.f:493

$ mpirun –np 8 psrun –c profile_cycles.xml ./cx

$ psprocess –e cx psrun.PID.xml

profile_cycles.xml:

<ps_hwpc_profile class="PAPI">

  <ps_hwpc_event type="preset" name="PAPI_TOT_CYC" threshold="30600000"/>

</ps_hwpc_profile>



34

67

Summary Information (psprocess)

Aggregate Statistics                        Min      Max   Median     Mean   StdDev      Sum

============================================================================================

% CPU utilization.....................    97.88    98.41    98.09    98.12     0.17   784.93

% cycles stalled on any resource......     0.00     0.00     0.00     0.00     0.00     0.00

CPU time (seconds)....................    39.95    40.15    39.99    40.01     0.07   320.11

Floating point operations per cycle...     0.05     0.05     0.05     0.05     0.00     0.39

Floating point operations per graduated instruction

                                           0.04     0.04     0.04     0.04     0.00     0.31

Graduated instructions per cycle......     1.27     1.30     1.29     1.29     0.01    10.28

Graduated instructions per issued instruction

                                           0.99     1.00     1.00     1.00     0.00     7.97

Issued instructions per cycle.........     1.28     1.31     1.29     1.29     0.01    10.33

Level 2 cache hit rate (data).........     0.96     0.97     0.97     0.97     0.00     7.74

Level 2 cache line reuse (data).......    27.49    30.82    29.57    29.28     1.22   234.26

MFLOPS (cycles).......................   145.53   154.10   151.18   150.40     3.63  1203.21

MFLOPS (wall clock)...................   142.45   151.50   148.37   147.57     3.64  1180.56

MIPS (cycles).........................  3881.34  3952.56  3924.68  3922.56    28.18 31380.47

MIPS (wall clock).....................  3799.24  3877.19  3854.91  3848.68    30.42 30789.40

MVOPS (cycles)........................     0.00     0.00     0.00     0.00     0.00     0.00

MVOPS (wall clock)....................     0.00     0.00     0.00     0.00     0.00     0.00

Mispredicted branches per correctly predicted branch

                                           0.00     0.01     0.01     0.01     0.00     0.05

Vector instructions per cycle.........     0.00     0.00     0.00     0.00     0.00     0.00

Vector instructions per graduated instruction

 0.00     0.00     0.00     0.00     0.00     0.00

Wall clock time (seconds).............    40.60    40.88    40.79    40.78     0.10   326.25

$ psprocess –c psrun.*.xml > combined.xml
$ psprocess combined.xml

For More Information
Visit the PerfSuite websites:

http://perfsuite.ncsa.uiuc.edu

http://perfsuite.sourceforge.net



35

69

TAU Parallel Performance System

• http://tau.uoregon.edu/

• Multi-level performance instrumentation
– Multi-language automatic source instrumentation

• Flexible and configurable performance measurement

• Widely-ported parallel performance profiling system
– Computer system architectures and operating systems
– Different programming languages and compilers

• Support for multiple parallel programming paradigms
– Multi-threading, message passing, mixed-mode, hybrid

• Integration in complex software, systems, applications

70

Using TAU: A brief Introduction

• To instrument source code:
% setenv TAU_MAKEFILE /usr/apps/tools/tau/tau-2.17.1/

x86_64/lib/Makefile.tau-mpi-pdt-pgi
And use tau_f90.sh, tau_cxx.sh or tau_cc.sh as Fortran, C++ or C

compilers:
% mpif90 foo.f90
changes to
% tau_f90.sh foo.f90

• Execute application and then run:
% pprof   (for text based profile display)
% paraprof  (for GUI)



36

71

Performance Tools FAQ/Concerns

• Does it automatically instrument my code? At the routine level? At the outer-loop
level?

• Can it show me where time is spent in my code? PAPI Flops? L1 data cache misses?
Can I measure more than one quantity in a trial?

• Does the tool support profiling (runtime summarization) as well as tracing (time-line
based displays)? What about profile snapshots? Callpath (parent-child) profiles? Can I
use it to easily benchmark codes?

• Can I observe the performance data at runtime as the application executes?

• Can it show me memory utilization? Memory leaks? Mallocs/frees? When and where?

• What about I/O? Can I observe bandwidth of reads/writes? Volume of I/O? What
about Kernel events? User space+Kernel?

• What is the typical overhead? Can I reduce it to < 5%? < 1%? Can it compensate and
remove timer overhead from performance data? Can it throttle away instrumentation
in lightweight routines at runtime to reduce overhead?

• I already have profile data from <XYZ> tool. Can it import my legacy data?

• I prefer <XYZ> performance tool for visualization. Can it hook up with this tool? Are
there converters?

72

Performance Tools FAQ/Concerns (contd.)

• Can I use it for multi-core CPUs? Compare the performance of application running on
a single vs. multi-core processor? Can I observe multi-core data snoops, invalidates?

• Can I share the performance data with my colleagues in a secure manner
(web/database)? Can it automatically track progress of my application over time
(~ 6 mos)? Can I use it for scalability studies? Over multiple platforms?

• Are the GUI client tools available under Linux? MS Windows? Apple?

• Does it run on all Cray, IBM, SGI, HP … platforms? CNL? Catamount?

• Does it support MPI?  MPI2? Threads? Hybrid MPI+Pthreads/MPI+OpenMP?

• Does it support Fortran? C++, C? Java? Python? Python+MPI+F90+C++…?

• Does it support Intel/PGI/PathScale/IBM/Cray/Sun compilers?

• Are tools available in command-line form & GUI? IDE GUI? Web-based? 3D?

• Is it already installed and supported on my HPC system? What about systems at
NERSC? ANL? LLNL? LANL? NASA? DoD? NSF sites?...

• Is there support (phone/e-mail) available for the tool? Professional support? For
instrumentation? Analysis?

• Will it work on the new <XYZ> HPC platform scheduled for release six months from
now?

• Is it free? BSD license? …



37

73

TAU Performance System Architecture

event
selection

74

TAU Performance System Architecture



38

75

Program Database Toolkit (PDT)

Application
/ Library

C / C++
parser

Fortran parser
F77/90/95

C / C++
IL analyzer

Fortran
IL analyzer

Program
Database

Files

IL IL

DUCTAPE

PDBhtml

SILOON

CHASM

TAU_instr

Program
documentation

Application
component glue

C++ / F90/95
interoperability

Automatic source
instrumentation

76

Building Bridges to Other Tools



39

77

TAU Instrumentation Approach

• Support for standard program events
– Routines
– Classes and templates
– Statement-level blocks

• Support for user-defined events
– Begin/End events (“user-defined timers”)
– Atomic events (e.g., size of memory allocated/freed)
– Selection of event statistics

• Support definition of “semantic” entities for mapping

• Support for event groups

• Instrumentation optimization (eliminate instrumentation in
lightweight routines)

78

TAU Instrumentation

• Flexible instrumentation mechanisms at multiple levels
– Source code

– manual (TAU API, TAU Component API)
– automatic

– C, C++, F77/90/95 (Program Database Toolkit (PDT))
– OpenMP (directive rewriting (Opari), POMP spec)

– Object code
– pre-instrumented libraries (e.g., MPI using PMPI)
– statically-linked and dynamically-linked

– Executable code
– dynamic instrumentation (pre-execution) (DynInstAPI)
– virtual machine instrumentation (e.g., Java using JVMPI)
– Python interpreter based instrumentation at runtime

– Proxy Components



40

79

Multi-Level Instrumentation and Mapping

• Multiple instrumentation
interfaces

• Information sharing
– Between interfaces

• Event selection
– Within/between levels

• Mapping
– Associate performance

data with high-level
semantic abstractions

• Instrumentation targets
measurement API with
support for mapping

    User-level abstractions
    problem domain

source code

source code

object code libraries

instrumentation

instrumentation

executable

runtime image

compiler

linker

OS

VM

instrumentation

instrumentation

instrumentation

instrumentation

instrumentation

instrumentationperformance
data run

preprocessor

80

TAU Measurement Approach

• Portable and scalable parallel profiling solution
– Multiple profiling types and options

– Event selection and control (enabling/disabling, throttling)

– Online profile access and sampling

– Online performance profile overhead compensation

• Portable and scalable parallel tracing solution
– Trace translation to Open Trace Format (OTF)

– Trace streams and hierarchical trace merging

• Robust timing and hardware performance support

• Multiple counters (hardware, user-defined, system)

• Performance measurement for CCA component software



41

81

Using TAU

• Configuration

• Instrumentation
– Manual
– MPI – Wrapper interposition library
– PDT- Source rewriting for C,C++, F77/90/95
– OpenMP – Directive rewriting
– Component based instrumentation – Proxy components
– Binary Instrumentation

– DyninstAPI – Runtime Instrumentation/Rewriting binary
– Java – Runtime instrumentation
– Python – Runtime instrumentation

• Measurement

• Performance Analysis

82

TAU Measurement System Configuration

• configure [OPTIONS]
{-c++=<CC>, -cc=<cc>} Specify C++ and C compilers
-pdt=<dir> Specify location of PDT
-opari=<dir> Specify location of Opari OpenMP tool
-papi=<dir> Specify location of PAPI
-vampirtrace=<dir> Specify location of VampirTrace
-mpi[inc/lib]=<dir> Specify MPI library instrumentation
-dyninst=<dir> Specify location of DynInst Package
-shmem[inc/lib]=<dir> Specify PSHMEM library instrumentation
-python[inc/lib]=<dir> Specify Python instrumentation
-tag=<name> Specify a unique configuration name
-epilog=<dir> Specify location of EPILOG
-slog2 Build SLOG2/Jumpshot tracing package
-otf=<dir> Specify location of OTF trace package
-arch=<architecture> Specify architecture explicitly 

(bgl, xt3,ibm64,ibm64linux…)
{-pthread, -sproc} Use pthread or SGI sproc threads
-openmp Use OpenMP threads
-jdk=<dir> Specify Java instrumentation (JDK)
-fortran=[vendor] Specify Fortran compiler



42

83

TAU Measurement System Configuration

• configure [OPTIONS]
-TRACE Generate binary TAU traces
-PROFILE (default) Generate profiles (summary)
-PROFILECALLPATH Generate call path profiles
-PROFILEPHASE Generate phase based profiles
-PROFILEMEMORY Track heap memory for each routine
-PROFILEHEADROOM Track memory headroom to grow
-MULTIPLECOUNTERS Use hardware counters + time
-COMPENSATE Compensate timer overhead
-CPUTIME Use usertime+system time
-PAPIWALLCLOCK Use PAPI’s wallclock time
-PAPIVIRTUAL Use PAPI’s process virtual time
-SGITIMERS Use fast IRIX timers
-LINUXTIMERS Use fast x86 Linux timers

84

TAU Measurement Configuration – Examples

• ./configure –pdt=/usr/pkgs/pkgs/pdtoolkit-3.11
-mpiinc=/usr/pkgs/mpich/include -mpilib=/usr/pkgs/mpich/lib
-mpilibrary=‘-lmpich -L/usr/gm/lib64 -lgm -lpthread -ldl’
– Configure using PDT and MPI for x86_64 Linux

• ./configure -arch=xt3 -papi=/opt/xt-tools/papi/3.2.1 -mpi -
MULTIPLECOUNTERS; make clean install
– Use PAPI counters (one or more) with C/C++/F90 automatic

instrumentation for XT3. Also instrument the MPI library. Use PGI
compilers.

• Typically configure multiple measurement libraries

• Each configuration creates a  unique <arch>/lib/Makefile.tau<options>
stub makefile. It corresponds to the configuration options used. e.g.,
– /usr/pkgs/tau/x86_64/lib/Makefile.tau-mpi-pdt-pgi
– /usr/pkgs/tau/x86_64/lib/Makefile.tau-multiplecounters-mpi-papi-pdt-pgi



43

85

TAU Measurement Configuration – Examples

% cd /usr/pkgs/tau/x86_64/lib; ls Makefile.*pgi

Makefile.tau-pdt-pgi

Makefile.tau-mpi-pdt-pgi

Makefile.tau-callpath-mpi-pdt-pgi

Makefile.tau-mpi-pdt-trace-pgi

Makefile.tau-mpi-compensate-pdt-pgi

Makefile.tau-multiplecounters-mpi-papi-pdt-pgi

Makefile.tau-multiplecounters-mpi-papi-pdt-trace-pgi

Makefile.tau-mpi-papi-pdt-epilog-trace-pgi

Makefile.tau-pdt-pgi…

• For an MPI+F90 application, you may want to start with:
Makefile.tau-mpi-pdt-pgi

– Supports MPI instrumentation & PDT for automatic source instrumentation for PGI compilers

86

Configuration Parameters in Stub Makefiles

• Each TAU stub Makefile resides in <tau>/<arch>/lib directory

• Variables:
– TAU_CXX Specify the C++ compiler used by TAU
– TAU_CC, TAU_F90 Specify the C, F90 compilers
– TAU_DEFS Defines used by TAU. Add to CFLAGS
– TAU_LDFLAGS Linker options. Add to LDFLAGS
– TAU_INCLUDE Header files include path. Add to CFLAGS
– TAU_LIBS Statically linked TAU library. Add to LIBS
– TAU_SHLIBS Dynamically linked TAU library
– TAU_MPI_LIBS TAU’s MPI wrapper library for C/C++
– TAU_MPI_FLIBS TAU’s MPI wrapper library for F90
– TAU_FORTRANLIBS Must be linked in with C++ linker for F90
– TAU_CXXLIBS Must be linked in with F90 linker
– TAU_INCLUDE_MEMORY Use TAU’s malloc/free wrapper lib
– TAU_DISABLE TAU’s dummy F90 stub library
– TAU_COMPILER Instrument using tau_compiler.sh script

• Each stub makefile encapsulates the parameters that TAU was configured with

• It represents a specific instance of the TAU libraries. TAU scripts use stub
makefiles to identify what performance measurements are to be performed.



