TAU Parallel Performance System

DOD UGC 2004 Tutorial

Part 3: TAU Applications and Developments

Tutorial Outline – Part 3

TAU Applications and Developments

- Selected Applications
 - O PETSc, EVH1, SAMRAI, Stommel
 - O mpiJava, Blitz++, SMARTS
 - C-SAFE/Uintah
 - O HYCOM, AVUS
- Current developments
 - PerfDMF
 - Online performance analysis
 - O ParaVis
- □ Integrated performance evaluation environment

Case Study: PETSc v2.1.3 (ANL)

- Portable, Extensible Toolkit for Scientific Computation
- □ Scalable (parallel) PDE framework
 - Suite of data structures and routines (374,458 code lines)
 - Solution of scientific applications modeled by PDEs
- Parallel implementation
 - MPI used for inter-process communication
- **TAU instrumentation**
 - PDT for C/C++ source instrumentation (100%, no manual)
 - MPI wrapper interposition library instrumentation
- □ Example
 - Linear system of equations (Ax=b) (SLES) (ex2 test case)
 - Non-linear system of equations (SNES) (ex19 test case)

PETSc ex2 (Profile - wallclock time)

	Mean Tota	l Stat Wind	low: /home/use	rs/sameer/pets	cisrcislesiexa	amples/tutor	ials/pprof.dat	
File	File Options Windows Help							
			So	rted wit	h respe	ct to ex	clusive time	
				<u> </u>	1		893	
8								
	%time	msec	total msec	#call	#subrs	usec/call	name	
	21.3	7,794	7,794	407	0	19152	int VecMAXPY_Seg(int, const PetscScalar *, Vec, V	
	20.6	7,534	7,534	393	0	19172	int VecMDot_Seq(int, Vec, const Vec *, PetscScala	
	18.8	6,886	6,908	407	1628	16973	int MatSolve_SeqAIJ_NaturalOrdering(Mat, Vec, Vec	
	12.5	4,548	4,599	407	1628	11302	int MatMult_SeqAIJ(Mat, Vec, Vec) C	
	7.9	2,877	2,877	1353.75	0	2126	MPI_Recv()	
	4.9	1,282	1,801	49800	49800	36	int MatSetValues(Mat, int, int *, int, int *, Pet	
	100.0	785	36,651	1	49832	36651451	int main(int, char **) C	
	1.7	618	627	407	1628	1543	<pre>int MatMultAdd_SeqAIJ_Inode(Mat, Vec, Vec, Vec) C</pre>	
	1.4	519	519	49800	0	10	<pre>int MatSetValues_MPIAIJ(Mat, int, int *, int, int</pre>	
	0.9	337	337	1	35	337700	MPI_Init()	
	1.1	328	394	3142	15205	126	<pre>int PetscOptionsFindPair_Private(const char *, co</pre>	
	0.7	233	240	182	649	1320	<pre>int PetscFListGetPathAndFunction(const char *, ch</pre>	
	1.3	219	463	153	1110	3032	<pre>int PetscFListAdd(PetscFList *, const char *, con</pre>	
	0.6	215	215	1526.25	0	141	int PetscStackCopy(PetscStack *, PetscStack *) C 💌	

PETSc ex2(Profile - overall and message counts)

TAU Parallel Performance System

PETSc ex2 (Profile - percentages and time)

TAU Parallel Performance System

PETSc ex2 (Trace)

TAU Parallel Performance System

PETSc ex19

- □ Non-linear solver (SNES)
 - O 2-D driven cavity code
 - Uses velocity-vorticity formulation
 - Finite difference discretization on a structured grid
- Problem size and measurements
 - O 56x56 mesh size on quad Pentium III (550 Mhz, Linux)
 - Executes for approximately one minute
 - MPI wrapper interposition library
 - PDT (*tau_instrumentor*)
 - Selective instrumentation (*tau_reduce*)
 - > three routines identified with high instrumentation overhead

PETSc ex19 (Profile - wallclock time)

<i>Mean Total</i>	<i>Stat Window: Idat</i> a Nindows Help	alsameer/petsclsrclsn	eslexamplesitutorialsio	lataWALLCLOCK_TIMI	Sort	ed by	inclusive time
 %time	msec	total msec	 #call	#subrs usec	/call name		
100.0	19	1:00.337	1	63 603	 37067 int m	ain(int, ch	1ar **)
93.7	0.117	56,558	2	10 282	79316 <mark>int</mark> D	MMGSolve(DM	(MG *)
93.7	0 0477	56 556	Э	רסר ר	79247 int D	MMCSolvoSNE	S(DMMC * int)
93.7	📥 Mean Tot	al Stat Window: Idat	alsameerlpetsclsrclsi	nes/examples/tutorials	data/WALLCLO	CK_TIME/pproi	Cartad has an altering time
93.7	File Options	Windows Help					Sorted by exclusive time
88.0							-
50.6							
50.6							
50.6	%time	msec	total msec	#call	#subrs	usec/call	name
46.4							
46.4	35.0	21,123	21,136	6	90	3522740	int MatLUFactorNumeric_SegAIJ_Inode(Mat,
46.4	17.4	10,474	10,479	68	544	154111	<pre>int MatSolve_SeqAIJ_Inode(Mat, Vec, Vec)</pre>
45.7	12.6	7,570	7,574	136	544	55694	int MatSolve_SegAIJ_NaturalOrdering(Mat,
38.3	8.7	5,267	5,272	208	832	25351	<pre>int MatMult_SegAIJ_Inode(Mat, Vec, Vec)</pre>
38.2	7.8	4,702	4,704	1212	1212	3881	MPI_Sendrecv()
37.3	5.2	2,020	3,151	8	1280	393963	int MatFDColoringApply(Mat, MatFDColorin
37.3	2.5	1,536	1,536	994.75	0	1545	MPI_Recv()
	1.1	688	688	242	0	2847	int VecMAXPY_Seg(int, const PetscScalar
	1.1	686	686	978.5	0	701	MPI_Waitany()
	1.0	629	629	170	0	3703	<pre>int VecMDot_Seg(int, Vec, const Vec *, P</pre>
	0.8	470	470	1075	0	437	int PetscMemcpy(void *, const void *, in
	1.3	404	797	2	52	398722	int MatLUFactorSymbolic_SeqAIJ(Mat, IS,
	0.7	400	400	3934	0	102	<pre>int PetscMemzero(void *, int)</pre>
	0.6	356	359	208	832	1726	<pre>int MatMultAdd_SeqAIJ_Inode(Mat, Vec, Ve</pre>
	0.5	291	291	1	35	291261	MPI_Init()
	0.7	253	414	386	4632	1074	int VecScatterBegin_PtoP(Vec, Vec, Inser
	0.4	252	253	48	82	5284	int Mat_AIJ_CheckInode(Mat, PetscTruth)

PETSc ex19 (Profile - overall and percentages)

PETSc ex19 (Tracing)

11

PETSc ex19 (Tracing - callgraph)

