
Sameer Shende
sameer@cs.uoregon.edu

Department of Computer and Information Science

NeuroInformatics Center

University of Oregon

Performance Technology
for Parallel Component Software

Feb. 5, 2003 University of Oregon2

Outline

r What is Component Software? [www.cca-forum.org]

r Performance Engineered Component Software

r CCA Performance Observation Component
¶ CCAFFEINE (Classic C++)

¶ SIDL

r Applications :
¶ Optimizer Component

¶ Combustion Component

r Concluding remarks

Feb. 5, 2003 University of Oregon3

Why Components?

The task of the software development team is to engineer the
illusion of simplicity [Booch].

Feb. 5, 2003 University of Oregon4

The Good the Bad and the Ugly

r An example of what can lead to a crisis in software:

r At least 41 different Fast Fourier Transform (FFT) libraries:
¶ see, http://www.fftw.org/benchfft/doc/ffts.html

r Many (if not all) have different interfaces
¶ different procedure names and different input and output parameters

r SUBROUTINE FOUR1(DATA, NN, ISIGN)
¶ Replaces DATA by its discrete Fourier transform (if ISIGN is input

as 1) or replaces DATA by NN times its inverse discrete Fourier
transform (if ISIGN is input as -1). DATA is a complex array of
length NN or, equivalently, a real array of length 2*NN. NN MUST
be an integer power of 2 (this is not checked for!).

Feb. 5, 2003 University of Oregon5

The Good the Bad and the Ugly

r An example of what can lead to a crisis in software:

r At least 41 different Fast Fourier Transform (FFT) libraries:
¶ see, http://www.fftw.org/benchfft/doc/ffts.html

r Many (if not all) have different interfaces
¶ different procedure names and different input and output parameters

r SUBROUTINE FOUR1(DATA, NN, ISIGN)
¶ Replaces DATA by its discrete Fourier transform (if ISIGN is input

as 1) or replaces DATA by NN times its inverse discrete Fourier
transform (if ISIGN is input as -1). DATA is a complex array of
length NN or, equivalently, a real array of length 2*NN. NN MUST
be an integer power of 2 (this is not checked for!).

Feb. 5, 2003 University of Oregon6

What Are Components [Szyperski]

r A component is a binary unit of independent deployment
¶ well separated from other components

ÿ fences make good neighbors

¶ can be deployed independently

r A component is a unit of third-party composition
¶ is composable (even by physicists)

¶ comes with clear specifications of what it requires and provides

¶ interacts with its environment through well-defined interfaces

r A component has no persistent state
¶ temporary state set only through well-defined interfaces

¶ throw away that dependence on global data (common blocks)

r Similar to Java packages and Fortran 90 modules (with a little
help)

Feb. 5, 2003 University of Oregon7

Component Technology

r What is a component?

¶ Implementation provides functionality buts hides details
ÿNo direct access is possible

¶ Interface provides access to component functionality
ÿAccess “ports” are well-defined and generated by tools

¶ Matching connector links component interfaces
ÿConstructed by framework and hidden from users

Feb. 5, 2003 University of Oregon8

Component Technology Features

r Interoperability across multiple languages
¶ Language independent interfaces (C/C++, Fortran, Java,…)

¶ Automatically generated bindings to working code

r Interoperability across multiple platforms
¶ Computer systems hardware independence

¶ Operating systems independence

r Transparent execution model
¶ Serial, parallel, and distributed system

r Incremental evolution of application software

r Components promote software reuse

r Components are “plug-and-play”

Feb. 5, 2003 University of Oregon9

Language Interoperability

Simulation Framework
(C)

Solver Library
(C++)

Numerical Routines
(f77)

Scripting Driver
(Python)

Visualization System
(Java)

Callback Handlers
(Python)

Callback Handlers
(Python)

Feb. 5, 2003 University of Oregon10

Mixing Languages is Hard!

Native

cfortran.h

SWIG

JNI

Siloon

Chasm

Platform
Dependent

C

C++

f77

f90

Python

Java

Feb. 5, 2003 University of Oregon11

Babel makes all supported languages peers

C

C++

f77

f90

Python

Java

Once a library has been
“Babelized” it is equally

accessable from all
supported languages

This is not
an LCD

Solution!

Feb. 5, 2003 University of Oregon12

Babel’s Mechanism for Mixing Languages

r Code Generator r Runtime Library

SIDL
interface

description

Babel
Compiler

C++

F77

F90

Python

C

XML

Matlab?

