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Abstract. Tools to observe the performance of parallel programs typi-
cally employ profiling and tracing as the two main forms of event-based
measurement models. In both of these approaches, the volume of per-
formance data generated and the corresponding perturbation encoun-
tered in the program depend upon the amount of instrumentation in the
program. To produce accurate performance data, tools need to control
the granularity of instrumentation. In this paper, we describe develop-
ments in the TAU performance system aimed at controlling the amount
of instrumentation in performance experiments. A range of options are
provided to optimize instrumentation based on the structure of the pro-
gram, event generation rates, and historical performance data gathered
from prior executions.
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1 Introduction

The advent of large scale parallel supercomputers is challenging the ability of
tools to observe application performance. As the complexity and size of these
parallel systems continue to evolve, so must techniques for evaluating the perfor-
mance of parallel programs. Profiling and tracing are two commonly used tech-
niques for evaluating application performance. Tools based on profiling maintain
summary statistics of performance metrics, such as inclusive and exclusive time
or hardware performance monitor counts [1], for routines on each thread of exe-
cution. Tracing tools generate time-stamped events with performance data in a
trace file. Any empirical measurement approach will introduce overheads in the
program execution, the amount and type depending on the measurement method
and the number of times it is invoked. However, the need for performance data
must be balanced with the cost of obtaining the data and its accuracy. Too much
data runs the risk of measurement intrusion and perturbation, yet too little data
makes performance evaluation difficult.

Performance evaluation tools either employ sampling of program state based
on periodic interrupts or direct instrumentation of measurement code. Sampling



generally introduces a fixed overhead based on the inter-interrupt sampling in-
terval. Thus, sampling is often considered to be generate less perturbation on
performance. Unfortunately, sampling suffers from lack of event specificity and
an inability to observe inter-event actions. For these reasons, sampling is less
viable approach for robust parallel performance analysis. Here, we consider di-
rect measurement-based techniques where instrumentation hooks are inserted
in the code at locations of relevant events. During execution, events occur as
program actions and the measurement code is activated to inspect performance
behavior. Because event generation does not occur as the result of an interrupt,
the number of events generated is instead tied to how often the program code
executes. In some cases, this could be significant. Furthermore, the time be-
tween event measurements is not fixed, which can affect measurement accuracy.
Whereas direct instrumentation and measurement can produce robust perfor-
mance data, care must be taken to maintain overhead and accuracy. We use the
term “instrumentation optimization” to describe this objective.

In this paper, we discuss our work in optimizing program instrumentation in
the TAU performance system [2]. Section §2 gives further background and moti-
vation for the problem. Sections §3 and Sections §4 describe how we can limit the
instrumentation based on selective instrumentation and runtime measurement
control. Section §5 discusses our future plans.

2 Motivation

Given a performance evaluation problem, certain performance data must be
observed to address it. How should the program be instrumented and measure-
ments made to capture the data? If the measurements cost nothing, the de-
gree of instrumentation is of no consequence. However, measurements introduce
overhead in execution time and overhead results in intrusion on the execution
behavior. Intrusion can cause the performance of an application to change (i.e.,
to be perturbed). Performance perturbation directly affects the accuracy of the
measurements. Accuracy is also affected by the resolution of the performance
data source (e.g., real time clock) relative to the granularity of the metric being
measured (e.g., execution time of a routine). Thus, it is not enough to know
what performance data needs to be observed. One must understand the cost
(overhead, intrusion, perturbation, accuracy) of obtaining the data.

Optimization of instrumentation is basically a trade-off of performance data
detail and accuracy. If a measurement is being requested at a granularity too fine
for the measurement system, the performance data will be faulty. Clearly, instru-
mentation should be configured to prevent the measurement from being made at
all. At the other end of the spectrum, there can be situations where more data
is gathered than necessary for a certain level of accuracy. Here, instrumentation
optimization would be used to limit unnecessary overhead.

Most users are not so sophisticated in their performance measurement prac-
tices. Therefore, performance tools must provide mechanisms that enable users
to understand instrumentation effects and accuracy trade-offs, and adjust their



performance experiments accordingly. Balancing the volume of performance data
produced and the accuracy of performance measurements is key to optimizing
the instrumentation. Techniques for improving performance observability fall
into three broad categories:

— Instrumentation — Techniques that reduce the number of instrumentation
points inserted in the program.

— Measurement — Techniques that limit and control the amount of information
emitted by the tool at the instrumentation points, and

— Analysis — Techniques that scale the number of processors involved in pro-
cessing the performance data, and techniques that reduce and reclassify the
performance information.

In this paper, we will limit our discussion to instrumentation and measure-
ment based approaches.