VAMPIR - Global Call Tree

PETSc ex19 (PAPI_FP_INS, PAPI_L1_DCM)

iBacy: IdataIsameer/petsc/src/snes/examples/tutorials/data/PAPI_FP_INS/pprof.dat File Options Windows Help Mean n,c,t 0,0,0 n,c,t 1,0,0 n,c,t 2,0,0	Uses multiple counter vs profile measurement
Image: Property and the property of the propert	File Options Windows Help Mean PAPI_L1_DCM n,c,t 0,0,0 n,c,t 1,0,0 n,c,t 3,0,0
5.08% int MatSolve_SeqAIJ_NaturalOrdering(Mat, Ve 2.2% int FormFunctionLocal(DALocalInfo *, Field * 1.27% int VecMAXPY_Seq(int, const PetscScalar *, V	Mean Data Window: Idata/sameer/petsc/src/snes/examples/tutorials/data/PAPI_L1_DCM/pprof.dz Image: Content of the system of t

EVH1 – High Energy and Nuclear Physics

□ Enhanced Virginia Hydrodynamics #1 (EVH1)

- "TeraScale Simulations of Neutrino-Driven Supernovae and Their Nucleosynthesis" SciDAC project
- Configured to run a simulation of the Sedov-Taylor blast wave solution in 2D spherical geometry
- \square EVH1 communication bound for > 64 processors
 - Predominant routine (>50% of execution time) at this scale is MPI_ALLTOALL
 - Used in matrix transpose-like operations
 - Current implementation uses 1D matrix decomposition
- □ PERC benchmark code

EVH1 Aggregate Performance

 Aggregate performance measures over all tasks for .1 second simulation

• Using PAPI on IBM SP

EVH1 Execution Profile

TAU Parallel Performance System

EVH1 Execution Trace

TAU Parallel Performance System

SAMRAI

- Structured Adaptive Mesh Refinement Application Infrastructure (SAMRAI)
 - O Andy Wissink (LLNL)
- **D** Programming
 - C++ and MPI
 - o SPMD
- □ Instrumentation
 - PDT for automatic instrumentation of routines
 - MPI interposition wrappers
 - SAMRAI timers for interesting code segments
 - > timers classified in groups (apps, mesh, ...)
 - timer groups are managed by TAU groups

SAMRAI Execution Profile

\Box Euler (2D)

SAMRAI Euler Profile

$\Rightarrow n$	1,c,t 0,0,0) profile			• [[
<u>F</u> ile	⊻alue	<u>O</u> rder	<u>M</u> ode	Units	<u>H</u> elp
	×0.0525			n,c,t 0,0,0	1
18.55	i%	0(200/	void Euler::computeFluxesOnPatch(SAMRAI::Patch &, double, double)	
		0.2	9%	MPI_Kecv() 	
		0./	20%	Void SAMRAI::xter_RetifieSchedulez::generateCommunicationSchedule(SF	AIVI
			2.40%	MDL InitA	Iei
		1	2.25%	void SAMRAInthox, PointerRasenathox, PointerRase()	
		1	2 02%	void SAMRAInthox_ConstPointerBasen~tbox_ConstPointerBase()	
		8	1.82%	void Fuler::conservativeDifferenceOnPatch(SAMRAI::Patch &, double, dou/	ble
			1.48%	void Euler::postprocessRefine(SAMRAI::Patch &. const SAMRAI::Patch &. (100
			1.19%	SAMRAI::tbox Pointer <samrai::hier boxoverlap2=""> SAMRAI::pdat CellGe</samrai::hier>	on
			1.15%	void Euler::tagGradientDetectorCells(SAMRAI::Patch &, int, double, bool, in	ıt, i
			1.10%	MPI_Test()	
11					
				close	
= v	oid Eule	r::compt	iteFluxe	sOnPatch(SAMRAI::Patch &, double, double) profile	•
File	<u>V</u> alue	<u>M</u> ode	<u>U</u> nits		Hel
-				void Fuler::computeFluxesOnPatch(SAMRAI::Patch &, double, double)	
19.26	\$%			mean	
19.26 18.55	3% 3% 			n,c,t 0,0,0	
19.26 48.55 19.49	3% 5% 1%			n,c,t 0,0,0 n,c,t 1,0,0	
19.26 48.55 19.49 19.04	5% 5% 1%			mean n,c,t 0,0,0 n,c,t 1,0,0 n,c,t 2,0,0	

SAMRAI Euler Trace

Full Profile Window (512 Processors)

Node / Context / Thread Profile Window

000	n,c,t, 0,0,0 - 512proc/samrai/taudata/neutronbackup/rs/sameer/Users/
ile Options Winde	ows Help
COUNTER NAME: F	P WALL CLOCK TIME (seconds)
345.5474	MPI_Allreduce()
	116.4951 algs::HyperbolicLevelIntegrator3::advance_bdry_fill_create
	103.2566 algs::HyperbolicLevelIntegrator3::advanceLevel()
	59.0096 algs::HyperbolicLevelIntegrator3::fill_new_level_create
	37.4482 mesh::GriddingAlgorithm3::load_balance_boxes
	32.8548 algs::HyperbolicLevelIntegrator3::advance_bdry_fill_comm
	21.4095 🔜 mesh::GriddingAlgorithm3::findRefinementBoxes()
	13.4925 📕 algs::HyperbolicLevelIntegrator3::coarsen_fluxsum_create
	12.6572 🗖 algs::HyperbolicLevelIntegrator3::coarsen_sync_create
	10.4408 🗌 mesh::GriddingAlgorithm3::find_boxes_containing_tags
	8.9215 MPI_Init()
	8.6893 🗌 mesh::GriddingAlgorithm3::bdry_fill_tags_create
	7.2717 MPI_Bcast()
	7.1321 MPI_Wait()
	4.0833 algs::HyperbolicLevelIntegrator3::error_bdry_fill_comm
	3.6778 MPI_Finalize()
	3.1405 MPI_Isend()
	3.0156 MPI_Waitall()
	2.3457 mesh::GriddingAlgorithm3::remove_intersections_regrid_all
	1.7275 MPI_Test()
	1.6515 algs::HyperbolicLevelIntegrator3::fill_new_level_comm
	1.3919 MPI_Comm_rank()