44

87

Using TAU

• Install TAU
% configure [options]; make clean install

• Typically modify application makefile and choose TAU configuration
– Select TAU’s stub makefile, change name of compiler in Makefile
% setenv TAU_MAKEFILE /usr/pkgs/tau/x86_64/lib/Makefile.tau-mpi-pdt-pgi
% setenv TAU_OPTIONS ‘-optVerbose -optKeepFiles ...’
– F90  = tau_f90.sh  CXX = tau_cxx.sh CC = tau_cc.sh

• Set environment variables
– Directory where profiles/traces are to be stored/counter selection

• Execute application
% mpirun –np <procs> a.out;

• Analyze performance data
– paraprof, vampir, pprof, paraver …

88

ParaProf Main Window

click left
 mouse button

click right 
mouse button

% paraprof matmult.ppk 



45

89

TAU’s MPI Wrapper Interposition Library

• Uses standard MPI Profiling Interface
– Provides name shifted interface

– MPI_Send = PMPI_Send

– Weak bindings

• Interpose TAU’s MPI wrapper library between MPI and TAU
– -lmpi replaced by –lTauMpi –lpmpi –lmpi

• No change to the source code!
– Just re-link the application to generate performance data

– setenv TAU_MAKEFILE <dir>/<arch>/lib/Makefile.tau-mpi -[options]

– Use tau_cxx.sh, tau_f90.sh and tau_cc.sh as compilers

90

Runtime MPI Shared Library Instrumentation

• We can now interpose the MPI wrapper library for applications that
have already been compiled

– No re-compilation or re-linking necessary!

• Uses LD_PRELOAD for Linux

• On AIX, TAU uses MPI_EUILIB / MPI_EUILIBPATH

• Simply compile TAU with MPI support and prefix your MPI program
with tau_load.sh
% mpirun -np 4 tau_load.sh a.out

• Requires shared library MPI - does not work on XT3

• Approach will work with other shared libraries



46

91

Instrumenting MPI Applications

• Under Linux you may use tau_load.sh to launch un-instrumented programs
under TAU
– Without TAU:

% mpirun -np 4 ./a.out
– With TAU:

% ls /usr/pkgs/tau/x86_64/lib/libTAU*intel91*
% mpirun -np 4 tau_load.sh ./a.out
% mpirun -np 4 tau_load.sh -XrunTAUsh-mpi-pdt-trace.so a.out
loads <taudir>/<arch>/lib/libTAUsh-mpi-pdt-trace.so shared object

• Under AIX, use tau_poe instead of poe
– Without TAU:

% poe a.out -procs 8
– With TAU:

% tau_poe a.out -procs 8
% tau_poe -XrunTAUsh-mpi-pdt-trace.so a.out -procs 8
chooses <taudir>/<arch>/lib/libTAUsh-mpi-pdt-trace.so

• No change to source code or executables! No need to re-link!

• Only instruments MPI routines. To instrument user routines, you may need
to parse the application source code!

92

-PROFILE Configuration Option

• Generates flat profiles (one for each MPI process)
– It is the default option.

• Uses wallclock time (gettimeofday() sys call)

• Calculates exclusive, inclusive time spent in each timer and number of calls

% pprof



47

93

Terminology – Example

• For routine “int main( )”:

• Exclusive time
– 100-20-50-20=10 secs

• Inclusive time
– 100 secs

• Calls
– 1 call

• Subrs (no. of child routines
called)

– 3

• Inclusive time/call
– 100secs

int main( )

{ /* takes 100 secs */

  f1(); /* takes 20 secs */

  f2(); /* takes 50 secs */

  f1(); /* takes 20 secs */

  /* other work */

}

/*

Time can be replaced by  counts

from PAPI e.g., PAPI_FP_OPS. */

94

-MULTIPLECOUNTERS Configuration Option

• Instead of one metric, profile or trace with more than one metric
– Set environment variables COUNTER[1-25] to specify the metric

– % setenv COUNTER1 GET_TIME_OF_DAY
– % setenv COUNTER2 PAPI_L2_DCM
– % setenv COUNTER3 PAPI_FP_OPS
– % setenv COUNTER4 PAPI_NATIVE_<native_event>
– % setenv COUNTER5 P_WALL_CLOCK_TIME  …

• When used with –TRACE option, the first counter must be
GET_TIME_OF_DAY

– % setenv COUNTER1 GET_TIME_OF_DAY
– Provides a globally synchronized real time clock for tracing

• -multiplecounters appears in the name of the stub Makefile

• Often used with –papi=<dir> to measure hardware performance counters
and time

• papi_native_avail and papi_avail are two useful tools



48

95

-PROFILECALLPATH Configuration Option

• Generates profiles that show the calling order (edges & nodes in callgraph)
– A=>B=>C shows the time spent in C when it was called by B and B was called by A
– Control the depth of callpath using TAU_CALLPATH_DEPTH env. Variable
– -callpath in the name of the stub Makefile name

96

-PROFILECALLPATH Configuration Option

• Generates program callgraph



49

97

Profile Measurement – Three Flavors

• Flat profiles
– Time (or counts) spent in each routine (nodes in callgraph).
– Exclusive/inclusive time, no. of calls, child calls
– E.g,: MPI_Send, foo, …

• Callpath Profiles
– Flat profiles, plus
– Sequence of actions that led to poor performance
– Time spent along a calling path (edges in callgraph)
– E.g., “main=> f1 => f2 => MPI_Send” shows the time spent in MPI_Send when

called by f2, when f2 is called by f1, when it is called by main. Depth of this
callpath = 4 (TAU_CALLPATH_DEPTH environment variable)

• Phase based profiles
– Flat profiles, plus
– Flat profiles under a phase (nested phases are allowed)
– Default “main” phase has all phases and routines invoked outside phases
– Supports static or dynamic (per-iteration) phases
– E.g., “IO => MPI_Send” is time spent in MPI_Send in IO phase

98

-DEPTHLIMIT Configuration Option

•  Allows users to enable instrumentation at runtime based on the depth of
a calling routine on a callstack.
– Disables instrumentation in all routines a certain depth away from the root in

a callgraph

• TAU_DEPTH_LIMIT environment variable specifies depth
% setenv TAU_DEPTH_LIMIT 1
enables instrumentation in only “main”
% setenv TAU_DEPTH_LIMIT 2
enables instrumentation in main and routines that are directly called by main

• Stub makefile has  -depthlimit in its name:
setenv TAU_MAKEFILE <taudir>/<arch>/lib/Makefile.tau-icpc-mpi-depthlimit-pdt



50

99

-COMPENSATE Configuration Option

• Specifies online compensation of performance perturbation

• TAU computes its timer overhead and subtracts it from the
profiles

• Works well with time or instructions based metrics

• Does not work with level 1/2 data cache misses

100

-TRACE Configuration Option

• Generates event-trace logs, rather than summary profiles

• Traces show when and where an event occurred in terms of location and the
process that executed it

• Traces from multiple processes are merged:
% tau_treemerge.pl

– generates tau.trc and tau.edf as merged trace and event definition file

• TAU traces can be converted to Vampir’s OTF/VTF3, Jumpshot SLOG2,
Paraver trace formats:
% tau2otf tau.trc tau.edf app.otf
% tau2vtf tau.trc tau.edf app.vpt.gz
% tau2slog2 tau.trc tau.edf -o app.slog2
% tau_convert -paraver tau.trc tau.edf app.prv

• Stub Makefile has -trace in its name
% setenv TAU_MAKEFILE <taudir>/<arch>/lib/

Makefile.tau-icpc-mpi-pdt-trace



51

101

Performance Evaluation Alternatives

Flat profile

Depthlimit
profile

Parameter
profile

Callpath/
callgraph profile

Phase
profile

Trace

Volume of performance data
Each alternative has:
- one metric/counter
- multiple counters

102

-PROFILEPARAM Configuration Option

• Idea: partition performance data for individual functions
based on runtime parameters

• Enable by configuring with –PROFILEPARAM

• TAU call: TAU_PROFILE_PARAM1L (value, “name”)

• Simple example:

      void foo(long input) {

   TAU_PROFILE("foo", "", TAU_DEFAULT);

   TAU_PROFILE_PARAM1L(input, "input");

 ... }



52

103

Workload Characterization

• 5 seconds spent in function “foo” becomes
– 2 seconds for “foo [ <input> = <25> ]”
– 1 seconds for “foo [ <input> = <5> ]”
– …

• Currently used in MPI wrapper library
– Allows for partitioning of time spent in MPI routines based on

parameters (message size, message tag, destination node)
– Can be extrapolated to infer specifics about the MPI subsystem

and system as a whole

104

Workload Characterization

• Simple example, send/receive squared message sizes (0-32MB)#include <stdio.h>
#include <mpi.h>
int buffer[8*1024*1024];

int main(int argc, char **argv) {
  int rank, size, i, j;
  MPI_Init(&argc, &argv);
  MPI_Comm_size( MPI_COMM_WORLD, &size );
  MPI_Comm_rank( MPI_COMM_WORLD, &rank );
  for (i=0;i<1000;i++)
    for (j=1;j<=8*1024*1024;j*=2) {
      if (rank == 0) {

MPI_Send(buffer,j,MPI_INT,1,42,MPI_COMM_WORLD);
      } else {

MPI_Status status;
MPI_Recv(buffer,j,MPI_INT,0,42,MPI_COMM_WORLD,&status);

      }
    }
  MPI_Finalize();
}



53

105

Workload Characterization

• Use tau_load.sh to instrument MPI routines (SGI Altix)% icc mpi.c –lmpi

% mpirun –np 2 tau_load.sh –XrunTAU-icpc-mpi-pdt.so a.out

SGI MPI (SGI Altix) Intel MPI (SGI Altix)

106

Workload Characterization

• MPI Results (NAS Parallel Benchmark 3.1, LU class D on
16 processors of SGI Altix)



54

107

Workload Characterization

• Two different message sizes (~3.3MB and ~4K)

108

Job Tracking: ParaProf profile browser

LU spent 0.162 seconds sending
messages of size 44880

It got 833.82 Mflops!



55

109

Memory Profiling in TAU

• Configuration option –PROFILEMEMORY
– Records global heap memory utilization for each function
– Takes one sample at beginning of each function and associates the sample

with function name

• Configuration option -PROFILEHEADROOM
– Records headroom (amount of free memory to grow) for each function
– Takes one sample at beginning of each function and associates it with the

callstack [TAU_CALLPATH_DEPTH env variable]
– Useful for debugging memory usage on IBM BG/L.

• Independent of instrumentation/measurement options selected

• No need to insert macros/calls in the source code

• User defined atomic events appear in profiles/traces

110

Memory Profiling in TAU (Atomic events)

Flash2 code profile (-PROFILEMEMORY) on IBM BlueGene/L [MPI rank 0]



56

111

Memory Profiling in TAU

• Instrumentation based observation of global heap memory (not per function)
– call TAU_TRACK_MEMORY()
– call TAU_TRACK_MEMORY_HEADROOM()

– Triggers one sample every 10 secs

– call TAU_TRACK_MEMORY_HERE()
– call TAU_TRACK_MEMORY_HEADROOM_HERE()

– Triggers sample at a specific location in source code

– call TAU_SET_INTERRUPT_INTERVAL(seconds)
– To set inter-interrupt interval for sampling

– call TAU_DISABLE_TRACKING_MEMORY()
– call TAU_DISABLE_TRACKING_MEMORY_HEADROOM()

– To turn off recording memory utilization

– call TAU_ENABLE_TRACKING_MEMORY()
– call TAU_ENABLE_TRACKING_MEMORY_HEADROOM()

– To re-enable tracking memory utilization

112

Detecting Memory Leaks in C/C++

• TAU wrapper library for malloc/realloc/free

• During instrumentation, specify
-optDetectMemoryLeaks option to TAU_COMPILER

% setenv TAU_OPTIONS ‘-optVerbose -optDetectMemoryLeaks’
% setenv TAU_MAKEFILE <taudir>/<arch>/lib/Makefile.tau-icpc-mpi-pdt...
% tau_cxx.sh foo.cpp ...

• Tracks each memory allocation/de-allocation in parsed files

• Correlates each memory event with the executing callstack

• At the end of execution, TAU detects memory leaks

• TAU reports leaks based on allocations and the executing callstack

• Set TAU_CALLPATH_DEPTH environment variable to limit callpath data
– default is 2

• Future work
– Support for C++ new/delete planned
– Support for Fortran 90/95 allocate/deallocate planned



57

113

Detecting Memory Leaks in C/C++

include /opt/tau/x86_64/lib/Makefile.tau-icpc-mpi-pdt

MYOPTS = -optVerbose -optDetectMemoryLeaks

CC= $(TAU_COMPILER) $(MYOPTS) $(TAU_CXX)

LIBS = -lm

OBJS = f1.o f2.o ...