3 Instrumentation

There are two fundamental aspects to optimizing instrumentation: deciding
which events to instrument and deciding what performance data to measure.
Event selection can occur prior to execution or at runtime. However, what is
possible in practice depends entirely on the instrumentation tools available. Dif-
ferent types of events also determines the complexity of the instrumentation
problem. The following discusses the possible instrumentation approaches and
optimization issues that arise.

3.1 Event Types

Because direct instrumentation inserts measurement instructions in the program
code, events are most often defined with respect to program flow of control.
Standard events include the begin and end of routines and basic blocks. Other
events may be defined at arbitrary code locations by the user. Events can also
be defined with respect to program state. These events are still instrumented for
with code insertion, but are ‘enabled’ depending on the value of state variables
or parameters. We also distinguish between paired entry/ezit events and events
that are atomic.

The different types of events represent, in a sense, the range of possible event
instrumentation scenarios. This could range from having all routines in a pro-
gram code instrumented to having only a few specific routines instrumented,
such as in a library. Clearly, the more events instrumented for, the more mea-
surements will be active. Also, it is important to distinguish events that occur on
individual threads (processes) of execution. Hence, the more threads executing,
the more concurrent events are possible.



3.2 Instrumentation Mechanisms

Coinciding with the types of events to instrument are the mechanisms for in-
strumentation. There are five common approaches:

— Compiler — Instrumentation occurs as the program is being compiled. The
choice of events is determined by the compiler, but options may be provided.
Instrumentation for gprof-style profiling is generally done.

— Library — A library has been pre-instrumented and this instrumentation can
be invoked by a program just by relinking. The MPI library is a special case
of this since it also provides a “profiling interface” (PMPI) for tool developers
to build their own instrumentation.

— Source (automatic) — This is an instrumentation approach based on source
rewriting. The Opari [3] and TAU instrumentor [2] tools work in this manner.

— Source (manual) — A manual instrumentation APT often accompanies mea-
surement tools to allow users to create their own events anywhere in the
program. For non-trivial applications, the effort to do so becomes quite cum-
bersome.

— Binary — Instead of working at the source level, some tools can instrument
binary code, a form of binary rewriting. For the most part, the events are
the same except lower-level code features may be targeted. Binary rewriting
is hard and ISA specific.

— Dynamic — Some tools work at runtime to instrument executable code. For
instance, DyninstAPI [5] can dynamically instrument running parallel exe-
cutions based on code trampolining techniques.

The choice of which instrumentation mechanism to use is based on different
factors. One factor is the accessibility (visibility) of events of interest. Another is
the flexibility of event creation and instrumentation. These factors affect whether
the mechanism can meet the event requirements. However, mechanisms are some-
times chosen based on their perceived overheads. For instance, source instrumen-
tation has been criticized for its effects on code optimization, while binary and
dynamic instrumentation purport to work with optimized code. On the other
hand, source-instrumented measurement code also undergoes optimization, and
can generate more efficient code than dynamically-instrumented measurements
inserted under pessimistic assumptions of register usage and other factors.

3.3 Selective Instrumentation

Given the above discussion, instrumentation optimization with respect to events
reduces essentially to a question of selective instrumentation. Put another way,
we want to conduct performance experiments that capture performance data
only for those events of interest, and nothing more. If a mechanism does not
allow instrumentation of some event of interest, it is less useful than one that
does. When there are many events that can be instrumented, a means to select
events will allow only those events desired to be instrumented. Each of the



mechanisms above can support event selection, but not all tools based on these
mechanisms support it.

In the TAU project, a variety of instrumentation techniques are used: source
pre-processing with PDT [4], MPI library interposition, binary re-writing and
dynamic instrumentation with DyninstAPI [5], and manual. For each of these
mechanisms, TAU allows an event selection file to be provided to control what
events are to be ‘included’ in and ‘excluded’ from instrumentation. The speci-
fication format also allows for instrumentation to be enabled and disabled for
entire source files.

Unfortunately, it is common for naive performance tool users to ignore such
support and ask for all events to be instrumented. There are two downsides of
this. First, it is probably true that not all of the events are really needed. Second,
some events may be generated that are very small, resulting in poor measurement
accuracy, or high-frequency, causing excessive buildup of overhead. Of course, a
user could use TAU’s selective instrumentation to disable such events, but they
might not be aware of them.

TAU’s selective instrumentation file also allows rules for instrumentation
control to be specified. TAU provides a tool, tau_reduce, to analyze the profiles
and apply the instrumentation rules. Effectively, the output is a list of routines
that should be excluded from instrumentation. Naive instrumentation of parallel
programs can easily include lightweight routines that perturb the application
significantly when measured. What rules should the user then write?