Derived Metrics

Paraprof Profile Browser Routine Window

000	Function Data Window: 512proc	/samrai/taudata/neutronbackup/rs/sameer/Users/
File Options Window	rs Help	
COUNTER NAME: P_WAL	L_CLOCK_TIME (microseconds) F	UNCTION NAME: algs::HyperbolicLevelIntegrator3::advance_bdry_fill_create
1.1746398477	93E8	mean
1.164950	88E8	n,c,t 0,0,0
1.167797	42E8	n,c,t 1,0,0
1.166617	84E8	n,c,t 2,0,0
1.177297	17E8	n,c,t 3,0,0
1.167183	71E8	n,c,t 4,0,0
1.168217	29E8	n,c,t 5,0,0
1.172325	78E8	n,c,t 6,0,0
1.16845	68E8	n,c,t 7,0,0
1.184144	61E8	n,c,t 8,0,0
1.165033	45E8	n,c,t 9,0,0
1.168917	02E8	n,c,t 10,0,0
1.168790	62E8	n,c,t 11,0,0
1.170664	56E8	n,c,t 12,0,0
1.164705	25E8	n,c,t 13,0,0
1.166520	28E8	n,c,t 14,0,0
1.168012	68E8	n,c,t 15,0,0
1.168300	14E8	n,c,t 16,0,0
1.168119	97E8	n,c,t 17,0,0
1.169861	49E8	n,c,t 18,0,0
1.177868	89E8	n,c,t 19,0,0
1.169367	29E8	n,c,t 20,0,0
1.172034	11E8	n,c,t 21,0,0
1.172138	72E8	n,c,t 22,0,0
1.174919	06E8	n,c,t 23,0,0
1.167563	19E8	n,c,t 24,0,0

Mixed-mode Parallel Programs (OpenMPI + MPF)

- □ Portable mixed-mode parallel programming
 - Multi-threaded shared memory programming
 - Inter-node message passing
- Performance measurement
 - Access to RTS and communication events
 - Associate communication and application events
- □ 2D Stommel model of ocean circulation
 - OpenMP for shared memory parallel programming
 - MPI for cross-box message-based parallelism
 - Jacobi iteration, 5-point stencil
 - Timothy Kaiser (San Diego Supercomputing Center)

Stommel Instrumentation

OpenMP directive instrumentation

```
pomp for enter(&omp rd 2);
#line 252 "stommel.c"
#pragma omp for schedule(static) reduction(+: diff) private(j)
  firstprivate (a1,a2,a3,a4,a5) nowait
for( i=i1;i<=i2;i++) {</pre>
  for(j=j1;j<=j2;j++) {</pre>
   new psi[i][j]=a1*psi[i+1][j] + a2*psi[i-1][j] + a3*psi[i][j+1]
      + a4*psi[i][j-1] - a5*the for[i][j];
   diff=diff+fabs(new psi[i][j]-psi[i][j]);
  }
pomp barrier enter(&omp rd 2);
#pragma omp barrier
pomp barrier exit(&omp rd 2);
pomp for exit(&omp rd 2);
#line 261 "stommel.c"
```

OpenMP + MPI Ocean Modeling (HW Profile)

% configure -papi=../packages/papi -openmp -c++=pgCC -cc=pgcc -mpiinc=../packages/mpich/include -mpilib=../packages/mpich/libo

OpenMP + MPI Ocean Modeling (Trace)

Mixed-mode Parallel Programs (Java + MPI)

- □ MPI performance measurement
 - MPI profiling interface link-time interposition library
 - TAU wrappers in native profiling interface library
 - Send/Receive events and communication statistics
- mpiJava (Syracuse, JavaGrande, 1999)
 - Java wrapper package
 - JNI C bindings to MPI communication library
 - O Dynamic shared object (*libmpijava.so*) loaded in JVM
 - *prunjava* calls *mpirun* to distribute program to nodes
 - Contrast to Java RMI-based schemes (MPJ, CCJ)

TAU mpiJava Instrumentation Architecture

Java Multi-threading and Message Passing

- □ Java threads and MPI communications
 - Shared-memory multi-threading events
 - Message communications events
- Unified performance measurement and views
 - Integration of performance mechanisms
 - Integrated association of performance events
 thread event and communication events
 user-defined (source-level) performance events
 JVM events
- □ Requires instrumentation and measurement cooperation

Instrumentation and Measurement Cooperation

D Problem

- O JVMPI doesn't see MPI events (e.g., rank (node))
- MPI profiling interfaces doesn't see threads
- Source instrumentation doesn't see either!
- □ Need cooperation between interfaces
 - MPI exposes rank and gets thread information
 - JVMPI exposes thread information and gets rank
 - Source instrumentation gets both
 - Post-mortem matching of sends and receives
- □ Selective instrumentation

o java -XrunTAU:exclude=java/io,sun

TAU Java Instrumentation Architecture

Parallel Java Game of Life (Trace)

□ Integrated event tracing □ Multi-level event grouping

TAU Parallel Performance System

DOD HPCMP UGC 2004

Integrated Performance View (Callgraph)

Object-Oriented Programming and C++

- Object-oriented programming is based on concepts of abstract data types, encapsulation, inheritance, ...
- Languages (such as C++) provide support implementing domain-specific abstractions in the form of class libraries
- Furthermore, generic programming mechanisms allow for efficient coding abstractions and compile-time transformations
- Creates a semantic gap between the transformed code and what the user expects (and describes in source code)
- Need a mechanism to expose the nature of high-level abstract computation to the performance tools
- □ Map low-level performance data to high-level semantics

C++ Template Instrumentation (Blitz++, PETE)

- □ High-level objects
 - O Array classes
 - Templates (Blitz++)
- Optimizations
 - Array processing• Expressions (PETE)
- Relate performance data to high-level statement
- Complexity of template evaluation

DOD HPCMP UGC 2004

Standard Template Instrumentation Difficulties

- Instantiated templates result in mangled identifiers
- □ Standard profiling techniques / tools are deficient
 - Integrated with proprietary compilers
 - Specific systems platforms and programming models

_	Incl. Total (secs)	Excl. Total (secs)		
	2.228	0.000	_gettimeofday 🛆	
	0.334	0.000	astm562_Q2_5blitz549_bz_ArrayExprUnaryOptm520_Q2_5blitz480_bz_ArrayExpr_	
	0.334	0.000	evaluatetm593_Q2_5blitz549_bz_ArrayExprUnaryOptm520_Q2_5blitz480_bz_ArrayE	
	0.334	0.000	sum_tm_146_Q2_5blitz133_bz_ArrayExprOp_tm_109_Q2_5blitz31ArrayIterator_tm_10	
	0.334	0.000	sumtm350_Q2_5blitz337_bz_ArrayExprOptm313_Q2_5blitz132_bz_ArrayExprtm1	
	0.334	0.000	bz_ArrayExprFullReducetm211_Q2_5blitz168_bz_ArrayExprtm146_Q2_5blitz133_t 🧮	
	0.334	0.000	_bz_ArrayExprFullReducetm415_Q2_5blitz372_bz_ArrayExprtm350_Q2_5blitz337_t	
	0.223	0.000	fastRead_Q2_5blitz584_bz_ArrayExprtm562_Q2_5blitz549_bz_ArrayExprUnaryOptm	
	0.223	0.000	fastRead_Q2_5blitz549_bz_ArrayExprUnaryOp_tm_520_Q2_5blitz480_bz_ArrayExpr_tm_	
	0.223	0.000	sum_tm_10_fXCiL_1_2_5blitzGRCQ2_5blitz20Array_tm_8_Z1ZXZ2Z_Q3_5blitz70ReduceS	
	0.223	0.000	_bz_ArrayExprFullReducetm73_Q2_5blitz31ArrayIteratortm10_fXCiL_1_2Q2_5blit	
	0.223	0.000	fastReadQ2_5blitz445_bz_ArrayExpr0ptm421_Q2_5blitz235_bz_ArrayExprtm213_	
E	1	1		
	Very lon	ng!	Uninterpretable routine names	