TARGET= a.out

TARGET: $(OBJS)

$(F90) $(LDFLAGS) $(OBJS) -o $@ $(LIBS)

.c.o:

$(CC) $(CFLAGS) -c $< -o $@

114

Memory Leak Detection



58

115

Detecting Memory Leaks in Fortran

      subroutine foo(x)

      integer:: x

      integer, allocatable :: A(:), B(:), C(:)

      print *, "inside foo"

      allocate(A(x), B(x), C(x))

      deallocate(A, C)

      print *, "exiting foo"

      end subroutine foo

      program main

      call foo(5)

      end program main

116

Detecting Memory Leaks in Fortran

USER EVENTS Profile :NODE 0, CONTEXT 0, THREAD 0

---------------------------------------------------------------------------------------

NumSamples   MaxValue   MinValue  MeanValue  Std. Dev.  Event Name

---------------------------------------------------------------------------------------

          1                       5                 5          5            0  MEMORY LEAK! malloc size <file=simple.f, variable=B, line=6> : MAIN => FOO

         1                        5                 5          5          0  free size <file=simple.f, variable=A, line=7>

         1                        5                 5          5          0  free size <file=simple.f, variable=A, line=7> : MAIN => FOO

         1                        5                 5          5          0  free size <file=simple.f, variable=C, line=7>

         1                        5                  5          5          0  free size <file=simple.f, variable=C, line=7> : MAIN => FOO

         1                         5                  5          5          0  malloc size <file=simple.f, variable=A, line=6>

         1                         5                  5          5          0  malloc size <file=simple.f, variable=A, line=6> : MAIN => FOO

         1                         5                  5          5          0  malloc size <file=simple.f, variable=B, line=6>

         1                         5                  5          5          0  malloc size <file=simple.f, variable=B, line=6> : MAIN => FOO

         1                         5                  5          5          0  malloc size <file=simple.f, variable=C, line=6>

         1                         5                   5          5          0  malloc size <file=simple.f, variable=C, line=6> : MAIN => FOO

---------------------------------------------------------------------------------------



59

117

TAU_SETUP: A GUI for Installing TAU

118

TAU Manual Instrumentation API for C/C++

• Initialization and runtime configuration
– TAU_PROFILE_INIT(argc, argv);

TAU_PROFILE_SET_NODE(myNode);
TAU_PROFILE_SET_CONTEXT(myContext);
TAU_PROFILE_EXIT(message);
TAU_REGISTER_THREAD();

• Function and class methods for C++ only:
– TAU_PROFILE(name, type, group);
– TAU_PROFILE ( name, type, group);

• Name-based API
– TAU_START(“timer_name”);

TAU_STOP(“timer_name”);

• User-defined timing
– TAU_PROFILE_TIMER(timer, name, type, group);

TAU_PROFILE_START(timer);
TAU_PROFILE_STOP(timer);



60

119

TAU Measurement API (continued)

• Defining application phases
– TAU_PHASE_CREATE_STATIC( var, name, type, group);
– TAU_PHASE_CREATE_DYNAMIC( var, name, type, group);
– TAU_PHASE_START(var)
– TAU_PHASE_STOP (var)

• User-defined events
– TAU_REGISTER_EVENT(variable, event_name);

TAU_EVENT(variable, value);
TAU_PROFILE_STMT(statement);

• Heap Memory Tracking:
– TAU_TRACK_MEMORY();
– TAU_TRACK_MEMORY_HEADROOM();
– TAU_SET_INTERRUPT_INTERVAL(seconds);
– TAU_DISABLE_TRACKING_MEMORY[_HEADROOM]();
– TAU_ENABLE_TRACKING_MEMORY[_HEADROOM]();

120

Manual Instrumentation – C/C++ Example
#include <TAU.h>

int main(int argc, char **argv)

{

  TAU_START (“big-loop”)

  for(int i = 0; i < N ; i++){

    work(i);

  }

  TAU_STOP (“big-loop”);

}



61

121

Manual Instrumentation – C++ Example
#include <TAU.h>

int main(int argc, char **argv)

{

  TAU_PROFILE(“int main(int, char **)”, “ ”, TAU_DEFAULT);

  TAU_PROFILE_INIT(argc, argv);

  TAU_PROFILE_SET_NODE(0); /* for sequential programs */

  foo();

  return 0;

}

int foo(void)

{

  TAU_PROFILE(“int foo(void)”, “ ”, TAU_DEFAULT); // measures entire foo()

TAU_PROFILE_TIMER(t, “foo(): for loop”, “[23:45 file.cpp]”, TAU_USER);

  TAU_PROFILE_START(t);

  for(int i = 0; i < N ; i++){

    work(i);

  }

  TAU_PROFILE_STOP(t);

  // other statements in foo …

}

122

Manual Instrumentation – F90 Example
cc34567 Cubes program – comment line

      PROGRAM SUM_OF_CUBES

       integer profiler(2)

       save profiler

      INTEGER :: H, T, U

        call TAU_PROFILE_INIT()

        call TAU_PROFILE_TIMER(profiler, 'PROGRAM SUM_OF_CUBES')

        call TAU_PROFILE_START(profiler)

        call TAU_PROFILE_SET_NODE(0)

! This program prints all 3-digit numbers that equal the sum of the cubes of their digits.

      DO H = 1, 9

        DO T = 0, 9

          DO U = 0, 9

          IF (100*H + 10*T + U == H**3 + T**3 + U**3) THEN

             PRINT "(3I1)", H, T, U

          ENDIF

          END DO

        END DO

      END DO

      call TAU_PROFILE_STOP(profiler)

      END PROGRAM SUM_OF_CUBES



62

123

TAU Timers and Phases

• Static timer
– Shows time spent in all invocations of a routine (foo)
– E.g., “foo()”  100 secs, 100 calls

• Dynamic timer
– Shows time spent in each invocation of a routine
– E.g., “foo() 3” 4.5 secs, “foo 10” 2 secs (invocations 3 and 10 respectively)

• Static phase
– Shows time spent in all routines called (directly/indirectly) by a given routine

(foo)
– E.g., “foo() => MPI_Send()” 100 secs, 10 calls shows that a total of 100 secs

were spent in MPI_Send() when it was called by foo.

• Dynamic phase
– Shows time spent in all routines called by a given invocation of a routine.
– E.g., “foo() 4 => MPI_Send()” 12 secs, shows that 12 secs were spent in

MPI_Send when it was called by the 4th invocation of foo.

124

Static Timers in TAU
      SUBROUTINE SUM_OF_CUBES

       integer profiler(2)

       save profiler

      INTEGER :: H, T, U

        call TAU_PROFILE_TIMER(profiler, 'SUM_OF_CUBES')

        call TAU_PROFILE_START(profiler)

      ! This program prints all 3-digit numbers that

      ! equal the sum of the cubes of their digits.

      DO H = 1, 9

        DO T = 0, 9

          DO U = 0, 9

          IF (100*H + 10*T + U == H**3 + T**3 + U**3) THEN

             PRINT "(3I1)", H, T, U

          ENDIF

          END DO

        END DO

      END DO

      call TAU_PROFILE_STOP(profiler)

      END SUBROUTINE SUM_OF_CUBES



63

125

Static Phases and Timers

      SUBROUTINE FOO

       integer profiler(2)

       save profiler

        call TAU_PHASE_CREATE_STATIC(profiler, ‘foo')

        call TAU_PHASE_START(profiler)

  call bar()

! Here bar calls MPI_Barrier and we evaluate foo=>MPI_Barrier and foo=>bar

      call TAU_PHASE_STOP(profiler)

      END SUBROUTINE SUM_OF_CUBES

 SUBROUTINE BAR

  integer profiler(2)

       save profiler

       call TAU_PROFILE_TIMER(profiler, ‘bar’)

       call TAU_PROFILE_START(profiler)

         call MPI_Barrier()

       call TAU_PROFILE_STOP(profiler)

      END SUBROUTINE BAR

126

Dynamic Phases
SUBROUTINE ITERATE(IER, NIT)

IMPLICIT NONE

INTEGER IER, NIT

    character(11) taucharary

     integer tauiteration / 0 /

     integer profiler(2) / 0, 0 /

     save profiler, tauiteration

     write (taucharary, '(a8,i3)') 'ITERATE ', tauiteration

! Taucharary is the name of the phase e.g.,‘ITERATION 23’

     tauiteration = tauiteration + 1

   call TAU_PHASE_CREATE_DYNAMIC(profiler,taucharary)

      call TAU_PHASE_START(profiler)

    IER = 0

    call SOLVE_K_EPSILON_EQ(IER)

! Other work

     call TAU_PHASE_STOP(profiler)



64

127

TAU’s ParaProf Profile Browser: Static Timers

128

Dynamic Timers



65

129

Static Phases

MPI_Barrier took
4.85 secs out of
13.48 secs in the
DTM Phase

130

Dynamic Phases

The first iteration
was expensive for
INT_RTE. It took
27.89 secs. Other
iterations took less
time – 14.2, 10.5,
10.3, 10.5 seconds



66

131

Dynamic Phases

Time spent in
MPI_Barrier,
MPI_Recv,… in
DTM ITERATION 1

Breakdown of time
spent in MPI_Isend
based on its static
and dynamic parent
phases

132

Using TAU – A tutorial

• Configuration

• Instrumentation
– Manual
– MPI – Wrapper interposition library
– PDT- Source rewriting for C,C++, F77/90/95
– OpenMP – Directive rewriting
– Component based instrumentation – Proxy components
– Binary Instrumentation

– DyninstAPI – Runtime Instrumentation/Rewriting binary
– Java – Runtime instrumentation
– Python – Runtime instrumentation

• Measurement

• Performance Analysis



67

133

TAU’s MPI Wrapper Interposition Library

• Uses standard MPI Profiling Interface
– Provides name shifted interface

– MPI_Send = PMPI_Send
– Weak bindings

• Interpose TAU’s MPI wrapper library between MPI and
TAU
– -lmpi replaced by –lTauMpi –lpmpi –lmpi

• No change to the source code! Just re-link the
application to generate performance data
– setenv TAU_MAKEFILE

<dir>/<arch>/lib/Makefile.tau-mpi-[options]
– Use tau_cxx.sh, tau_f90.sh and tau_cc.sh as compilers

134

Program Database Toolkit (PDT)

Application
/ Library

C / C++
parser

Fortran parser
F77/90/95

C / C++
IL analyzer

Fortran
IL analyzer

Program
Database

Files

IL IL

DUCTAPE

PDBhtml

SILOON

CHASM

tau_instrumentor

Program
documentation

Application
component glue

C++ / F90/95
interoperability

Automatic source
instrumentation



68

135

Using TAU

• Install TAU
– Configuration
– Measurement library creation

• Instrument application
– Manual or automatic source instrumentation
– Instrumented library (e.g., MPI – wrapper interposition library)
– Binary instrumentation

• Create performance experiments
– Integrate with application build environment
– Set experiment variables

• Execute application

• Analyze performance

136

Integration with Application Build Environment

• Try to minimize impact on user’s application build procedures

• Handle process of parsing, instrumentation, compilation, linking

• Dealing with Makefiles
– Minimal change to application Makefile
– Avoid changing compilation rules in application Makefile
– No explicit inclusion of rules for process stages

• Some applications do not use Makefiles
– Facilitate integration in whatever procedures used

• Two techniques:
– TAU shell scripts (tau_<compiler>.sh)

– Invokes all PDT parser, TAU instrumenter, and compiler
– TAU_COMPILER



69

137

Using Program Database Toolkit (PDT)

1. Parse the Program to create foo.pdb:

% cxxparse foo.cpp –I/usr/local/mydir –DMYFLAGS …

or

% cparse foo.c –I/usr/local/mydir –DMYFLAGS …

or

% f95parse foo.f90 –I/usr/local/mydir …

  % f95parse *.f –omerged.pdb –I/usr/local/mydir –R free

2. Instrument the program:
% tau_instrumentor foo.pdb   foo.f90 –o foo.inst.f90

–f select.tau

3. Compile the instrumented program:
% ifort foo.inst.f90 –c –I/usr/local/mpi/include –o foo.o

138

Tau_[cxx,cc,f90].sh – Improves Integration in Makefiles

# set TAU_MAKEFILE and TAU_OPTIONS env vars

CC = tau_cc.sh

F90 = tau_f90.sh

CFLAGS =

LIBS = -lm

OBJS = f1.o f2.o f3.o … fn.o

app: $(OBJS)

$(F90) $(LDFLAGS) $(OBJS) -o $@ $(LIBS)

.c.o:

$(CC) $(CFLAGS) -c $<

.f90.o:

$(F90) $(FFLAGS) –c $<



70

139

AutoInstrumentation using TAU_COMPILER

• $(TAU_COMPILER) stub Makefile variable

• Invokes PDT parser, TAU instrumentor, compiler through
tau_compiler.sh shell script

• Requires minimal changes to application Makefile
– Compilation rules are not changed
– User adds $(TAU_COMPILER) before compiler name

– F90=mpxlf90
Changes to
F90= $(TAU_COMPILER) mpxlf90

• Passes options from TAU stub Makefile to the four compilation stages

• Use tau_cxx.sh, tau_cc.sh, tau_f90.sh scripts OR $(TAU_COMPILER)

• Uses original compilation command if an error occurs

140

Automatic Instrumentation

• We now provide compiler wrapper scripts
– Simply replace mpxlf90 with tau_f90.sh
– Automatically instruments Fortran source code, links with

TAU MPI Wrapper libraries.

• Use tau_cc.sh and tau_cxx.sh for C/C++
Before
CXX = mpCC

F90 = mpxlf90_r

CFLAGS =

LIBS = -lm

OBJS = f1.o f2.o f3.o … fn.o

app: $(OBJS)

$(CXX) $(LDFLAGS) $(OBJS) -o $@ 
$(LIBS)

.cpp.o:

$(CC) $(CFLAGS) -c $<

After
CXX = tau_cxx.sh

F90 = tau_f90.sh

CFLAGS =

LIBS = -lm

OBJS = f1.o f2.o f3.o … fn.o

app: $(OBJS)

$(CXX) $(LDFLAGS) $(OBJS) -o $@ 
$(LIBS)

.cpp.o:

$(CC) $(CFLAGS) -c $<



71

141

TAU_COMPILER – Improving Integration in Makefiles

include /usr/tau/x86_64/lib/Makefile.tau-mpi-pdt

CXX = $(TAU_COMPILER) mpicxx

F90 = $(TAU_COMPILER) mpif90

CFLAGS =

LIBS = -lm

OBJS = f1.o f2.o f3.o … fn.o

app: $(OBJS)

$(CXX) $(LDFLAGS) $(OBJS) -o $@ $(LIBS)

.cpp.o:

$(CXX) $(CFLAGS) -c $<

142

TAU_COMPILER Commandline Options

• See <taudir>/<arch>/bin/tau_compiler.sh –help

• Compilation:

% mpxlf90 -c foo.f90

Changes to
% f95parse foo.f90 $(OPT1)
% tau_instrumentor foo.pdb foo.f90 –o foo.inst.f90 $(OPT2)
% mpxlf90 –c foo.f90 $(OPT3)

• Linking:

% mpxlf90 foo.o bar.o –o app

Changes to
% mpxlf90 foo.o bar.o –o app $(OPT4)

• Where options OPT[1-4] default values may be overridden by the user:
F90 = $(TAU_COMPILER) $(MYOPTIONS) mpxlf90



72

143

TAU_COMPILER Options

• Optional parameters for $(TAU_COMPILER): [tau_compiler.sh –help]
-optVerbose Turn on verbose debugging messages
-optDetectMemoryLeaks Turn on debugging memory allocations/

de-allocations to track leaks
-optPdtGnuFortranParser Use gfparse (GNU) instead of f95parse 

(Cleanscape) for parsing Fortran source code
-optKeepFiles         Does not remove intermediate .pdb and .inst.* files
-optPreProcess         Preprocess Fortran sources before instrumentation
-optTauSelectFile="" Specify selective instrumentation file for tau_instrumentor
-optLinking=""        Options passed to the linker. Typically

$(TAU_MPI_FLIBS) $(TAU_LIBS) $(TAU_CXXLIBS)
-optCompile=""        Options passed to the compiler. Typically

$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)
-optPdtF95Opts="" Add options for Fortran parser in PDT (f95parse/gfparse)
-optPdtF95Reset="" Reset options for Fortran parser in PDT (f95parse/gfparse)
-optPdtCOpts=""      Options for C parser in PDT (cparse). Typically

$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)
-optPdtCxxOpts="" Options for C++ parser in PDT (cxxparse). Typically

$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)
...