If the user does not specify the rules for removing instrumentation using
tau_reduce, TAU applies a default set (e.g., the number of calls must exceed one
million and the inclusive time per call for a given routine must be less than 10
microseconds to exclude the routine). The program is then re-instrumented using
the exclude list emitted by tau_reduce. To ensure that other routines that were
above the threshold for exclusion before do not qualify for exclusion after re-
instrumentation (due to removal of instrumentation in child routines), the user
may re-generate the exclude list by re-running the program against the same set
of rules. When any two instrumented executions generate no new exclusions, we
say that the instrumentation fized-point is reached for a given set of execution
parameters (processor size, input, and so on) and instrumentation rules. The
instrumentation is sufficiently coarse-grained to produce accurate measurements.

The selective, rule-based instrumentation approach implemented in TAU is a
powerful methodology for performance experimentation. Users can create mul-
tiple event selection files and apply them depending on their experimentation
purposes. However, there is still an issue of optimization with respect to the
amount of performance data generated. This is discussed in the next section.

4 Measurement

Event instrumentation coupled with measurement code produces a “ready-to-
run” performance experiment. Profile and trace measurements are the standard
types used to generate performance data. Issues of instrumentation optimization



regarding choice of measurement trade off detail for overhead. That is one part
of the story. The other part has to do with the number of events generated versus
overhead and measurement accuracy.

4.1 Measurement Choice

The overhead to generate the performance data during profiling and tracing is
roughly comparable. However, because tracing produces more data, it runs the
risk of additional overhead resulting from trace buffer management. Extremely
high volume trace data can be produced. When this is unacceptable, one al-
ternative is to switch the measurement method to profiling. The general point
here is that the choice of measurement method is an effective means to control
overhead effects, but with ramifications on the type of data acquired.

Once events have been specified for an experiment, TAU allows users to chose
between profiling and tracing at runtime. The details of data produced for each
event are decided both at link time and through environment settings.

4.2 Runtime Event Control

However, let us assume for the moment that only ‘null’ measurements are made,
that is, no performance data is created and stored, but the ‘instrumented’ events
are still detected. Since events are, in general, defined by their code location in
direct instrumentation, the number of times an event occurs depends on how
many times control passes through its code location. The event count is an
important parameter in deciding on measurement optimization, regardless of
whether profiling or tracing is used.

As the count for a particular event increases, the measurement overhead
(from either profiling or tracing) for that event will accumulate. Since not all
events will have the same count, the intrusions due to the overheads are dis-
tributed unevenly, in a sense, across the program and during execution. The
intrusions may be manifested in different ways, and may lead to performance
perturbations.

The only way to control the degree of measurement overhead is to control
the event generation. That is, mechanisms must be used to enable and dis-
able events at runtime. We call this technique event throttling. During program
execution, instrumentation may be disabled in the program based on spatial,
context, or location constraints. Spatial constraints deal with event count and
frequency, context constraints consider program state, and location constraints
involve event placement.

TAU allows the user to disable the instrumentation at runtime based on rules
similar to the ones employed by the offline analysis of profiles using tau_reduce.
For instance, the number of calls to each event can be examined at runtime.
and when it exceeds a given user specified threshold (e.g., 100000 calls), it can
be disabled [6]. This is an example of a count threshold. Disabling decisions
can additionally consider measurement accuracy. For instance, if the per-call
execution value for an event is below a certain threshold (e.g., 10 microseconds



per call), the event is disabled. TAU disables events at runtime by adding them
to the profile group (TAU_DISABLE). Subsequent calls to start or stop that
event incur a minimal overhead of masking two bitmaps to determine enabled
state.

Profilers based on measured profiling have timers that track routines of
groups of one or more statements. A timer has a name and a profile group
associated with it. A routine may belong to one or more profile groups. Per-
formance analysis tools such as Vampir[7] and ParaProf[8] organize timer-based
performance data by groups.

4.3 Group Based Control

During program execution, instrumentation may be disabled in the program
based on spatial, context or location based constraints imposed. TAU provides
an API for controlling instrumentation at runtime.

Logically related timers or phases may be grouped together by classifying
these in a common profile group. Directory or file based association of routines
is common. TAU provides a mechanism for enabling or disabling the program in-
strumentation based on groups. The top-level timer that is associated with main
in C or C++4, and the program unit in Fortran 90 belongs to a special group
(TAU_DEFAULT) that is always enabled. The user may annotate the program
at special points in the program based on certain conditions, to enable and/or
disable instrumentation belonging to certain groups. These groups may be op-
tionally specified on the command-line of the program as a set of groups that
should be instrumented for the entire program. Limiting instrumentation based
on groups, however, has the same disadvantages as knowing during program
instrumentation which files or sets of routines to exclude from instrumentation.