Blitz++ Library Instrumentation

Expression templates embed the form of the expression in a template name

- □ In Blitz++, the library describes the structure of the expression template to the profiling toolkit
- □ Allows for pretty printing the expression templates Expression: B + C - 2.0 * D

Blitz++ Library Instrumentation (example)

```
#ifdef BZ TAU PROFILING
static string exprDescription;
if (!exprDescription.length()) {
 exprDescription = "A";
 prettyPrintFormat format( bz true); // Terse mode on
 format.nextArrayOperandSymbol();
 T update::prettyPrint(exprDescription);
 expr.prettyPrint(exprDescription, format);
TAU PROFILE (" ", exprDescription, TAU BLITZ);
#endif
```

TAU Instrumentation and Profiling for C++

TAU and SMARTS: Asynchronous Performance

□ <u>S</u>calable <u>M</u>ultithreaded <u>A</u>synchronuous <u>RTS</u>

- User-level threads, light-weight virtual processors
- Macro-dataflow, asynchronous execution interleaving iterates from data-parallel statements
- Integrated with POOMA II (parallel dense array library)
- □ Measurement of asynchronous parallel execution
 - Utilized the TAU mapping API
 - Associate iterate performance with data parallel statement
 - Evaluate different scheduling policies
- SMARTS: Exploting Temporal Locality and Parallelism

 through Vertical Execution" (ICS '99)

TAU Mapping of Asynchronous Execution

With and Without Mapping (Thread 0)

With and Without Mapping (Thread 1)

<u> </u>	Array	initialization performance lumped Without mapping				
		n,c,t 0,0,1				
29.2	1%	run ExpressionKernel <array<2, brick="" double,="" view0<array<2,="">::This_t>::NewT_t, View0<array<2, brick="" double,=""></array<2,></array<2,>				
	13.64%	run ExpressionKernel <array<2, brick="" double,="" view0<array<2,="">::This_t>::NewT_t, View0<array<2, brick="" double,=""></array<2,></array<2,>				
	12.92%	run ExpressionKernel <array<2, brick="" double,="" view0<array<2,="">::This_t>::NewT_t, View0<array<2, brick="" double,=""></array<2,></array<2,>				
	12.91%	run ExpressionKernel <array<2, brick="" double,="" view0<array<2,="">::This_t>::NewT_t, View0<array<2, brick="" double,=""></array<2,></array<2,>				
	10.58%	run ExpressionKyrnel <array<2, brick="" double,="" view0<array<2,="">::This_t>::NewT_t, View0<array<2, brick="" double,=""></array<2,></array<2,>				
	10.38%	run ExpressionKernet-Array<2, View0 <array<2, brick="" double,="">::This_t>::NewT_t, View0<array<2, brick="" double,=""></array<2,></array<2,>				
	10.32%	run ExpressionKernel <array<2, brick="" double,="" view0<array<2,="">::This_t>::NewT_t, View0<array<2, brick="" double,=""></array<2,></array<2,>				
	cebedule private() void ()					
]	Performance associated with ExpressionKernel object ewT_t, ViewO <array<2< td=""></array<2<>					

TAU Profiling of SMARTS Scheduling

TAU Parallel Performance System

DOD HPCMP UGC 2004

SMARTS Tracing (SOR) – Vampir Visualization

SCVE scheduler used in Red/Black SOR running on 32 processors of SGI Origin 2000

Scientific Software (Performance) Engineering

- □ Modern scientific simulation software is complex (\uparrow)
 - Large development teams of diverse expertise
 - Simultaneous development on different system parts
 - Iterative, multi-stage, long-term software development
- □ Need support for managing complex software process
 - Software engineering tools for revision control, automated testing, and bug tracking are commonplace
 - In contrast, tools for performance engineering are not
 > evaluation (measurement, analysis, benchmarking)
 > optimization (diagnosis, tracking, prediction, tuning)
- Incorporate performance engineering methodology and support by flexible and robust performance tools

Hierarchical Parallel Software (C-SAFE/Uintah)

- □ Center for Simulation of Accidental Fires & Explosions
 - O ASCI Level 1 center, University of Utah
 - PSE for multi-model simulation high-energy explosion
 - Combine fundamental chemistry and engineering physics
 - Integrate non-linear solvers, optimization, computational steering, visualization, and experimental data verification
 - Support very large-scale coupled simulations
- □ Computer science problems:
 - Coupling multiple scientific simulation codes with different numerical and software properties
 - Software engineering across diverse expert teams
 - Achieving high performance on large-scale systems

Example C-SAFE Simulation Problems

Heptane fire simulation

Material stress simulation

Typical C-SAFE simulation with a billion degrees of freedom and non-linear time dynamics

TAU Parallel Performance System

DOD HPCMP UGC 2004

Uintah Problem Solving Environment

- Uintah parallel programming framework
 - Component-based and object-parallel
 - Multi-model task-graph scheduling and execution
 - Shared-memory (thread), distributed-memory (MPI), and mixed-model parallelization
- Design and implement Uintah component architecture
 - Application programmers provide
 - > description of computation (tasks and variables)
 - > code to perform task on sub-region of space (patch)
 - Components for scheduling, partitioning, load balance, ...
 - Follow Common Component Architecture (CCA) model
- Design and implement Uintah Computational Framework (UCF) on top of the component architecture

Uintah High-Level Component View

TAU Parallel Performance System

DOD HPCMP UGC 2004

Uintah Parallel Component Architecture

Uintah Computational Framework

- □ Execution model based on software (macro) dataflow
 - Exposes parallelism and hides data transport latency
 - Computations expressed a directed acyclic graphs of tasks
 consumes input and produces output (input to future task)
 input/outputs specified for each patch in a structured grid
- □ Abstraction of global single-assignment memory
 - DataWarehouse
 - Directory mapping names to values (array structured)
 - Write value once then communicate to awaiting tasks
- □ Task graph gets mapped to processing resources
- □ Communications schedule approximates global optimal

Uintah Task Graph (Material Point Method)

- Diagram of named tasks (ovals) and data (edges)
- □ Imminent computation
 - Dataflow-constrained

□ MPM

- Newtonian material point motion time step
- Solid: values defined at material point (particle)
- Dashed: values defined at vertex (grid)
- Prime ('): values updated during time step

Uintah PSE

□ UCF automatically sets up:

- Domain decomposition
- Inter-processor communication with aggregation/reduction
- O Parallel I/O
- Checkpoint and restart
- Performance measurement and analysis (stay tuned)

□ Software engineering

- Coding standards
- O CVS (Commits: Y3 26.6 files/day, Y4 29.9 files/day)
- Correctness regression testing with bugzilla bug tracking
- Nightly build (parallel compiles)
- 170,000 lines of code (Fortran and C++ tasks supported)