144

Compiling Fortran Codes with TAU: Tips

• If your Fortran code uses free format in .f files (fixed is default for .f), you may use:
% setenv TAU_OPTIONS ‘-optPdtF95Opts=“-R free” -optVerbose ’

• If it uses several module files, you may switch from the default Cleanscape Inc. parser in PDT to
the GNU gfortran parser to generate PDB files:
% setenv TAU_OPTIONS ‘-optPdtGnuFortranParser -optVerbose’

• If your Fortran code uses C preprocessor directives (#include, #ifdef, #endif):
% setenv TAU_OPTIONS ‘-optPreProcess -optVerbose -optDetectMemoryLeaks’

• To use an instrumentation specification file:
% setenv TAU_OPTIONS ‘-optTauSelectFile=mycmd.tau -optVerbose -optPreProcess’
% cat mycmd.tau
BEGIN_INSTRUMENT_SECTION
memory file=“foo.f90” routine=“#”
# instruments all allocate/deallocate statements in all routines in foo.f90
loops file=“*” routine=“#”
io file=“abc.f90” routine=“FOO”
END_INSTRUMENT_SECTION



73

145

Overriding Default Options:TAU_COMPILER

include /usr/pkgs/tau/x86_64/lib/
Makefile.tau-mpi-pdt-trace

# Fortran .f files in free format need the -R free option for parsing

# Are there any preprocessor directives in the Fortran source?

MYOPTIONS= -optVerbose –optPreProcess -optPdtF95Opts=’’-R free’’ 

F90 = $(TAU_COMPILER) $(MYOPTIONS) ifort

OBJS = f1.o f2.o f3.o …

LIBS = -Lappdir –lapplib1 –lapplib2 …

app: $(OBJS)

$(F90) $(OBJS) –o app $(LIBS)

.f.o:

$(F90) –c $< 

146

Overriding Default Options:TAU_COMPILER

% cat Makefile

F90 = tau_f90.sh

OBJS = f1.o f2.o f3.o …

LIBS = -Lappdir –lapplib1 –lapplib2 …

app: $(OBJS)

$(F90) $(OBJS) –o app $(LIBS)

.f90.o:

$(F90) –c $<

% setenv TAU_OPTIONS ‘-optVerbose -optTauSelectFile=select.tau
-optKeepFiles’

% setenv TAU_MAKEFILE <taudir>/x86_64/lib/Makefile.tau-mpi-pdt 



74

147

Optimization of Program Instrumentation

• Need to eliminate instrumentation in frequently executing lightweight
routines

• Throttling of events at runtime:
% setenv TAU_THROTTLE 1
Turns off instrumentation in routines that execute over 100000 times

(TAU_THROTTLE_NUMCALLS) and take less than 10 microseconds of
inclusive time per call (TAU_THROTTLE_PERCALL)

• Selective instrumentation file to filter events
% tau_instrumentor [options] –f <file>  OR
% setenv TAU_OPTIONS ’-optTauSelectFile=tau.txt’

• Compensation of local instrumentation overhead
% configure -COMPENSATE

148

Selective Instrumentation File

• Specify a list of routines to exclude or include (case sensitive)

• # is a wildcard in a routine name. It cannot appear in the first column.
BEGIN_EXCLUDE_LIST
Foo
Bar
D#EMM
END_EXCLUDE_LIST

• Specify a list of routines to include for instrumentation
BEGIN_INCLUDE_LIST
int main(int, char **)
F1
F3
END_EXCLUDE_LIST

• Specify either an include list or an exclude list!



75

149

Selective Instrumentation File

• Optionally specify a list of files to exclude or include (case sensitive)

• * and ? may be used as wildcard characters in a file name
BEGIN_FILE_EXCLUDE_LIST
f*.f90
Foo?.cpp
END_FILE_EXCLUDE_LIST

• Specify a list of routines to include for instrumentation
BEGIN_FILE_INCLUDE_LIST
main.cpp
foo.f90
END_FILE_INCLUDE_LIST

150

Selective Instrumentation File

• User instrumentation commands are placed in INSTRUMENT section

• ? and * used as wildcard characters for file name, # for routine name

• \ as escape character for quotes

• Routine entry/exit, arbitrary code insertion

• Outer-loop level instrumentation

BEGIN_INSTRUMENT_SECTION
loops file=“foo.f90” routine=“matrix#”
memory file=“foo.f90” routine=“#”
io routine=“matrix#”
[static/dynamic] phase routine=“MULTIPLY”
dynamic [phase/timer] name=“foo” file=“foo.cpp” line=22 to line=35
file=“foo.f90” line = 123 code = "  print *, \" Inside foo\""
exit routine = “int foo()” code = "cout <<\"exiting foo\"<<endl;"
END_INSTRUMENT_SECTION



76

151

Instrumentation Specification
% tau_instrumentor

Usage : tau_instrumentor <pdbfile> <sourcefile> [-o <outputfile>] [-noinline] [-g groupname]
[-i headerfile] [-c|-c++|-fortran] [-f <instr_req_file> ]

For selective instrumentation, use –f option

% tau_instrumentor foo.pdb foo.cpp –o foo.inst.cpp –f selective.dat

% cat selective.dat

# Selective instrumentation: Specify an exclude/include list of routines/files.

BEGIN_EXCLUDE_LIST

void quicksort(int *, int, int)

void sort_5elements(int *)

void interchange(int *, int *)

END_EXCLUDE_LIST

BEGIN_FILE_INCLUDE_LIST

Main.cpp

Foo?.c

*.C

END_FILE_INCLUDE_LIST

# Instruments routines in Main.cpp, Foo?.c and *.C files only

# Use BEGIN_[FILE]_INCLUDE_LIST with END_[FILE]_INCLUDE_LIST

152

Automatic Outer Loop Level Instrumentation
BEGIN_INSTRUMENT_SECTION

loops file="loop_test.cpp" routine="multiply"

# it also understands # as the wildcard in routine name

# and * and ? wildcards in file name.

# You can also specify the full

# name of the routine as is found in profile files.

#loops file="loop_test.cpp" routine="double multiply#"

END_INSTRUMENT_SECTION

% pprof

NODE 0;CONTEXT 0;THREAD 0:

---------------------------------------------------------------------------------------

%Time    Exclusive    Inclusive       #Call      #Subrs  Inclusive Name

              msec   total msec                          usec/call

---------------------------------------------------------------------------------------

100.0         0.12       25,162           1           1   25162827 int main(int, char **)

100.0        0.175       25,162           1           4   25162707 double multiply()

 90.5       22,778       22,778           1           0   22778959 Loop: double multiply()[ file =
<loop_test.cpp> line,col = <23,3> to <30,3> ]

  9.3        2,345        2,345           1           0    2345823 Loop: double multiply()[ file =
<loop_test.cpp> line,col = <38,3> to <46,7> ]

  0.1           33           33           1           0      33964 Loop: double
multiply()[ file = <loop_test.cpp> line,col = <16,10> to <21,12> ]



77

153

TAU_REDUCE

• Reads profile files and rules

• Creates selective instrumentation file
– Specifies which routines should be excluded from instrumentation

tau_reduce

rules

profile

Selective
instrumentation file

154

Optimizing Instrumentation Overhead: Rules

• #Exclude all events that are members of TAU_USER
#and use less than 1000 microseconds
TAU_USER:usec < 1000

• #Exclude all events that have less than 100
#microseconds and are called only once
usec < 1000 & numcalls = 1

• #Exclude all events that have less than 1000 usecs per
#call OR have a (total inclusive) percent less than 5
usecs/call < 1000
percent < 5

• Scientific notation can be used
– usec>1000 & numcalls>400000 & usecs/call<30 & percent>25

• Usage:
% pprof –d > pprof.dat
% tau_reduce –f pprof.dat –r rules.txt –o select.tau



78

155

Instrumentation of OpenMP Constructs

•• OOpenMP PPragma AAnd RRegion IInstrumentor [UTK, FZJ]

• Source-to-Source translator to insert POMP calls
around OpenMP constructs and API functions

• Done:  Supports
– Fortran77 and Fortran90, OpenMP 2.0
– C and C++, OpenMP 1.0
– POMP Extensions
– EPILOG and TAU POMP implementations
– Preserves source code information (#line line file)

• tau_ompcheck
– Balances OpenMP constructs (DO/END DO) and detects errors
– Invoked by tau_compiler.sh prior to invoking Opari

• KOJAK Project website http://icl.cs.utk.edu/kojak

156

OpenMP API Instrumentation

• Transform
– omp_#_lock()        →   pomp_#_lock()
– omp_#_nest_lock()→   pomp_#_nest_lock()

[ #  =  init | destroy | set | unset | test ]

• POMP version
– Calls omp version internally
– Can do extra stuff before and after call



79

157

Example:  !$OMP PARALLEL DO  Instrumentation

!$OMP PARALLEL DO clauses...

do loop

!$OMP END PARALLEL DO

!$OMP PARALLEL other-clauses...

!$OMP DO schedule-clauses, ordered-clauses,
   lastprivate-clauses
do loop

!$OMP END DO

!$OMP END PARALLEL DO

             NOWAIT

!$OMP BARRIER

call pomp_parallel_fork(d)

call pomp_parallel_begin(d)

             

call pomp_parallel_end(d)

call pomp_parallel_join(d)

call pomp_do_enter(d)

             

call pomp_do_exit(d)

             
call pomp_barrier_enter(d)

call pomp_barrier_exit(d)

158

Opari Instrumentation: Example

• OpenMP directive instrumentation
pomp_for_enter(&omp_rd_2);

#line 252 "stommel.c"

#pragma omp for schedule(static) reduction(+: diff) private(j) 
firstprivate (a1,a2,a3,a4,a5) nowait

for( i=i1;i<=i2;i++) {

for(j=j1;j<=j2;j++){

new_psi[i][j]=a1*psi[i+1][j] + a2*psi[i-1][j] + a3*psi[i][j+1]

+ a4*psi[i][j-1] - a5*the_for[i][j];

diff=diff+fabs(new_psi[i][j]-psi[i][j]);

}

}

pomp_barrier_enter(&omp_rd_2);

#pragma omp barrier

pomp_barrier_exit(&omp_rd_2);

pomp_for_exit(&omp_rd_2);



80

159

Using Opari with TAU

Step I: Configure KOJAK/opari [Download from  http://www.fz-juelich.de/zam/kojak/]

% cd kojak-2.2; ./configure

% make install

Builds opari

Step II: Configure TAU with Opari (used here with MPI and PDT)

% configure –opari=/usr/contrib/TAU/kojak-2.2
  -mpiinc=/usr/lpp/ppe.poe/include
  –mpilib=/usr/lpp/ppe.poe/lib
  –pdt=/usr/contrib/TAU/pdtoolkit-3.11

% make clean; make install

% setenv TAU_MAKEFILE /tau/<arch>/lib/Makefile.tau-…opari-…

% tau_cxx.sh -c foo.cpp

% tau_cxx.sh -c bar.f90

% tau_cxx.sh *.o -o app

160

Dynamic Instrumentation

• TAU uses DyninstAPI for runtime code patching

• Developed by U. Wisconsin and U. Maryland

• http://www.dyninst.org

• tau_run (mutator) loads measurement library

• Instruments mutatee

• MPI issues:
– one mutator per executable image [TAU, DynaProf]
– one mutator for several executables [Paradyn, DPCL]



81

161

Using DyninstAPI with TAU

Step I: Install DyninstAPI[Download from  http://www.dyninst.org]

% cd dyninstAPI-4.2.1/core; make

Set DyninstAPI environment variables (including LD_LIBRARY_PATH)

Step II: Configure TAU with Dyninst

% configure –dyninst=/usr/local/dyninstAPI-4.2.1

% make clean; make install

Builds <taudir>/<arch>/bin/tau_run

% tau_run [<-o outfile>] [-Xrun<libname>][-f <select_inst_file>] [-v] <infile>

% tau_run –o a.inst.out a.out

Rewrites a.out

% tau_run klargest

Instruments klargest with TAU calls and executes it

% tau_run -XrunTAUsh-papi a.out

Loads libTAUsh-papi.so instead of libTAU.so for measurements

162

Virtual Machine Performance Instrumentation

• Integrate performance system with VM
– Captures robust performance data (e.g., thread events)
– Maintain features of environment

– portability, concurrency, extensibility, interoperation

– Allow use in optimization methods

• JVM Profiling Interface (JVMPI)
– Generation of JVM events and hooks into JVM
– Profiler agent (TAU) loaded as shared object

– registers events of interest and address of callback routine

– Access to information on dynamically loaded classes
– No need to modify Java source, bytecode, or JVM



82

163

Using TAU with Java Applications

Step I: Sun JDK 1.4+ [download from www.javasoft.com]

Step II: Configure TAU with JDK (v 1.2 or better)

% configure –jdk=/usr/java2 –TRACE -PROFILE

% make clean; make install

Builds <taudir>/<arch>/lib/libTAU.so

For Java (without instrumentation):

% java application

With instrumentation:

% java -XrunTAU application

% java -XrunTAU:exclude=sun/io,java application

Excludes sun/io/* and java/* classes

164

TAU Profiling of Java Application (SciVis)

Profile for each
Java thread Captures events

for different Java
packages

24 threads of execution!

global
routine
profile



83

165

Using TAU with Python Applications

Step I: Configure TAU with Python

% configure –pythoninc=/usr/include/python2.4/include

% make clean; make install

Builds <taudir>/<arch>/lib/<bindings>/pytau.py and tau.py packages

for manual and automatic instrumentation respectively

% setenv PYTHONPATH $PYTHONPATH\:<taudir>/<arch>/lib/[<dir>]

166

Python Automatic Instrumentation Example

#!/usr/bin/env/python

import tau

from time import sleep

def f2():

    print “ In f2: Sleeping for 2 seconds ”

    sleep(2)

def f1():

    print “ In f1: Sleeping for 3 seconds ”

    sleep(3)

def OurMain():

    f1()

tau.run(‘OurMain()’)

Running:

% setenv PYTHONPATH
<tau>/<arch>/lib/bindings-
python

% ./auto.py

Instruments OurMain, f1, f2,
print…



84

167

Python Instrumentation: SciPy

168

Performance Analysis

• paraprof profile browser (GUI)

• pprof (text based profile browser)

• TAU traces can be exported to many different tools
– Vampir/VNG [T.U. Dresden] (formerly Intel (R) Trace Analyzer)
– EXPERT [FZJ]
– Jumpshot (bundled with TAU) [Argonne National Lab] ...