4.4 Full Program Instrumentation Control

TAU allows the user to enable or disable all program instrumentation using the
above instrumentation control API. This is useful for limiting the instrumenta-
tion (and generation of trace records) in parts of the program based on program
dynamics. For regular iterative parallel applications where a program executes
a sequence of iterations, it might be helpful to enable the instrumentation in a
given subset. For instance, instead of enabling the instrumentation for tracing
a million iterations of the program, it may be sufficient to trace the first and
the last thousand iterations. The user may choose to disable the instrumenta-
tion based on the rank of a MPI process. For instance, it may be useful to limit
the instrumentation for a large number of processors to only generating trace
records for only one out of a hundred processors. This technique is similar to
sampling by space[9]. TAU’s trace merging and conversion utilities do not require
all tasks to generate trace data. This technique cannot be applied effectively for
MIMD applications where each task may have potentially different performance
characteristics.



4.5 Context Based Control

TAU provides a unique depth limited instrumentation control option. A user can
specify that a routines instrumentation be turned off when it executes beyond a
given callpath depth. The limit may be specified as a runtime parameter. When
this depth is specified as one, only the top level routine is active; at a depth of
two, only the top level routine and the instrumented routine called directly by it
are active and so on. When a routine executes below this threshold at some point
in execution, and beyond this threshold at other points, only the former instance
is recorded in the trace files. At the expense of truncating the performance
information for those routines that execute beyond the given threshold, we can
limit the performance data to the top few routines. The message communication
events are not affected by this option.

4.6 Callpath Based Control

The KOJAK toolkit [3] includes the Expert tool that automates performance
bottleneck diagnosis by examining communication events. In the analysis phase,
it ignores routines that do not directly call MPI routines along a calling stack.
To generate traces for Expert, it is useful to limit the instrumentation to only
those routines that call an MPI routine. This is done by first configuring TAU to
generate callpath profiles[2]. TAU allows a user to specify a callpath depth as a
runtime parameter. All callpaths originating from a given instrumented routine,
and extending to its parents are truncated when these exceed the threshold.
So, the user sets a sufficiently high threshold of callpath depth so that every
callpath reaches the top level routine. Then, a script parses the profile files and
extracts the names of routines that directly or indirectly called an MPI routine.
This list is then fed to the instrumentor as an include list, and it instruments
only routines that had a calling path to the MPI routines. This technique can
dramatically reduce the trace size for Expert. The drawback is that if a routine
calls an MPI routine at some instances in its execution and does not invoke MPI
calls at others, all of its instances are recorded, although Expert ignores those
instances where it does not invoke MPI routines. This can potentially increase
the trace file size and it requires a re-execution of the program with callpath
profiling enabled.

4.7 Trace Based Control

It is possible to address the above problem by keeping track of all calls in an
event buffer. When an MPI routine is executed, we need to examine the buffer
and move trace records by eliminating those records that do not directly call the
given MPI routine. This problem has a drawback that this scheme cannot work
effectively with fixed size buffers that are commonly found in trace generation
libraries. When a buffer overflow event takes place, all records are to be flushed
to the trace file. However, if an MPI event has not taken place, it is unknown



whether one will take place in the future or not. So, to preserve the trace in-
formation, we must increase the size of the trace buffer and keep processing the
trace records. When it does encounter an MPI event, the trace buffer can be
examined again and un-necessary instances of routines removed at runtime, and
the buffers flushed to disk. This scheme does not sufficiently address the con-
cerns as, the program could run out of memory in expanding the trace buffers
and be forced to write the records to disk.

4.8 Callstack Based Control

To better address the previous requirement, TAU has introduced a callstack
based runtime instrumentation control option for tracking only those instances
of a routine that directly or indirectly invoke an MPI call. Trace records are
generated for routines on the calling stack when an entry into an MPI routine
(all MPI routines belong to a special group) is detected. When a routine entry
takes place, we store the exact time it occurred on the callstack. Each routine
on the callstack has a flag that indicates if it has been recorded in the trace file.
When an MPI routine is started, we traverse the callstack recursively from the
given routine and generate trace records if the routine has not been recorded.
We stop when we encounter a routine that has been recorded. This limits the
trace file to just those instances of events that are ancestors of an MPI call. By
using elements of profiling and tracing together, we can better address efficient
trace generation.

5 Conclusion

Parallel performance systems strive to build measurement systems as efficiently
as possible. However, users can make poor instrumentation and measurement
choices that lead to performance data proliferation and inaccuracies. Perfor-
mance tools should support users in effective performance experimentation by
providing mechanisms for optimizing instrumentation. This is true for specifying
events and measurements to meet the objectives of the experiment, as well as
controlling the degree of overhead and data accuracy.

The TAU performance system implements a robust set of instrumentation op-
timization methods. Some are discussed here. Other techniques implemented in
TAU included compensation of instrumentation overhead, APIs for event group-
ing and control, context-based control based on callpath depths, and callstack-
based control. It should be understood that all of the techniques work in parallel
execution.
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