Performance Technology Integration

□ Uintah presents challenges to performance integration

- Software diversity and structure
 - > UCF middleware, simulation code modules
 - > component-based hierarchy
- Portability objectives
 - ≻ cross-language (C, C++, F90) and cross-platform
 - > multi-parallelism: thread, message passing, mixed
- Scalability objectives
- High-level programming and execution abstractions
- □ Requires flexible and robust performance technology
- □ Requires support for performance mapping

Performance Analysis Objectives for Uintah

□ Micro tuning

• Optimization of simulation code (task) kernels for maximum serial performance

□ Scalability tuning

- Identification of parallel execution bottlenecks
 > overheads: scheduler, data warehouse, communication
 > load imbalance
- O Adjustment of task graph decomposition and scheduling
- Performance tracking
 - Understand performance impacts of code modifications
 - Throughout course of software development
 C-SAFE application and UCF software

Uintah Performance Engineering Approach

- Contemporary performance methodology focuses on control flow (function) level measurement and analysis
- C-SAFE application involves coupled-models with taskbased parallelism and dataflow control constraints
- □ Performance engineering on *algorithmic* (task) basis
 - Observe performance based on algorithm (task) semantics
 - Analyze task performance characteristics in relation to other simulation tasks and UCF components
 - > scientific component developers can concentrate on performance improvement at algorithmic level
 - > UCF developers can concentrate on bottlenecks not directly associated with simulation module code

<u>H</u>elp

Task execution

mean

n.c.t 0.0.0

n,c,t 1,0,0

n,c,t 2,0,0

n,c,t 3,0,0

n.c.t 4.0.0

n.c.t 5.0.0

n.c.t 6.0.0

n.c.t 7.0.0

Units

Task Execution in Uintah Parallel Scheduler

BACY Task execution [MPIScheduler::execute()] pr • □ Profile methods Configure Help File File Value Mode and functions in Functions 84.26% mean scheduler and in 79.91% n,c,t 0,0,0 81.36% n,c,t 1,0,0 81.91% MPI library n.c.t 2.0.0 86.63% n,c,t 3,0,0 81.59% n.c.t 4.0.0 89.58% n,c,t 5,0,0 84.00% n,c,t 6,0,0 89.11% n,c,t 7,0,0 Task execution time Task execution n.c.t 0.0.0 profile dominates (what task?) time distribution File Value Order Mode Units n,c,t 0,0,0 79.91% Task execution [MPIScheduler::execute()] 10.88% MPI Waitall() **MPI** communication 3.97% MPIScheduler::gatherParticles 0.95% MPI Finalize() 0.70% MPI Probe() overheads (where?) 0.69% MPI Type indexed() 0.54% | main() void (int, char **) 0.50% Initial Send Recv [MPIScheduler::execute()] 0.35% MPIScheduler::scatterParticles 0.34% MPI Testsome() \square Need to *map* 0.29% MPI Isend() 0.19% Recv Dependency [MPIScheduler::execute()] 0.17% MPI Allreduce() performance data! 0.14% Topological Sort [MPIScheduler::execute()] ~. II close

Task Execution in Uintah Parallel Scheduler BACY Task execution [MPIScheduler::execute()] pl • □ Profiling Configure Help File File Value Mode Units Help Task execution Functions methods 84.26% mean mean 79.91% n.c.t 0.0.0 and n,c,t 0,0,0 81.36% n,c,t 1,0,0 n,c,t 1,0,0 81.91% n,c,t 2,0,0 n.c.t 2.0.0 86.63% n,c,t 3,0,0 functions n,c,t 3,0,0 81.59% n.c.t 4.0.0 n,c,t 4,0,0 89.58% n.c.t 5.0.0 n,c,t 5,0,0 84.00% n.c.t 6.0.0 n,c,t 6,0,0 89.11% n.c.t 7.0.0 n,c,t 7,0,0 <11 Task execution time n,c,t 0,0,0 profile dominates (what task?) \square Need to Value Order Mode Units File n,c,t 0,0,0 map the 79.91% Task execution [MPIScheduler::execute()] 10.88% MPI Waitall() 3.97% MPIScheduler::gatherParticles perform-0.95% MPI Finalize() 0.70% MPI Probe() MPI communication 0.69% MPI Type indexed() ance data 0.54% main() void (int, char **) 0.50% Initial Send Recv [MPIScheduler::execute() overheads (where?) 0.35% MPIScheduler::scatterParticles 0.34% MPI Testsome() 0.29% MPI Isend() 0.19% Recv Dependency [MPIScheduler::execute()] 0.17% MPI Allreduce() 0.14% Topological Sort [MPIScheduler::execute()] <!! close

PCMP UGC 2004

Task Computation and Mapping

- Task computations on individual particles generate work packets that are scheduled and executed
 - Work packets that "interpolate particles to grid"
- □ Assign semantic name to a task abstraction
 - SerialMPM::interpolateParticleToGrid
- □ Partition execution time among different tasks
 - Need to relate the performance of each particle computation (work packet) to the associated task
 - Map TAU timer object to task (abstract) computation
 - \bigcirc Mapping: task object \Leftrightarrow grid object \Leftrightarrow patch objects
- □ Partition performance data on domain-specific axes
- □ Helps bridge the semantic-gap!

Mapping Instrumentation (example)

```
void MPIScheduler::execute(const ProcessorGroup * pc,
                            DataWarehouseP & old dw,
                            DataWarehouseP & dw ) {
 TAU MAPPING CREATE
   task->getName(), "[MPIScheduler::execute()]",
    (TauGroup t) (void*) task->getName(), task->getName(), 0);
 TAU MAPPING OBJECT (tautimer)
 TAU MAPPING LINK (tautimer, (TauGroup t) (void*) task->getName());
  // EXTERNAL ASSOCIATION
 TAU MAPPING PROFILE TIMER (doitprofiler, tautimer, 0)
 TAU MAPPING PROFILE START (doitprofiler, 0);
 task->doit(pc);
 TAU MAPPING PROFILE STOP(0);
  . . .
```

Work Packet – to – Task Mapping (Profile)

Work Packet – to – Task Mapping (Trace)