85

169

Building Bridges to Other Tools: TAU

170

TAU Performance System Interfaces

• PDT [U. Oregon, LANL, FZJ] for instrumentation of C++, C99, F95 source code

• PAPI [UTK] for accessing hardware performance counters data

• DyninstAPI  [U. Maryland, U. Wisconsin] for runtime instrumentation

• KOJAK [FZJ, UTK]
– Epilog trace generation library
– CUBE callgraph visualizer
– Opari OpenMP directive rewriting tool

• Vampir/VNG Trace Analyzer [TU Dresden]

• VTF3/OTF trace generation library [TU Dresden] (available from TAU website)

• Paraver trace visualizer [CEPBA]

• Jumpshot-4 trace visualizer [MPICH, ANL]

• JVMPI from JDK for Java program instrumentation [Sun]

• Paraprof profile browser/PerfDMF database supports:
– TAU format
– Gprof [GNU]
– HPM Toolkit [IBM]
– MpiP [ORNL, LLNL]
– Dynaprof [UTK]
– PSRun [NCSA]



86

171

Performance Analysis and Visualization

• Analysis of parallel profile and trace measurement

• Parallel profile analysis (ParaProf)
– Java-based analysis and visualization tool
– Support for large-scale parallel profiles

• Performance data management framework (PerfDMF)

• Parallel trace analysis
– Translation to VTF (V3.0), EPILOG, OTF formats
– Integration with Vampir / Vampir Server (TU Dresden)
– Profile generation from trace data

• Online parallel analysis and visualization

• Integration with CUBE browser (KOJAK, UTK, FZJ)

172

ParaProf – Parallel Performance Profile
Analysis



87

173

ParaProf  – Manager Window

performance
database

metadata

174

ParaProf – Manager Window

HPMToolkit

MpiP

TAU

Raw files

PerfDMF
managed
(database)

Metadata

Application

Experiment

Trial



88

175

ParaProf – Flat Profile (Miranda, BG/L)

8K processors
node, context, thread

Miranda
 hydrodynamics
 Fortran + MPI
 LLNL

Run to 64K

176

ParaProf – Stacked View (Miranda)



89

177

ParaProf – Callpath Profile (Flash)

Flash
 thermonuclear
      flashes
 Fortran + MPI
 Argonne

178

Comparing Effects of Multi-Core Processors

AORSA2D
 magnetized
     plasma simulation
 Blue is single node
 Red is dual core
 Cray XT3 (4K cores)



90

179

Comparing FLOPS (AORSA2D, Cray XT3)

AORSA2D
 Blue is dual core
 Red is single node
 Cray XT3 (4K cores)

180

ParaProf  – Scalable Histogram View (Miranda)

8k processors
16k processors



91

181

ParaProf – Full Profile (Miranda)

16k processors

182

ParaProf –Full Profile (Matmult, ANL BGP)

256 processors



92

183

ParaProf – 3D Scatterplot (Miranda)

• Each point
is a “thread”
of execution

• A total of
four metrics
shown in
relation

• ParaProf’s
visualization
library
– JOGL

184

ORNL Jaguar
* Cray XT3/XT4
* 6400 cores

Visualizing Hybrid Problems (S3D, XT3+XT4)

• S3D combustion simulation (DOE SciDAC PERI)



93

185

Zoom View of Hybrid Execution (S3D, XT3+XT4)

•  Gap represents XT3 nodes
– MPI_Wait takes less time, other routines take more time

186

6400 cores

Visualizing Hybrid Execution (S3D, XT3+XT4)

• Hybrid
execution

• Process
metadata is
used to map
performance
to machine
type

• Memory speed
accounts for
performance
difference



94

187

S3D Run on XT4 Only

• Better balance across nodes • More performance uniformity

188

ParaProf – Profile Snapshots (Flash)

Initialization

Checkpointing

Finalization

• Profile snapshots are parallel profiles recorded at runtime

• Used to highlight profile changes during execution



95

189

Filtered Profile Snapshots (Flash)

• Only show main loop iterations

190

Profile Snapshots with Breakdown (Flash)

• Breakdown as a percentage



96

191

Profile Snapshot Replay (Flash)

All windows dynamically update

192

Snapshot Dynamics of Event Relations (Flash)

• Follow progression of various displays through time

• 3D scatter plot shown below

T = 0s T = 11s



97

193

Performance Data Management

• Need for robust processing and storage of multiple profile
performance data sets

• Avoid developing independent data management solutions
– Waste of resources
– Incompatibility among analysis tools

• Goals
– Foster multi-experiment performance evaluation
– Develop a common, reusable foundation of performance data

storage, access and sharing
– A core module in an analysis system, and/or as a central

repository of performance data

194

PerfDMF Approach

• Performance Data Management Framework

• Originally designed to address critical TAU requirements

• Broader goal is to provide an open, flexible framework to support
common data management tasks

• Extensible toolkit to promote integration and reuse across available
performance tools
– Supported profile formats: TAU, CUBE 2 & 3 (Kojak), Dynaprof, HPC

Toolkit (Rice), HPM Toolkit (IBM), gprof, mpiP, psrun (PerfSuite),
Open|SpeedShop, …

– Supported DBMS: PostgreSQL, MySQL, Oracle, DB2, Derby/Cloudscape
– Profile query and analysis API



98

195

PerfDMF Architecture

K. Huck, A. Malony, R. Bell, A. Morris,  “Design and Implementation of
a Parallel Performance Data Management Framework,” ICPP 2005.

196

Metadata Collection

• Integration of XML metadata for each profile

• Three ways to incorporate metadata
– Measured hardware/system information (TAU, PERI-DB)

– CPU speed, memory in GB, MPI node IDs, …
– Application instrumentation (application-specific)

– TAU_METADATA() used to insert any name/value pair
– Application parameters, input data, domain decomposition

– PerfDMF data management tools can incorporate an XML file of
additional metadata
– Compiler flags, submission scripts, input files, …

• Metadata can be imported from / exported to PERI-DB
– PERI SciDAC project (UTK, NERSC, UO, PSU, TAMU)



99

197

Metadata for Each Experiment

Multiple PerfDMF DBs

198

Performance Data Mining

• Conduct parallel performance analysis process
– In a systematic, collaborative and reusable manner
– Manage performance complexity
– Discover performance relationship and properties
– Automate process

• Multi-experiment performance analysis

• Large-scale performance data reduction
– Summarize characteristics of large processor runs

• Implement extensible analysis framework
– Abstraction / automation of data mining operations
– Interface to existing analysis and data mining tools



100

199

Performance Data Mining (PerfExplorer)

• Performance knowledge discovery framework
– Data mining analysis applied to parallel performance data

– comparative, clustering, correlation, dimension reduction, …

– Use the existing TAU infrastructure
– TAU performance profiles, PerfDMF

• Technology integration
– Java API and toolkit for portability
– Built on top of PerfDMF
– R-project/Omegahat, Octave/Matlab statistical analysis
– WEKA data mining package
– JFreeChart for visualization, vector output (EPS, SVG)

200

Performance Data Mining (PerfExplorer v1)

K. Huck and A. Malony,  “PerfExplorer: A Performance Data
Mining Framework For Large-Scale Parallel Computing,” SC 2005.



101

201

PerfExplorer: S3D Total Runtime Breakdown

MPI_Wait

WRITE_
SAVEFILE

12,000 
cores!

202
Data: GYRO on various architectures

Relative Comparisons (GTC, XT3, DOE PERI)

• Total execution time

• Timesteps per second

• Relative efficiency

• Relative efficiency per event

• Relative speedup

• Relative speedup per event

• Group fraction of total

• Runtime breakdown

• Correlate events with total
runtime

• Relative efficiency per phase

• Relative speedup per phase

• Distribution visualizations



102

203

PerfExplorer – GYRO Relative Efficiency

• By experiment (B1-std)
– Total runtime (Cheetah (red))

• By event for one experiment
– Coll_tr (blue) is significant

• By experiment for one event
– Shows how Coll_tr behaves for all

experiments
– Data generated by Pat Worley, ORNL

16 processor
base case

Cheetah Coll_tr

204

PerfExplorer: Cross Experiment Analysis for S3D



103

205

Correlation Analysis

Data: FLASH on BGL(LLNL), 64 nodes

Strong negative linear correlation between
CALC_CUT_BLOCK_CONTRIBUTIONS

and MPI_Barrier

206

PerfExplorer - Correlation Analysis (Flash)

• -0.995 indicates strong,
negative relationship

• As CALC_CUT_
BLOCK_CONTRIBUTIO
NS() increases in
execution time,
MPI_Barrier() decreases



104

207

PerfExplorer - Comparative Analysis

• Relative speedup, efficiency
– total runtime, by event, one event, by phase

• Breakdown of total runtime

• Group fraction of total runtime

• Correlating events to total runtime

• Timesteps per second

• Performance Evaluation Research Center (PERC)
– PERC tools study (led by ORNL, Pat Worley)
– In-depth performance analysis of select applications
– Evaluation performance analysis requirements
– Test tool functionality and ease of use

208

PerfExplorer - Interface

Select experiments
and trials of interest

Data organized in application,
experiment, trial structure
(will allow arbitrary in future)

Experiment
metadata



105

209

PerfExplorer - Interface

Select analysis

210

PerfExplorer - Relative Efficiency Plots



106

211

PerfExplorer - Relative Efficiency by Routine

212

PerfExplorer - Relative Speedup



107

213

PerfExplorer - Timesteps Per Second

214

PerfExplorer - Runtime Breakdown



108

215

Group % of Total

Communication grows to
over 60% of total runtime
Communication grows to
over 60% of total runtime

At each timestep, 230 messages between
all boundaries: MPI_Bcast = 26%,

MPI_Wait = 25% of total for N=1024

At each timestep, 230 messages between
all boundaries: MPI_Bcast = 26%,

MPI_Wait = 25% of total for N=1024

216

PerfExplorer v2 – Requirements and Features

• Component-based analysis process
– Analysis operations implemented as modules
– Linked together in analysis process and workflow

• Scripting
– Provides process/workflow development and automation

• Metadata input, management, and access

• Inference engine
– Reasoning about causes of performance phenomena
– Analysis knowledge captured in expert rules

• Persistence of intermediate results

• Provenance
– Provides historical record of analysis results



109

217

PerfExplorer v2: Architecture and Interaction

Interaction
workflow

218

TAU Integration with IDEs

• High performance software development environments
– Tools may be complicated to use
– Interfaces and mechanisms differ between platforms / OS

• Integrated development environments
– Consistent development environment
– Numerous enhancements to development process
– Standard in industrial software development

• Integrated performance analysis
– Tools limited to single platform or programming language
– Rarely compatible with 3rd  party analysis tools
– Little or no support for parallel projects



110

219

TAU and Eclipse

• Provide an interface for configuring TAU’s automatic
instrumentation within Eclipse’s build system

• Manage runtime configuration settings and environment
variables for execution of TAU instrumented programs

C/C++/Fortran
Project in Eclipse

Add or modify
an Eclipse build

configuration w/ TAU

Temporary copy
of instrumented code

Compilation/linking
with TAU libraries

TAU instrumented
libraries

Program
execution

Performance
data

Program
output

220

TAU and Eclipse

 PerfDMF



111

221

TAU Portal

• Web-based access to TAU

• Support collaborative performance study
– Secure performance data sharing
– Does not require TAU installation
– Launch TAU performance tools with Java WebStart

– ParaProf, PerfExplorer

•  FLASH regression testing
– Nightly regression testcases
– Uploaded to the database automatically
– Interactive review of performance through TAU portal
– Multi-experiment analysis

222

Portal: Nightly Performance Regression Testing



112

223

TAU Portal: Launch ParaProf/PerfExplorer

224

PerfExplorer: Regression Testing



113

225

PerfExplorer: Limiting Events (> 3% ), Oct 2007

226

PerfExplorer: Exclusive Time for Events (2007)



114

227

PerfExplorer - Analysis Methods

• Data summaries, distributions, scatter plots

• Clustering
– k-means
– Hierarchical

• Correlation analysis

• Dimension reduction
– PCA
– Random linear projection
– Thresholds

• Comparative analysis

• Data management views

228

PerfExplorer - Cluster Analysis

• Performance data represented as vectors - each
dimension is the cumulative time for an event

• k-means: k random centers are selected and instances
are grouped with the "closest" (Euclidean) center

• New centers are calculated and the process repeated
until stabilization or max iterations

• Dimension reduction necessary for meaningful results

• Virtual topology, summaries constructed



115

229

PerfExplorer - Cluster Analysis (sPPM)