UAMPID Clabo	Timolino						
	rumenne sus32 higharpy: Global Timalina (10 0 us – 40 293 s = 40 293	Work nacket					
	10.0 s 20.0 s 30.0 s	40.0s					
Process 0 28 65	65 55 49 56 55 49 56 55 49 56 55 49 56 55 49						
Process 1 <mark>28 65</mark>	33 55 49 56 55 49 56 55 49 56 55 49 56 55 49 56 55 49						
Process 2 28 65	33 55 49 56 55 49 56 55 49 56 55 49 56 55 49 56 55 49	6 26 Serial MPM::actually Initialize					
Process 3 28 <mark>65</mark>	3 55 49 56 55 49 56 55 49 56 55 49 56 55 49 56 55 49	6 26 Serial MPM::interpolateParticlesToGrid events colored					
Process 4 <mark>28 65</mark>	55 49 56 55 49 56 55 49 56 55 49 56 55 49 56 55 49	6 26 Contact:exMomInterpolated					
Process 5 <mark>28 65</mark>	13 55 49 56 55 49 56 55 49 56 55 49 56 55 49 56 55 49 56 55 49	⁶ ²⁶ Serial MPM::compute Stress lensor Serial MPM::compute Internal Force					
Process 6 <mark>28 65</mark>	15 43 <mark>49 56 55 49 56 55 49 56 55 49 56 55 49 56 55 49 5</mark>	6 26 Serial MPM::compute Internal HeatRate					
Process 7 28 <mark>65</mark>	15 4 <mark>3</mark> 49 56 55 49 56 55 49 56 55 49 56 55 49	6 26 Serial MPM::solveHeatEquations					
Process 8 <mark>28 65</mark>	3: 55 49 56 55 49 56 55 49 56 55 49 56 55 49 56 55 49	6 26 Serial MPM::integrateAcceleration					
Process 9 <mark>28 65</mark>	33 55 49 56 55 49 56 55 49 56 55 49 56 55 49	6 26 Contact::exMom Integrated					
Process 10 <mark>28 65</mark>	38 55 49 56 55 49 56 55 49 56 55 49 56 55 49						
Process 11 <mark>28 65</mark>	33 55 49 56 55 49 56 55 49 56 55 49 56 55 49 56 55 49	6 <mark>26</mark>					
Process 12 <mark>28 65</mark>	43 55 49 56 55 49 56 55 49 56 55 49 56 55 49 56 55 49						
Process 13 <mark>28 65</mark>	43 55 49 56 55 49 56 55 49 56 55 49 56 55 49 56 55 49	🛛 🔁 VAMPIR – Summary Chart 🔹 🔄					
Process 14 <mark>28 65</mark>	55 43 49 56 55 49 56 55 49 56 55 49 56 55 5	⁶ 26 sus32 bigbar.pv: Summary Chart (Times, 0.0 s – 40.293 s)					
Process 15 <mark>28</mark> 65	55 43 49 56 55 49 56 55 49 56 55 49 56 55 49 56 55 49						
Process 16 <mark>28 65</mark>	43 55 49 56 55 49 56 55 49 56 55 49 56 55 49						
Process 17 <mark>28 65</mark>	43 55 49 56 55 49 56 55 49 56 55 49 56 55 49	36 26 MPI					
Process 18 <mark>28 65</mark>	55 49 56 55 49 56 55 49 56 55 49 56 55 49 56 55 49	³⁶ 26 Serial MPM .: internolate Particles To Grid					
Process 19 <mark>28 65</mark>	43 55 49 56 55 49 56 55 49 56 55 49 56 55 4 9 56 55 49						
Process 20 <mark>28 65</mark>	43 55 49 56 55 49 56 55 49 56 55 49 56 55 49	6 26 Serial MPM::compute Internal Force					
Process 21 <mark>28 65</mark>	43 55 49 56 55 49 56 55 49 56 55 49 56 55 49	Serial MPM::interpolateToParticlesAndUpdate					
Process 22 <mark>28 65</mark>	55 49 56 55 49 56 55 49 56 55 49 56 55 49						
Process 23 28 65	55 4349 56 55 49 56 55 49 56 55 49 56 55 49						
Process 24 28 65	55 4349 56 55 49 56 55 49 56 55 49 56 55 49	³⁶ 26 Serial MPM::compute Stress Tensor					
Process 25 28 65	55 4349 56 49 56 55 49 56 55 49	Serial MPM::compute Internal Heat Rate					
Process 26 28 65	55 49 56 55 49 56 55 49						
Process 27 28 65		a zeraimemactuarrymitiarize					
Process 28 28 65	Distinct phagos of	Serial MPM::solveHeatEquations					
Process 29 28 65	Distinct phases of						
Process 30 28 65							
Process 31 23 65 Computation can be							
identited based on task							
4<i>U Parallel F</i>	erformance system 0	B DOD HPCMP UGC 2					

Statistics for Relative Task Contributions

Comparing Uintah Traces for Scalability Analysis

TAU Parallel Performance System

70

DOD HPCMP UGC 2004

Scaling Performance Optimizations (Past)

Scalability to 2000 Processors (Current)

HYbrid Coordinate Ocean Model (HYCOM)

- Primitive equation ocean circulation model (MICOM)
- Improved vertical coordinate scheme that remains isopycnic in the open, stratified ocean
- Transitions smoothly
 - To *z-level* coordinates in the weakly-stratified upperocean mixed layer, to sigma coordinates in shallow water conditions and back to *z-level* coordinates in very shallow water conditions
- □ User has control over the model domain

• Generating the forcing field

Dr. Avi Purkayastha

Getting started with HYCOM

- □ For generation of the serial or parallel executables
 - Make.com => ../config/\$(ARCH)_\$(TYPE)
 - Contains all Makefile macro definitions for the preprocessor, fortran, C, parser, and instrumentor compile and link options and associated libraries
- Serial runs
 - 2.00 degree Atlantic Ocean regional grid was used for input, without any change to domain or resolution
- Parallel runs
 - O Global ocean (GLBA0.24) was the domain
 - Performance analysis was carried out only for the MPI version of HYCOM

Gprof Profile Data on HYCOM

gprof profile excerpt for serial HYCOM run

%time	e second	s seconds	calls	ms/call	ms/cal	l name
19.2	312.75	312.75	5400	57.92	62.64	momtum
12.0	507.94	195.19	2700	72.29	139.20	tsadvc
9.9	668.57	160.63	2700	59.49	62.18	cnuity
8.5	807.76	139.19	118800	1.17	1.30	mod_advem
6.3	910.75	102.99				.sqrt (<i>library</i>)
5.3	997.17	86.42	140504	0.62	0.62 .	hybgenaj

gprof profile excerpt for parallel HYCOM run

		cumul	ative sel	f self	f to	otal	
9	<i>o</i> time	(seconds)	seconds	calls	ms/call	l ms/call	name
2	21.0	30801.17	30801.17				cors_newpkts (<i>library</i>)
16	5.1	54375.47	23574.30				kickpipes (library)
14	.0	74918.15	20542.68	5760	3566.44	3757.85	momtum
7.	.9	86522.66	11604.51	5760	2014.67	3764.78	tsadvc
6.	5	96048.19	9525.53	191391936	0.05	0.06	mxkppaij
6	.2	105110.34	9062.15	5760	1573.29	1603.96	cnuity
5	.3	112831.86	7721.52	299520	25.		mod advem

Gprof Profile Data on HYCOM

□ Gprof profile data conclusions

- Prime candidates for optimization
 - > momtum
 - ≻ tsadvc
 - *≻ mx**
 - > cnuity
- o mathematical functions
- also contribute significantly to the run time
- atan and sqrt