230

PerfExplorer - Cluster Analysis

• Four significant events automatically selected (from 16K
processors)

• Clusters and correlations are visible



116

231

Vampir, VNG, and OTF

• Commercial trace based tools developed at ZiH, T.U. Dresden
– Wolfgang Nagel, Holger Brunst and others…

• Vampir Trace Visualizer (aka Intel ® Trace Analyzer v4.0)
– Sequential program

• Vampir Next Generation (VNG)
– Client (vng) runs on a desktop, server (vngd) on a cluster
– Parallel trace analysis
– Orders of magnitude bigger traces (more memory)
– State of the art in parallel trace visualization

• Open Trace Format (OTF)
– Hierarchical trace format, efficient streams based parallel access with VNGD
– Replacement for proprietary formats such as STF
– Tracing library available with a evaluation license now. Open source package at SC’06.

http://www.vampir-ng.de

232

Vampir Next Generation (VNG) Architecture

Merged
Traces

Analysis Server

Classic Analysis:
 monolithic
 sequential

Worker 1

Worker 2

Worker m

Master

Trace 1
Trace 2

Trace 3
Trace N

File System

InternetInternet

Parallel Program

Monitor
System

Event Streams

Visualization Client

Segment
Indicator

768 Processes
Thumbnail

Timeline with 16
visible Traces

Process
Parallel

I/O
Message
Passing



117

233

VNG Parallel Analysis Server

Worker 1

Worker 2

Worker m

Master

Worker

Session Thread

Analysis Module

Event Databases

Message Passing

Trace Format Driver

Master

Session Thread

Analysis Merger

Endian Conversion

Message Passing

Socket Communication

Visualization
Client

M Worker

N Session Threads N Session Threads

Traces

234

Scalability of VNG [Holger Brunst, WAPA 2005]

• sPPM

• 16 CPUs

• 200 MB

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

0 10 20 30 40

Number of Workers

S
p

e
e

d
u

p

Com. Matrix

Timeline

Summary Profile

Process Profile

Stack Tree

LoadTime

Number of Workers 1 2 4 8 16 32
Load Time 47,33 22,48 10,80 5,43 3,01 3,16
Timeline 0,10 0,09 0,06 0,08 0,09 0,09
Summary Profile 1,59 0,87 0,47 0,30 0,28 0,25
Process Profile 1,32 0,70 0,38 0,26 0,17 0,17
Com. Matrix 0,06 0,07 0,08 0,09 0,09 0,09
Stack Tree 2,57 1,39 0,70 0,44 0,25 0,25



118

235

VNG Analysis Server Architecture

• Implementation using MPI and Pthreads

• Client/server approach

• MPI and pthreads are available on most platforms

• Workload and data distribution among “physical” MPI
processes

• Support of multiple visualization clients by using virtual
sessions handled by individual threads

• Sessions are scheduled as threads

236

TAU Tracing Enhancements

• Configure TAU with  -TRACE –otf=<dir> option

% configure –TRACE –otf=<dir> …
Generates tau_merge, tau2vtf, tau2otf  tools in <tau>/<arch>/bin directory
% tau_f90.sh app.f90 –o app

• Instrument and execute application
 % mpirun -np 4 app

• Merge and convert trace files to OTF format

 % tau_treemerge.pl

 % tau2otf tau.trc tau.edf app.otf [-z][–n <nstreams>]

 % vampir app.otf

OR use VNG to analyze OTF/VTF trace files



119

237

Environment Variables

• Configure TAU with  -TRACE –otf=<dir> option
% configure –TRACE –otf=<dir>

-MULTIPLECOUNTERS –papi=<dir> -mpi
–pdt=dir …

• Set environment variables
% setenv TRACEDIR /p/gm1/<login>/traces
% setenv COUNTER1 GET_TIME_OF_DAY (reqd)
% setenv COUNTER2 PAPI_FP_INS
% setenv COUNTER3 PAPI_TOT_CYC …

• Execute application
% mpirun -np 32 ./a.out [args]

% tau_treemerge.pl
% tau2otf tau.trc tau.edf app.otf -z

238

Using VampirTrace to generate OTF traces

• Configure TAU with  -TRACE –vampirtrace=<dir> option
% configure –TRACE  -vampirtrace=<dir> –papi=<dir> -mpi

–pdt=dir …

• Set environment variables
% setenv VT_METRICS PAPI_FP_OPS:PAPI_TOT_CYC

• Execute application
% yod -sz 20 ./a.out [args]
On Cray XT3, this will a.[1..n].uctl,

a.[1..n].events.z...
% vtunify 20 a
On IBM AIX, running the application will create a.otf

after unifying the events
Unifies the descriptors to generate a.otf
% vampir a.otf &



120

239

Using Vampir Next Generation (VNG v1.4)

240

VNG Timeline Display



121

241

VNG Calltree Display

242

VNG Timeline Zoomed In



122

243

VNG Grouping of Interprocess Communications

244

VNG Process Timeline with PAPI Counters



123

245

OTF/VNG Support for Counters

246

VNG Communication Matrix Display



124

247

VNG Message Profile

248

VNG Process Activity Chart



125

249

VNG Preferences

250

Jumpshot

• http://www-unix.mcs.anl.gov/perfvis/software/viewers/index.htm

• Developed at Argonne National Laboratory as part of the MPICH
project

– Also works with other MPI implementations
– Jumpshot is bundled with the TAU package

• Java-based tracefile visualization tool for postmortem performance
analysis of MPI programs

• Latest version is Jumpshot-4 for SLOG-2 format
– Scalable level of detail support
– Timeline and histogram views
– Scrolling and zooming
– Search/scan facility



126

251

Jumpshot

252

KOJAK Project

• Collaborative research project between
– Forschungszentrum Jülich
– University of Tennessee

• Automatic performance analysis
– MPI and/or OpenMP applications
– Parallel communication analysis
– CPU and memory analysis

• WWW
– http://www.fz-juelich.de/zam/kojak/
– htttp://icl.cs.utk.edu/kojak/

• Contacts
– kojak@fz-juelich.de
– kojak@cs.utk.edu



127

253

Enhancing Productivity with Automated
Performance Analysis

Efficient development of efficient code

• Tools are needed that help optimize
applications by
– Collecting relevant performance data
– Automatically identifying the causes of performance problems

• Requirements
– Expressiveness and accuracy of results
– Scalability
– Convenience of use

254

KOJAK Tools

• KOJAK Trace Analysis Environment
– Automatic event trace analysis for MPI and / or OpenMP

applications
– Includes tools for trace generation and analysis

– EPILOG tracing library
– EXPERT trace analyzer

– Display of results using CUBE

(1) Wolf, Felix: “Automatic Performance Analysis on Parallel Computers
with SMP Nodes” , Dissertation, RWTH Aachen, NIC Series, Volume 17,
Februar 2003. http://www.fz-juelich.de/nic-series/volume17/volume17.html

(2) Wolf F., Mohr, B. "Automatic performance analysis of hybrid
MPI/OpenMP applications," Journal of Systems Architecture, Special Issue
'Evolutions in parallel distributed and network-based processing', Clematis, A.,
D'Agostino, D. eds. Elsevier, 49(10-11), pp. 421-439, November, 2003.



128

255

KOJAK Tools (2)

• CUBE
– Generic display for call-tree profiles
– Automatic comparison of different experiments
– Download http://icl.cs.utk.edu/kojak/cube/

Song, F., Wolf, F., Bhatia, N., Dongarra, J., Moore, S. "An Algebra for Cross-
Experiment Performance Analysis," 2004 International Conference on
Parallel Processing (ICPP-04), Montreal, Quebec, Canada, August 2004.

256

KOJAK:  Supported Platforms

• Instrumentation and measurement only
(analysis on front-end or workstation)
– Cray T3E, Cray XD1, Cray X1, and Cray XT3
– IBM BlueGene/L
– Hitachi SR-8000
– NEC SX

• Full support
(instrumentation, measurement, and analysis)
– Linux IA32, IA64, and EMT64/xt3 based clusters
– IBM AIX Power3/4/5 based clusters
– SGI Irix MIPS based clusters (Origin 2K, Origin 3K)
– SGI Linux IA64 based clusters (Altix)
– SUN Solaris Sparc and x86/xt3 based clusters (SunFire, …)
– DEC/HP Tru64 Alpha based clusters (Alphaserver, …)



129

257

Installation

• Install wxWidgets http://www.wxwidgets.org

• Install libxml2 http://www.xmlsoft.org

• The following commands should be in your search path
– xml2-config
– gtk-conifg
– wx-config
– If you only have xml2-conifg, then the CUBE GUI will not be built

• Download KOJAK from http://www.fz-juelich.de/zam/kojak/
– Unpack the distribution and follow the installation instructions in

./INSTALL

• Can also download CUBE 2.2.1 viewer from
http://icl.cs.utk.edu/kojak/cube/ and install by itself

– If your platform supports only instrumentation and measurement, then
transfer the .cube file to a workstation where CUBE is installed to view it,
or use ParaProf to view it.

258

KOJAK Documentation

• Installation
– File INSTALL in top-level build directory

• Usage instructions
– File USAGE in $(PREFIX)/doc directory

• Complementary documentation
– CUBE documentation

– http://icl.cs.utk.edu/kojak/cube/
– Specification of EPILOG trace format

– File epilog.ps in $(PREFIX)/epilog/doc/epilog.ps or
– http://www.fz-juelich.de/zam/docs/autoren2004/wolf/



130

259

Low-level View of Performance Behavior

260

Automatic Performance Analysis

• Transformation of low-level performance data

• Take event traces of MPI/OpenMP applications

• Search for execution patterns

• Calculate mapping
– Problem, call path, system resource ⇒ time

• Display in performance browser

Low-level
data

High-level
data

Reduction

System
Problem

Program

≡



131

261

KOJAK Layers

• Instrumentation
– Insertion of extra code to generate event trace

• Abstract representation of event trace
– Simplified specification of performance problems
– Simplified extension of predefined problems

• Automatic analysis
– Classification and quantification of performance behavior
– Automatic comparison of multiple experiments

– Not yet released

• Presentation
– Navigating / browsing through performance space
– Can be combined with VAMPIR time-line display

Instrumentation

Abstraction

Analysis

Presentation

262

KOJAK Architecture

Run
DPCL

EPILOG
Trace file

(Automatic)
Instrumentation

POMP+PMPI
Libraries

PAPI
Library

Compiler /
Linker

                                                                           

Automatic Analysis

EXPERT
Analyzer

EARL

Analysis
report

                                                   Manual Analysis

VTF3
Trace file

OPARI / 
TAU

Trace 
converter

CUBE
GUI

VAMPIR

Instrumented
source code

Executable

Source
code

EPILOG
Library



132

263

Analysis process

Source
code

Automatic multilevel
instrumentation

Execution on
parallel machine

Executable

Event
Trace

Automatic pattern 
analysis

High-Level
Profile

Which type of
problem?

Where in the source code?
Which call path?

Which process / 
thread ?

264

EPILOG Trace File Format

• Event Processing, Investigating, and LOGging

• MPI and OpenMP support (i.e., thread-safe)
– Region enter and exit
– Collective region enter and exit (MPI & OpenMP)
– Message send and receive
– Parallel region fork and join
– Lock acquire and release

• Stores source code + HW counter information

• Input of the EXPERT analyzer

• Visualization using VAMPIR
– EPILOG VTF3 converter



133

265

EPILOG Trace File Format (2)

• Hierarchical location ID
– (machine, node, process, thread)

• Specification
– http://www.fz-juelich.de/zam/docs/autoren2004/wolf

Machine

memory memory

SMP   Node SMP    Node SMP   Node

VM
space

Processes Threads

node memory

…

…

Interconnection Network

266

KOJAK Event Model

• Type hierarchy

• Event type
– Set of attributes ( time, location, position, …)

• Event trace
– Sequence of events in chronological order

EVENT

FLOW

ENTERENTER EXITEXIT

P2P

MPICEXITMPICEXIT

SENDSEND RECVRECV

OMPCEXITOMPCEXIT

SYNC

RLOCKRLOCK

TEAM

FORKFORK JOINJOIN ALOCKALOCK



134

267

Clock Synchronization

• Time ordering of parallel events requires global time

• Accuracy requirements
– Correct order of message events (latency!)

• Many clusters provide only distributed local clocks

• Local clocks may differ in drift and offset
– Drift:  clocks may run differently fast
– Offset:  clocks may start at different times

• Clock synchronization
– Hardware: cannot be changed by tool builder
– Software:  online / offline

• Online: (X)NTP accuracy usually too low

268

Offline Clock Synchronization

• Model
– Different offset
– Different but constant drift (approximation!)
– One master clock

• Algorithm
– Measure offset worker ↔ master (2x)
– Request time from master (Nx)

– Take shortest propagation time
– Assume symmetric propagation

– Get two pairs of (worker time     , offset     )

– Master time
is io

11
12

12 )(*
)(
)(

:)( oss
ss
oo

ssm +−
−
−

+=

UTC

cl
oc

k 
tim

e

worker master

 ti
m

e



135

269

Instrumentation

• Generating event traces requires extra code to be inserted into the
application

• Supported programming languages
– C, C++, Fortran

• Automatic instrumentation of MPI
– PMPI wrapper library

• Automatic instrumentation of OpenMP
– POMP wrapper library in combination with OPARI

• Automatic instrumentation of user code / functions
– Using compiler-supplied profiling interface and kinst tool
– Using TAU

• Manual instrumentation of user code / functions
– Using POMP directives and kinst-pomp tool

270

Compiler-Supported Instrumentation

• Put kinst in front of every compile and link line in your makefile

• Build as usual, everything else is taken care off
– Instrumentation of MPI / OpenMP constructs
– Instrumentation of user functions

# compiler
CC      = kinst pgcc …
F90     = kinst pgf90 …

# compiler MPI
MPICC   = kinst mpicc …
MPIF90  = kinst mpif90 …



136

271

Compiler-Supported Instrumentation (2)

• Platforms
– Linux / PGI
– HITACHI SR-8000
– SUN Solaris (Fortran90 only)
– NEC SX 6

272

• Instrumentation of user-specified arbitrary (non-function)
code regions

• C/C++

• Fortran

#pragma pomp inst begin(name)
     ...
  [ #pragma pomp inst altend(name) ]
     ...
#pragma pomp inst end(name)

POMP Directives

!$POMP INST BEGIN(name)
     ...
  [ !$POMP INST ALTEND(name) ]
     ...
!$POMP INST END(name)



137

273

POMP Directives (2)

• Insert once as the first executable line of the main
program

• Put kinst-pomp in front of every compile and link line in
your makefile

# compiler
CC      = kinst-pomp pgcc …
F90     = kinst-pomp pgf90 …

# compiler MPI
MPICC   = kinst-pomp mpicc …
MPIF90  = kinst-pomp mpif90 …

#pragma pomp inst init

!$POMP INST INIT

274

TAU Source Code Instrumentor

• Based on PDTOOLKIT

• Part of the TAU
performance framework

• Supports
– f77, f90, C, and C++
– OpenMP, MPI
– HW performance counters
– Selective instrumentation

• http://www.cs.uoregon.edu/research/tau/

• Configure with -epilog=<dir> to specify location of EPILOG library



138

275

KOJAK Runtime Environment

• ELG_PFORM_GDIR
– Name of global, cluster-wide directory to store final trace file
– Default platform specific, typically "."

• ELG_PFORM_LDIR
– Name of node-local directory to store temporary trace files
– Default platform specific, typically "/tmp"

• ELG_FILE_PREFIX
– Prefix used for names of EPILOG trace files
– Default "a"

• ELG_BUFFER_SIZE
– Size of per-process event trace buffer in bytes
– Default 10000000

• ELG_VERBOSE
– Print EPILOG related control information during measurement
– Default no

276

Hardware Counters

• Small set of CPU registers that count events
– Events: signal related to a processor’s function

• Original purpose
– Verification and evaluation of CPU design

• Can help answer question
– How efficiently is my application mapped onto the underlying

architecture?

• KOJAK supports hardware counter analysis
– Can be recorded as part of ENTER/EXIT event records

• Uses PAPI for portable access to counters



139

277

Hardware Counters (2)

• Request counters using environment variable ELG_METRICS
– Colon-separated list of counter names, or
– Pre-defined platform-specific group defined in METRICS.SPEC

• Colon-separated list of counter names
– PAPI preset names

– Or platform-specific native counter names

• METRICS.SPEC
– Default in ./doc/METRICS.SPEC
– Overridden by file names METRICS.SPEC in current working directory
– Or specify using environment variable ELG_METRICS_SPEC

export ELG_METRICS=PAPI_L1_DCM:PAPI_FP_OPS

278

KOJAK Hardware Counter Analysis

• All counter metrics are processed by EXPERT and
appear in the Performance Metrics pane of the CUBE
browser.

• Hierarchies defined in METRICS.SPEC are shown in the
CUBE browser.

• The cube_merge utility can be used to combine
experiments with subsets of counter metrics.

• Set EPT_INCOMPLETE_COMPUTATION to tell
EXPERT to accept trace file missing some
measurements



140

279

Running the Application

• Run your instrumented application

• Application will generate a trace file a.elg

• KOJAK includes several tools to check trace file
– ASCII representation of trace file

– elg_print <file>
– Event counts and simple statisitics

– elg_stat <file>
– Correct order of SEND and RECV events

– elg_msgord <file>
– Needed to check correct clock synchronization

> mpirun –np 4 a.out
> ls
a.elg  a.out  …

280

Simple Statistics with elg_stat
       ENTER :   119    90   119    90
           EXIT :    71    54    71    54
       MPI_SEND :     0     0     0     0
       MPI_RECV :     0     0     0     0
   MPI_COLLEXIT :    12     0    12     0
       OMP_FORK :     9     0     9     0
       OMP_JOIN :     9     0     9     0
      OMP_ALOCK :     0     0     0     0
      OMP_RLOCK :     0     0     0     0
   OMP_COLLEXIT :    36    36    36    36
       ENTER_CS :     0     0     0     0

                   MPI_Barrier :    18 :     9     0     9     0
                     MPI_Bcast :     6 :     3     0     3     0
                 MPI_Comm_free :     2 :     1     0     1     0
                MPI_Comm_split :     2 :     1     0     1     0
                  MPI_Finalize :     2 :     1     0     1     0
                      MPI_Init :     2 :     1     0     1     0
                          step :   216 :    54    54    54    54
                    sequential :    18 :     9     0     9     0
                !$omp parallel :    36 :     9     9     9     9
                !$omp ibarrier :    36 :     9     9     9     9
                     !$omp for :    36 :     9     9     9     9
                !$omp ibarrier :    36 :     9     9     9     9
                      parallel :     6 :     3     0     3     0
                          main :     2 :     1     0     1     0



141

281

EXPERT

• Offline trace analyzer
– Input format: EPILOG

• Transforms traces into compact representation of
performance behavior
– Mapping of call paths, process or threads into metric space

• Implemented in C++
– KOJAK 1.0 version was in Python
– We still maintain a development version in Python to validate

design changes

• Uses EARL library to access event trace

282

EARL Library

• Provides random access to individual events

• Computes links between corresponding events
– E.g., From RECV to SEND event

• Identifies groups of events that represent an aspect of the program’s
execution state

– E.g., all SEND events of messages in transit at a given moment

• Implemented in C++
– Makes extensive use of STL

• Language bindings
– C++
– Python



142

283

Pattern Specification

• Pattern
– Compound event
– Set of primitive events (= constitutents)
– Relationships between constituents
– Constraints

• Patterns specified as C++ class
– Provides callback method to be called upon occurrence of a

specific event type in event stream (root event)
– Uses links or state information to find remaining constituents
– Calculates (call path, location) matrix containing the time spent on

a specific behavior in a particular (call path, location) pair
– Location can be a process or a thread

284

Pattern Specification (2)

• Two types of patterns

• Profiling patterns
– Simple profiling information

– E.g.,How much time was spent in MPI calls?
– Described by pairs of events

– ENTER and EXIT of certain routine (e.g., MPI)

• Patterns describing complex inefficiency situations
– Usually described by more than two events
– E.g., late sender or synchronization before all-to-all operations

• All patterns are arranged in an inclusion hierarchy
– Inclusion of execution-time interval sets exhibiting the performance

behavior
– E.g., execution time includes communication time



143

285

Pattern hierarchy

• MPI
– Point-to-point communication
– Collective communication
– Barrier synchronization
– RMA synchronization

• OpenMP
– Lock synchronization
– Critical section synchronization
– Barrier synchronization

• SHMEM
– Collective communication
– Barrier / lock synchronization

286

Micro-patterns

• Undesired wait states as a result of untimely arrival of
processes or threads at synchronization points
– Late sender
– Wait at n-to-n



144

287

Macro-patterns

288

KOJAK MPI-1 Pattern:  Late Sender / Receiver

• Late Sender: Time lost waiting caused by a blocking receive operation
posted earlier than the corresponding send operation

lo
ca

tio
n

time

MPI_Send MPI_Send

MPI_Recv MPI_WaitMPI_Irecv

• Late Receiver: Time lost waiting in a blocking send operation until the
corresponding receive operation is called

lo
ca

tio
n

time

MPI_Send MPI_Send

MPI_Recv MPI_WaitMPI_Irecv



145

289

KOJAK MPI-1 Pattern:  Wrong Order

• Late Sender / Receiver patterns caused by messages received/sent in
wrong order

• Sub patterns of Late Sender / Receiver

lo
ca

tio
n

MPI_Recv

MPI_Send

MPI_Send

MPI_Recv

time

MPI_Send

MPI_Recv

MPI_Send

MPI_Recv

290

KOJAK MPI-1 Collective Pattern:  Early Reduce

• Waiting time if the destination process (root) of a collective N-to-1
communication operation enters the operation earlier than its sending
counterparts

• Applies to MPI calls MPI_Reduce(), MPI_Gather(), MPI_Gatherv()

MPI_Reduce

time

MPI_Reduce

MPI_Reduce (Root)

MPI_Reduce

lo
ca

tio
n



146

291

KOJAK Collective Pattern:  Late Broadcast
lo

ca
tio

n

Broadcast

Broadcast

time

Broadcast

• Waiting times if the destination processes of a collective 1-to-N
communication operation enter the operation earlier than the source
process (root)

• MPI-1: Applies to MPI_Bcast(), MPI_Scatter(), MPI_Scatterv()

• SHMEM: Applies to shmem_broadcast()

Broadcast (root)

292

KOJAK Generic Pattern:  Wait at #

• Time spent waiting in front of a collective synchronizing operation call until the
last process reaches the operation

• Pattern instances:

lo
ca

tio
n

Sync. Collective

time

Sync. Collective

Sync. Collective

– Wait at NxN (MPI)
– Wait at Barrier (MPI)
– Wait at NxN (SHMEM)
– Wait at Barrier (SHMEM)

– Wait at Barrier (OpenMP)
– Wait at Create (MPI-2)
– Wait at Free (MPI-2)
– Wait at Fence (MPI-2)



147

293

KOJAK MPI-1 Collective Pattern:  Barrier
Completion

lo
ca

tio
n

MPI_Barrier

MPI_Barrier

time

MPI_Barrier

• Time spent in MPI barriers after the first process
has left the operation

MPI_Barrier

294

Basic Search Strategy

• Register each pattern for specific event type
– Type of root event

• Read the trace file one time from the beginning to the end
– Depending on the type of the current event

– Invoke callback method of pattern classes registered for it

– Callback method
– Accesses additional events to identify remaining constituents
– To do this it may follow links or obtain state information

• Pattern from an implementation viewpoint
– Set of events hold together by links and state-set boundaries

Observation
Many patterns describe related phenomena



148

295

Running EXPERT is simple…

• Run your instrumented application. On XT3, it will produce epik_a/
– % elg_merge 4 epik_a

• Application will generate a trace file a.elg

• Run analyzer with trace file as input

• Generate CUBE intput file a.cube

• Invoke CUBE or TAU’s paraprof

> expert a.elg
Total number of events: 11063530
100 %
Elapsed time (h:m:s): 0 : 3 : 34
Events per second: 51698

> cube a.cube&
> paraprof a.cube &

> elg_merge <np> epik_a

296

EXPERT Runtime Environment

• EXPERT uses EARL for random-access to individual events
during analysis

• Random access based on two different buffer mechanisms
– Bookmark buffer

– Stores execution-state information at fixed intervals needed to read the
event following the bookmark

– History buffer
– Stores contiguous section of the event trace (usually) preceding the most

recently accessed event

• Two parameters
– EARL_BOOKMARK_DISTANCE (default 10000)
– EARL_HISTORY_SIZE                (default 1000 * number of locations)

• Tradeoff between analysis speed and memory consumption



149

297

Representation of Performance Behavior

• Three-dimensional matrix
– Performance property (pattern)
– Call tree
– Process or thread

• Uniform mapping onto time
– Each cell contains fraction of

execution time (severity)
– E.g. waiting time, overhead

• Each dimension is organized in a hierarchy

Ort

Performance
Property

Call tree

Location

Execution 

Specific Behavior

Main 

Subroutine 

Machine

Thread 

SMP Node 

Process 

298

Parallel vs. Single-Node performance

“The single most important impediment to good parallel performance is
still poor single-node performance.”

                                                      William Gropp

• Increasing performance gap between CPU and memory
– Annual CPU performance improvement is 55 %
– Annual memory latency improvement is 7%

• Internal operation of a microprocessor becomes more and more
complex

– Pipelining
– Out-of-order instruction issuing
– Branch prediction
– Non-blocking caches



150

299

Single-Node Performance in EXPERT

• How do my processes and threads perform individually?
– CPU performance
– Memory performance

• Analysis of parallelism performance
– Temporal and spatial relationships between run-time events

• Analysis of CPU and memory performance
– Hardware counters

• Analysis
– EXPERT Identifies tuples (call path, thread) whose occurrence rate of a

certain event is above / below a certain threshold
– Use entire execution time of those tuples as severity (upper bound)

300

KOJAK Time Model

location

time

Thread 1.3

Thread 1.2

Thread 1.1

Thread 1.0

Thread 0.3

Thread 0.2

Thread 0.1

Thread 0.0

P
ro

ce
ss

 1
P

ro
ce

ss
 0

CPU Reservation
Execution
Idle Threads

Performance Properties



151

301

CUBE GUI

• Design emphasizes simplicity by combining a small number of
orthogonal features

• Three coupled tree browsers

• Each node labeled with metric value

• Limited set of actions

• Selecting a metric / call path
– Break down of aggregated values

• Expanding / collapsing nodes
– Collapsed node represents entire subtree
– Expanded node represents only itself without children

• Scalable because level of detail can be adjusted

• Separate documentation: http://icl.cs.utk.edu/kojak/cube/

100 main

 60 bar

  10 main

 30 foo

302

CUBE GUI (2)

Which type of
problem?

Where in the source code?
Which call path?

Which process / thread ?

How severe is
 the problem?



152

303

View Options

304

View Options (2)

• Number representation
– Absolute

– All values accumulated time values in seconds
– Scientific notation, color legend shows exponent

– Percentage
– All values percentages of the total execution time

– Relative percentage
– All values percentages of the selection in the left neighbor tree

• Program resources
– Call tree
– Flat region profile

– Module, region, subregions

• Note that the more general CUBE model also allows for other metrics
(e.g., cache misses)



153

305

Absolute Mode

• All values accumulated time values in seconds

• Scientific notation, color legend shows exponent

Exponent at the bottom

306

Percentage Mode

• All values percentages of the total execution time

Values can become very small



154

307

Relative Percentage Mode

• All values percentages of the selection in the left neighbor
tree

79.1 % of 5.6 %

17.5 % of 79.1 % of 5.6 % 

308

Call Tree View



155

309

Region Profile View

Load imbalance in velo 

310

Source-Code View



156

311

• Cross-experiment analysis
– Different execution configuration
– Different measurement tools
– Different random errors

• Arithmetic operations on CUBE instances
– Difference, merge, mean
– Obtain CUBE instance as result
– Display it like ordinary CUBE instance

Performance Algebra

-

CUBE
(XML)

CUBE
(XML)

CUBE
(XML)-

=

=

312

Nano-Particle Simulation PESCAN

• Application Lawrence Berkeley National Lab

• Numerous barriers to avoid buffer overflow when using
large processor counts – not needed for smaller counts

13.2 % Waiting time 
in front of barriers 



157

313

(Re)moving Waiting Times

• Difference between before / after barrier removal

• Raised relief shows improvement

• Sunken relief shows degradation

Significant reduction
in barrier time

Fraction of the waiting time 
migrated to collective operations.