TAU Profile Analysis of HYCOM

- Exclusive time shows the relative largest time consuming functions
 - O Including, surprisingly, MPI_Waitall
- Exclusive time spent can be used as an indicator for measuring efficiency of these functions
 - For example, obtaining MFLOP rates

%Time	Exclusive msec	Inclusive total msec	#call	#subrtns	Inclusive usec/call	Name
100.0	8:25.60	49:01.37	1	54686.1	2941369933	НҮСОМ
34.3	16:47.70	16:47.70	54191.4	0	18595	MPI_Waitall
32.1	10:41.98:6	15:43.07	192	113178	4911808	TSADVC
19.7	:11.67	9:40.60	192	31488	3023979	MOMTUM
9.3	2:12.77	4:33.82	192	20601.6	1426132	CNUITY

Tau profile data excerpt with the highest time-consuming functions

TAU Profile Analysis of HYCOM

- Low and high end of the time variance spent by the MPI_Waitall call in some of the processors
- Additional investigation is then required from the tracefiles for better understanding overall communication model

Proc #	%Time	Exclusive	Inclusive total	#call	Inclusive
		msec	msec		usec/call
13	4.7	2:17.33	2:17.33	54182	2535
14	5.6	2:43.63	2:43.63	54182	3020
18	80.6	39:31.07	39:31.07	54229	43723
23	75.3	36:54.28	36:54.28	54182	40867
24	81.1	39:45.41	39:45.41	54229	43988

Tau profile data excerpt highlighting load imbalance on MPI_Waitall

PAPI profile analysis of HYCOM

 PAPI profiling (obtained with Tau) exclusive operation count can show performance of individual functions
 O TSADVC

> 2.07e+11/10:41.98(=642s) = 323 Mflops (~6% of peak)

%Time	Exclusive counts	Inclusive total counts	#call	#subrtns	Inclusive usec/call	Name
100.0	1.56e+11	5.25e+11	1	54686.1	52543238273	НҮСОМ
39.3	2.07e+11	2.08e+11	192	113178	1085499128	TSADVC
22.2	1.15e+11	1.16e+11	192	31488	606724005	MOMTUM
8.3	4.32e+10	4.37e+10	192	20601.6	227820049	CNUITY
0.5	2.57e+09	2.57e+09	54191.4	0	47497	MPI_Waitall

Papi profile data excerpt with the highest time-consuming functions

Vampir Trace analysis of HYCOM

- □ *MPI_Waitall* time per process shows the wide disparity
 - Time spent for blocking call to return => load imbalance
- Small snapshot of global timeline indicates *MPI_Waitall* waiting on non-blocking receive operations to complete

Vampir Trace analysis of HYCOM

- This kind of load imbalance is a generic problem for structured-grid ocean models caused by variations in amount of ocean per tile
- HYCOM avoids all calculations over land, so the load imbalance leads to long intervals spent in MPI_Waitall on processors that "own" little ocean
- A different MPI strategy is perhaps necessary to reduce the MPI overhead on those processors with the most computational overhead which is the main contributing factors for those processors waiting for non-blocking receive operations

Air-Vehicles Unstructured flow Solver (AVUS)

- □ CFD application formerly known as Cobalt60
 - O Parallel, implicit Euler/Navier-Stokes 3-D flow solver

> Second order accurate in space and time

- Solver accepts unstructured meshes composed of a mix of hexahedra, prisms, pyramids, and tetrahedron
- □ Solver employs a cell-centered, finite-volume method
 - Maintains a compact stencil on an unstructured mesh
- □ Solver incorporates two one-equation turbulence models
 - Spalart-Allmaras and Baldwin-Barth models
 - Either can be chosen for a flow simulation

Gprof Profile Data on AVUS

 Case performs 20 pseudo-time-steps with 4 Newton sub-iterations per step and 10 block Gauss-Seidel sweeps per Newton iteration

[%] C	umulative	self		self	total		serial
time	seconds	seconds	calls	s/call	s/call	name	
30.24	3051.08	3051.08	2501	1.22	1.22	ucm6_	
17.62	4828.48	1777.40	2500	0.71	0.72	karl6sc_	
10.58	5895.68	1067.20	2500	0.43	0.43	dfdqv6sc_	
6.62	6563.80	668.12	2500	0.27	0.27	dfdqi6sc_	
5.29	7097.33	533.54	2500	0.21	0.21	lhslusc_	
5.19	7621.29	523.96	2500	0.21	0.21	preset6sc_	
3.36	7960.23	338.94	2500	0.14	0.14	vflux6_	
2.97	8259.75	299.52	2500	0.12	0.12	dfdqt6sc_	
2.77	8539.25	279.49	2501	0.11	0.11	riemann	

	cumulati	ve self		self	total	128 procs
time	seconds	seconds	s calls	ms/call	ms/call name	
17.64	3144.27	3144.27			smpi_u	net_lookup
10.97	5099.47	1955.20	320128	6.11	6.11 ucm	6
9.58	6806.52	1707.05	320000	5.33	5.41 karl6	sc_
6.05	7884.48	1077.96	320000	3.37	3.37 dfdqv6	sc_
5.37	8841.78	957.30	320000	2.99	2.99 dfdqi6	sc_
5.28	9782.93	941.15	320000	2.94	2.94 preset	6sc_
5.16 1	L0702.34	919.41			MPID_SMP_Che	ck_incoming
4.88 1	L1571.45	869.11			gm_ntol	n_u8
3.86 1	L2258.93	687.48			MPID_SendComp.	lete
3.85	12944.93	686.00			gmpi net loc	kup
3.02	13483.33	538.40	320000	1.68	1.68 lhslus	c

TAU Parallel Performance System

Gprof Profile Data on AVUS

□ Gprof profile data conclusions

- Prime candidates for optimization
 - > karl6sc
 - ≻ ucm6
- □ Increasing parallelism
 - percentage of utilization of these functions is closer
 - Potential impact of the MPI strategy needs investigation

PAPI profile analysis of AVUS

Papi counter values (millions) for KARL6SC and UCM6 routines

	UCM6	KARL6SC
Total CPU cycles	4630	5220
Total instructions	1772	1495
FP operations	361	264
TLB total misses	2.50	7.10
L1 Data Cache misses	131	104
L2 Data Cache misses	33.3	55
Correct branch-prediction	37.7	6.62
Branch miss-prediction	1.98	0.001

PAPI profile analysis of AVUS

- □ Entire outer time-step loop in the solver
 - O 20 time steps, 4 Newton iterations
 - Instrumented with PAPI functions (via TAU)
 - O Measured for floating point performance
 ▶ 204 Mflops ~3.33% of theoretical peak
- Performance is representative of such types of applications with unstructured data-structures
- Detailed PAPI analysis of *karl6sc* and *ucm6* show the relatively high TLB data misses
 - More detailed loop analysis were then performed with PAPI to isolate the bottlenecks causing these TLB misses

TAU Performance Analysis of AVUS

□ Mean profile of the original AVUS source

- O Running on 16 procs, using 44 matrix solve sweeps
- *karl6sc* dominates the calculations