Call tree shows where

314

Integrating Performance Data From Multiple
Sources
• Integrating trace data with profile data

• Integrating data that cannot be generated simultaneously
– L1 cache misses and floating-point instructions on Power4

•  KOJAK output merged with 2 CONE outputs



158

315

Topologies

• Define adjacency relationships among system resources

• Virtual topologies
– Mapping of processes/threads onto application domain
– Parallel algorithms often parameterized in terms of topology

• Physical topologies
– Network structure

• Can be specified as a graph

• Very common case: Cartesian topologies

316

Topology analysis in KOJAK

• Idea: map performance data onto topology
– Virtual or physical

• Record topological information in event trace

• Detect higher-level events related to the parallel algorithm

• Link occurrence of patterns to such higher-level events

• Visually expose correlations of performance problems
with topological characteristics of affected processes



159

317

Analysis of wave-front processes

• Parallelization scheme used for particle transport problems

• Example: ASCI benchmark SWEEP3D
– Three-dimensional domain (i,j,k)
– Two-dimensional domain decomposition (i,j)

DO octants
  DO angles in octant
    DO k planes
      ! block i-inflows
      IF neighbor(E/W) MPI_RECV(E/W)
      ! block j-inflows
      IF neighbor(N/S) MPI_RECV(N/S)
         ... compute grid cell ...
      ! block i-outflows
      IF neighbor(E/W) MPI_SEND(E/W)
      ! block j-outflows
      IF neighbor(N/S) MPI_SEND(N/S)
    END DO k planes
  END DO angles in octant
END DO octants

318

Pipeline refill

• Wave-fronts from different directions

• Limited parallelism upon pipeline refill

• Four new late-sender patterns
– Refill from NW, NE, SE, SW
– Requires topological knowledge to recognize direction change



160

319

Waiting in n-to-n on BG/L  (1792 CPUs)

320

SciDAC application GYRO

• SciDAC (Scientific Discovery through Advanced
Computing)
– Develop the software and hardware infrastructure needed to use

tera-scale computers to advance DOE research programs in
– Basic energy sciences, biological and environmental research, fusion

energy sciences, and high-energy and nuclear physics.

• PERC (Performance Evaluation Research Center)
– Develop a science for understanding performance of scientific

applications on high-end computer systems
– Develop engineering strategies for                                   improving

performance on these systems

• Application GYRO
– 5D gyrokinetic Maxwell solver
– Simulates turbulences in magnetically

confined plasmas using message passing
Source: Max Planck Institut für 

Plasma Physik, Germany



161

321

Trace-size reduction with call-path profiling

• Instrumentation of user functions necessary to identify call path of
performance problem

• Non-discriminate instrumentation of user functions can lead to
significant trace-file enlargement

• Example: estimated trace-file size for fully instrumented run of GYRO
B1-std benchmark on 32 CPUs > 100 GB

• Effective reduction possible using TAU / PDT
– Generate call path profile
– Instrument only those functions that call communication or

synchronization routines (directly or indirectly)

• Result

56237518894Size (MB)

1921286432#CPU

322

Scalability analysis of GYRO on SGI Altix

• Drop off in parallel efficiency when #CPUs exceeds 128

• 192 CPUs
– 49 % of execution time in collective communication
– 21 % of execution time wait time in n-to-n operations

• Raising #CPU from 128 to 192 increases accumulated execution
time (CPU sec) by 72 %

• Performance algebra shows composition of differences

-

192
CPUs

128
CPUs-

=

=



162

323

Instrumentation alters performance behavior

• Execution of extra code, consumption of resources
– Intrusion: quantitative dilation of execution time
– Perturbation: qualitative alteration of performance behavior

• Off-line perturbation compensation to approximate original behavior
(with University of Oregon)

324

To use KOJAK with TAU

• Choose a TAU stub makefile with a -epilog in its name

% setenv TAU_MAKEFILE /usr/pkgs/tau/<arch>/lib/Makefile.tau-mpi-pdt-
epilog-trace

• Change CC to tau_cc.sh, F90 to tau_f90.sh in your Makefile

• Build and execute the program

% make; mpirun -np 6 sweep3d.mpi

• Run the Expert tool on the generated a.elg merged trace file

% expert a.elg

• Load the generated a.cube file in Paraprof and click on metrics of interest

% paraprof a.cube



163

325

ParaProf: Performance Bottlenecks

326

ParaProf: Time spent in late sender bottleneck



164

327

ParaProf: Time spent in late sender bottleneck

328

Trace size limits scalability

Execution time

t

t

large

small

Event rate

t

t

high

low

Number of processes

t

w
id

th

• Serially analyzing a single global
trace file does not scale to 1000s
of processors

• Main memory might be insufficient
to store context of current event

• Amount of trace data might not
fit into single file

Lo
ng

 tr
ac

es
W

id
e 

tr
ac

es



165

329

SCALASCA

• Started in January 2006

• Funded by Helmholtz Initiative and Networking Fund

• Objective: develop a scalable version of KOJAK
– Basic idea: parallelization of analysis
– Current focus: single-threaded MPI-1 applications

• http://www.scalasca.org/

330

Parallel analysis process

Global resultParallel analyzer

Source code Automatic multilevel
instrumentation

Executable

Execution on
parallel machine

Local trace files

Instrumentation

Measurement

Analysis



166

331

Parallel pattern analysis

• Analyze separate local trace files in parallel
– Exploit distributed memory and processing capabilities
– Often allows keeping whole trace in main memory

• Parallel replay of target application‘s communication
behavior
– Analyze communication with an operation of the same type
– Traverse local traces in parallel
– Exchange data at synchronization points of target application

332

Parallel abstraction mechanisms

• Efficient performance-transparent random access
– Local traces kept in main memory
– (Generous) limit for amount of local trace data
– Different data structures for event storage

– Linear list, complete call graph (CCG)

• Higher-level abstractions
– Local execution state
– Local pointer attributes (can point backward & forward)



167

333

Parallel abstraction mechanisms (2)

• Global abstractions established by parallel replay
– E.g., repeating message matches SEND with RECV event

• Services for cross-process analysis
– Serialization of events for transfer
– Remote event

• Two modes of exchanging events
– Point-to-point
– Collective

• Provided by separate library (PEARL)

334

Example: Late Sender

Sender

• Triggered by send event

• Determine enter event

• Send both events to receiver

Receiver

• Triggered by receive event

• Determine enter event

• Receive remote events

• Detect Late Sender situation

• Calculate & store waiting time

time

pr
oc

es
s

     ENTER        EXIT        SEND        RECV

… …

… …



168

335

Example: Wait at N x N

• Triggered by collective exit event

• Determine enter events

• Determine & distribute latest enter event (max-reduction)

• Calculate & store waiting time

time

pr
oc

es
s

ENTER        COLLEXIT

2

1 1… …

3… …

2… …

1

2

3

22

1

2

3

3

336

 Experimental evaluation

• Scalability
– ASCI SMG2000 benchmark

– Semi-coarsening multi-grid solver
– Fixed problem size per process - weak scaling behavior

– ASCI SWEEP3D benchmark
– 3D Cartesian (XYZ) geometry neutron transport model
– Fixed problem size per process - weak scaling behavior

• Analysis results
– XNS fluid dynamics code

– FE simulation on unstructured meshes
– Constant overall problem size – strong scaling behavior



169

337

Test platform

BlueGene/L (JUBL) in Jülich
– 8 Racks with 8192 dual-core nodes
– 288 I/O nodes

338

SMG2000

SMG2000 on 16,364 CPUs
• 230 GB trace data
• > 40 * 109 events



170

339

SWEEP3D

340

SWEEP3D

Late Sender
16K CPUs

Which type of
problem? Which call path?

Where in the source code?

Virtual topology



171

341

XNS CFD application

• Academic computational fluid dynamics code for
simulation of unsteady flows
– Developed by group of Marek Behr, Computational Analysis of

Technical Systems, RWTH Aachen University
– Exploits finite-element techniques, unstructured 3D meshes,

iterative solution strategies
– >40,000 lines of Fortran90
– Portable parallel implementation based on MPI

• Focus on solver phase (i.e., ignoring I/O)

342

DeBakey blood pump test case

• Consider tuned version
– Obtained by eliminating                                                  redundant

messages
– Scalability of original

version limited <1024
– Initial mpiP profiling

– Dominated by growing MPI communication
– Average message size diminishing (<16 bytes)
– Growing numbers of zero-sized communications

– Detailed SCALASCA trace analysis
– Investigated message sizes & distributions
– 96% of transfers redundant @1024 processes!



172

343

SCALASCA: Wait states in tuned version of XNS

Wait states in XNS (tuned version)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

256 512 1024 2048 4096

Number of processes

W
al

l 
ti

m
e 

(s
) 

fo
r 

a 
si

n
g

le
 t

im
e 

st
ep

 l
o

o
p

Total

P2P

Late sender

Late sender / wrong order

Collective

Wait at n-to-n

Barrier

Wait at barrier

344

SCALASCA XNS analyses
of 4096 processes



173

345

Conclusion

• Wait states addressed by our analysis can be a significant
performance problem – especially at larger scales

• Scalability of the analysis can be addressed by parallelization
– Process local trace files in parallel
– Replay target applications communication behavior

• Promising results with prototype implementations
– Analysis scales up to 16,384 processes
– Enables analyzing traces of previously impractical size

346

Scalasca Future Work

• Reduce number of events per process (trace length)
– Selective tracing
– Eliminate redundancy

• Find causes of wait states
– Derive hypotheses from measurements
– Validate hypotheses using simulation

• Extend (scalable) approach to other programming models
– Shared memory
– Partitioned global address space languages

– MPI-RMA, UPC



174

347

Technology preview release

• SCALASCA Version 1.0

• Tested on the following platforms
– IBM Blue Gene/L
– Cray XT3
– IBM p690 clusters
– SGI Altix
– Sunfire clusters

• Download from:
– http://www.scalasca.org

• If you need installation support, please contact:
– scalasca@fz-juelich.de

348

KTAU Project

• Trend toward Extremely Large Scales
– System-level influences are increasingly dominant performance bottleneck

contributors
– Application sensitivity at scale to the system (e.g., OS noise)
– Complex I/O path and subsystems another example
– Isolating system-level factors non-trivial

• OS Kernel instrumentation and measurement is important to understanding
system-level influences

• But can we closely correlate observed application and OS performance?

• KTAU / TAU (Part of the ANL/UO ZeptoOS Project)
– Integrated methodology and framework to measure whole-system

performance



175

349

Applying KTAU+TAU

• How does real OS-noise affect real applications on target
platforms?

– Requires a tightly coupled performance measurement & analysis
approach provided by KTAU+TAU

– Provides an estimate of application slowdown due to Noise (and in
particular, different noise-components - IRQ, scheduling, etc)

– Can empower both application and the middleware and OS communities.
– A. Nataraj, A. Morris, A. Malony, M. Sottile, P. Beckman, “The Ghost in

the Machine : Observing the Effects of Kernel Operation on Parallel
Application Performance”, SC’07.

• Measuring and analyzing complex, multi-component I/O subsystems
in systems like BG(L/P) (work in progress).

350

KTAU System Architecture

A. Nataraj, A. Malony, S. Shende, and A. Morris, “Kernel-level Measurement for
Integrated Performance Views: the KTAU Project,” Cluster 2006, distinguished paper.



176

351

TAU Performance System Status

• Computing platforms (selected)
– IBM SP/pSeries/BGL/BGP,SiCortex, Linux clusters (IA-32,

x86_64/IA64, Alpha, PPC, PA-RISC, Power, Opteron), SGI Altix/Origin,
Cray XT3/4, T3E/SV-1/X1E, HP (Compaq) SC (Tru64), Sun, Apple
(G4/5, OS X), Hitachi SR8000, NEC SX-5/6, Windows …

• Programming languages
– C, C++, Fortran 77/90/95, HPF, Java, Python

• Thread libraries (selected)
– pthreads, OpenMP, SGI sproc, Java,Windows, Charm++

• Compilers (selected)
– Intel, , GNU, Fujitsu, Sun, PathScale, SGI, Cray, IBM, HP, NEC, Absoft,

Lahey, Nagware

352

Performance Tool Current and Future Work

• Development of a flexible, modular open-source performance analysis
framework based on PAPI, TAU, PerfSuite, and Scalasca called POINT

• Extension of PAPI to off-processor counters and sensors (e.g., network
counters, memory controllers, accelerators,  and temperature sensors)

• Perfmon2 access to hardware counters on Linux/x86 systems, integration of
Perfmon2 with Linux kernel to eliminate need for kernel patch

• Extension of TAU I/O instrumentation and analysis

• Definition of new KOJAK patterns for detecting inefficient program behavior
– Based on hardware counter metrics (including derived metrics) and loop-

level profile data
– Architecture-specific patterns – e.g., topology-based
– Use of off-processor counter and sensor data

• Distributed trace file analysis

• Support new languages and parallel programming paradigms



177

353

Acknowledgements

• National Science Foundation SDCI

• Department of Energy

• HPCMP DoD PET Program

• University of Tennessee
– Shirley Moore
– David Cronk
– Karl Fuerlinger
– Dan Terpstra

• University of Oregon
– Allen D. Malony, A. Morris, K. Huck,
     W. Spear

• NCSA

• TU Dresden
– Holger Brunst
– Wolfgang Nagel

• Research Centre Juelich, Germany
– Bernd Mohr
– Felix Wolf