Oucm6 and MPI_Ssend take almost the same time

FUNCTION SUMMARY	(mean):	

%Time	Exclusive msec	Inclusive total msec	#Call	#Subrs	Inclusive usec/call	Name
59.0	1:00.129	1:13.608	180	15480	408939	KARL6SC
11.1	13,906	13,906	181	0	76832	UCM6
10.9	13,648	13,648	34995.6	0	390	MPI Ssend()
5.2	6,498	6,498	180	0	36104	DFDQV6SC
4.5	5,626	5,626	180	0	31256	DFDQI6SC
3.3	4,144	4,144	180	0	23028	PRESET6SC
2.1	2,677	2,677	8764.5	0	306	MPI Waitall()
1.9	2,389	2,389	180	0	13272	LHSLUSC
1.7	2,163	2,163	181	0	11955	RIEMANN
1.7	2,079	2,079	180	0	11553	DFDQT6SC
1.3	1,662	1,662	181	0	9184	GRAD6
1.1	1,358	1,358	180	0	7546	VFLUX6
76.5	1,147	1:35.507	180	1100	530597	INTEGR86
0.9	1,145	1,145	164.25	164.25	6977	MPI Bcast()

Tau performance analysis of AVUS

- □ Mean profile of the original AVUS source
 - O 16 procs using convergence checks (44 solver sweeps)
 - With *ucm6* improvements and *MPI_Ssend* replacements FUNCTION SUMMARY (mean):

%Time	Exclusive msec	Inclusive total msec	#Call #	Subrs	Inclusive usec/call	Name
54.2	50,402	1:03.235	180	18009	351308	KARL6SC
11.0	12,823	12,823	181	0	70848	UCM6
6.7	7,835	7,835	13632.	50	575	MPI_Waitall()
6.2	7,193	7,202	6385	6385	1128	
MPI A	lreduce()					
5.6	6,534	6,534	180	0	36302	DFDQV6SC
4.8	5,574	5,574	180	0	30969	DFDQI6SC
3.4	4,023	4,023	180	0	22354	PRESET6SC
2.4	2,831	2,832	1	39	2832007	MPI Init()
2.1	2,417	2,417	180	0	13433	LHSLUSČ
1.0	1,199	1,199	28519.8	0	42	MPI_Isend()
	a .		0.0			

TAU Parallel Performance System

1A0 rurunet rerjormance system

DOD HECKIE UGC 2004

Vampir trace analysis for AVUS

From timeline and summary graphs
 • Effect of replacing *MPI_Ssends* • Use *MPI_Isends* and *MPI_Wait*

Process summary -- 32 procs w/non-blocking sends

Process summary -- 32 procs w/blocking sends

AVUS Scalability results

- □ Final scalability results
 - Original AVUS source with/without convergence tests
 - Blocking vs. non-blocking communications

AVUS Scalability Results

□ Final accumulated solution times

Original AVUS source with/without convergence tests
O Blocking vs. non-blocking communications

Performance Data Management

- Performance evaluation of parallel programs and systems requires analysis of data from multiple experiments
- Little support exists for storing and evaluating datasets from a variety of experimentation scenarios
- Need open performance data management technology that can provide a common, reusable foundation for performance results storage, access and sharing
- Provide standard solutions for how to represent parallel performance data
- □ Performance Data Management Framework (**PerfDMF**)

PerfDMF Objectives

- □ Import/export of data from/to parallel profiling tools
- Handle large-scale profile data and large numbers of experiments
- □ Provide a robust profile data management system
 - Portable across user environments
 - Easily reused in the performance tool implementations
 - Able to evolve to accommodate new performance data
- Support abstract profile query and analysis API that offers an alternative DBMS programming interface
- Allow for extension and customization in the performance data schema and analysis API

TAU Performance Database Architecture

TAU Performance System

Performance Analysis Programs

PerfDMF Data Schema

PerfDMF Loading Tools

Configuration Utility / Schema loader

- Configures database connection settings, loads database schema if necessary
- □ Application Creator / Loader
 - Loads application metadata from XML file, or creates an application with empty metadata
- D Experiment Creator / Loader
 - Loads experiment metadata from XML file, or creates an experiment with empty metadata

Trial Loader

O Loads parallel profile data from several supported formats
O TAU, dynaprof, mpiP, HPMToolkit, gprof, psrun, ...

Query / Analysis API

- □ Java 1.4 API for querying database
- Paradigm
 - Select object / set filter
 - Get list of sub-objects
 - Example:

Examples: ParaProf Integration

TAU Parallel Performance System

Example: Profile Viewer

Software Engineering of PerfDMF

- □ Java 1.4 runs anywhere there is a JVM
- JDBC connection allows for use of any supported DBMS
 Tested with PostgreSQL, MySQL, DB2
- □ Generic data schema supports different profile formats ○ *TAU*, *dynaprof*, *mpiP*, *HPMToolkit*, *gprof*, *psrun*, ...

PerfDMF Future Work

□ Short term

- Integration with CUBE
- Integration with PPerfDB/PPerfXchange
- Support more profile formats
- Application of data mining operations on large parallel datasets (over 1000 threads of execution).

□ Long term

- Performance profile data and analysis servers
- Shared performance repositories

Online Profile Measurement and Analysis in TAU

- □ Standard TAU profiling
 - Per node/context/thread
- □ Profile "dump" routine
 - O Context-level
 - Profile file per each thread in context
 - O Appends to profile file
 - Selective event dumping
- Analysis tools access files through shared file system
- Application-level profile
 "access" routine

Online Performance Analysis and Visualization

TAU Parallel Performance System

Performance Analysis/Visualization in SCIRun

TAU Parallel Performance System

Uintah Computational Framework (UCF)

□ University of Utah □ UCF analysis • Scheduling O MPI library • Components □ 500 processes □ Use for online and offline visualization □ Apply SCIRun steering

TAU Parallel Performance System

"Terrain" Performance Visualization

Scatterplot Displays

Each point coordinate determined by three values: MPI Reduce MPI Recv MPI Waitsome □ Min/Max value range □ Effective for cluster analysis

• Relation between MPI_Recv and MPI_Waitsome

TAU Parallel Performance System

Online Unitah Performance Profiling

- Demonstration of online profiling capability
- Colliding elastic disks
 - Test material point method (MPM) code
 - Executed on 512 processors ASCI Blue Pacific at LLNL
- □ Example 1 (Terrain visualization)
 - Exclusive execution time across event groups
 - Multiple time steps
- □ Example 2 (Bargraph visualization)
 - MPI execution time and performance mapping
- □ Example 3 (Domain visualization)
 - Task time allocation to "patches"

Example 1 (Event Groups)

TAU Parallel Performance System

DOD HPCMP UGC 2004

Example 2 (MPI Performance)

Example 3 (Domain-Specific Visualization)

Online Trace Analysis with TAU and VNG

- □ TAU measurement of application to generate traces
- □ Write traces (currently) to NFS files and unify

Integrated Performance Evaluation Environment

TAU Parallel Performance System