Java

Babel
Runtime

Application

Feb. 5, 2003 University of Oregon13

greetings.sidl: A Sample SIDL File

version greetings 1.0;

package greetings {

 interface Hello {

 void setName(in string name);

 string sayIt ();

 }

 class English implements-all Hello { }

}

version greetings 1.0;

package greetings {

 interface Hello {

 void setName(in string name);

 string sayIt ();

 }

 class English implements-all Hello { }

}

Feb. 5, 2003 University of Oregon14

Library Developer Does This...

r `babel --server=C++ greetings.sidl`

r Add implementation details

r Compile & Link into Library/DLL

SIDL
interface

description

Babel
Compiler C++ Skels

C++ Impls

IORs

C++ Stubs

libgreetings.so

Feb. 5, 2003 University of Oregon15

Adding the Implementation

string
greetings::English_impl::sayIt()
throw ()
{
 // DO-NOT-DELETE splicer.begin(greetings.English.sayIt)
 string msg(“Hello “);
 return msg + d_name + “!”;
 // DO-NOT-DELETE splicer.end(greetings.English.sayIt)
}

string
greetings::English_impl::sayIt()
throw ()
{
 // DO-NOT-DELETE splicer.begin(greetings.English.sayIt)
 string msg(“Hello “);
 return msg + d_name + “!”;
 // DO-NOT-DELETE splicer.end(greetings.English.sayIt)
}

namespace greetings {
class English_impl {
 private:
 // DO-NOT-DELETE splicer.begin(greetings.English._impl)
 string d_name;
 // DO-NOT-DELETE splicer.end(greetings.English._impl)

namespace greetings {
class English_impl {
 private:
 // DO-NOT-DELETE splicer.begin(greetings.English._impl)
 string d_name;
 // DO-NOT-DELETE splicer.end(greetings.English._impl)

Feb. 5, 2003 University of Oregon16

Library User Does This...

r `babel --client=F77 greetings.sidl`

r Compile & Link generated Code & Runtime

r Place DLL in suitable location

SIDL
interface

description

Babel
Compiler IOR

Headers

F77 Stubs

libgreetings.so

Babel
Runtime

Application

Feb. 5, 2003 University of Oregon17

Common Component Architecture Specification

Scientific IDL

Proxy
generator

Component 1 Component 2

CCA Services

Any CCA compliant framework

Builder

Repository

CCA ports

Framework-specific
part of CCA ports

Abstract
configuration API

Repository API

Feb. 5, 2003 University of Oregon18

CCA Concepts: Ports

r Designing for interoperability and reuse requires
“standard” interfaces

r Ports define how components interact
¶ Through well-defined interfaces (ports)

¶ In OO languages, a port is a class or interface

¶ In Fortran, a port is a set of subroutines or a module

r Components may provide ports
¶ Implement the class or subroutines of the port

r Components may use ports
¶ Call methods or subroutines in the port

r Links denote a caller/callee relationship

Feb. 5, 2003 University of Oregon19

CCA Concepts: Frameworks

r Provides the means to “hold” components and compose
them into applications

r Allow exchange of ports among components without
exposing implementation details

r Provide a small set of standard services to components
¶ Builder services allow programs to compose CCA apps

r Frameworks may make themselves appear as components
in order to connect to components in other frameworks

r Specific frameworks support specific computing models

Feb. 5, 2003 University of Oregon20

CCA Example

r Numerically integrate a continuous function

r Use two different techniques

r Lines show port
connections

r Dashed lines are
alternate port
connections

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPorta b x

)(xf

xa b

xn uniformily
distributed
over [a,b]

)(xf

Feb. 5, 2003 University of Oregon21

r CCAFFEINE
¶ SPMD/SCMD parallel, direct connect

¶ Direct connection

r CCAT / XCAT
¶ Distributed network

¶ Grid Web services

r SCIRun
¶ Parallel, multithreaded, direct connect

r Decaf
¶ Language interoperability via Babel

r Legion (under development)

CCA Framework Prototypes

Feb. 5, 2003 University of Oregon22

Performance-Engineered Component Software

r Intra- and Inter-component performance engineering

r Four general parts:
¶ Performance observation
ÿ integrated measurement and analysis

¶ Performance query and monitoring
ÿ runtime access to performance information

¶ Performance control
ÿmechanisms to alter performance observation

¶ Performance knowledge
ÿ characterization and modeling

r Consistent with component architecture / implementation

Feb. 5, 2003 University of Oregon23

r Extend the programming and execution environment to
be performance observable and performance aware

Main Idea: Extend Component Design

performance
observation

ports

performance
knowledge

ports

…

Performance
Knowledge

Component
Core

…

variants

Performance
Observation

 • empirical
 • analytical

… …

Component
Performance
Repository

repository
service
ports

component
ports

 • measurement
 • analysis

Feb. 5, 2003 University of Oregon24

r Performance measurement
integration in component form

r Functional extension of original
component design ()
¶ Include new component

methods and ports () for other
components to access measured
performance data

¶ Allow original component to access performance data
ÿEncapsulate as tightly-coupled and co-resident performance

observation object

ÿPOC “provides” port allow use of optimized interfaces ()
to access ``internal'' performance observations

performance
observation

ports

…

Component
Core

…
variants

Performance
Observation

…

component
ports

 • measurement
 • analysis

Performance Observation and Component

Feb. 5, 2003 University of Oregon25

Performance Knowledge

r Describe and store “known” component performance
¶ Benchmark characterizations in performance database

¶ Empirical or analytical performance models

r Saved information about component performance
¶ Use for performance-guided selection and deployment

¶ Use for runtime adaptation

r Representation must be in common forms with standard
means for accessing the performance information
¶ Compatible with component architecture

Feb. 5, 2003 University of Oregon26

r Performance knowledge storage
¶ Implement in component

architecture framework
¶ Similar to CCA component

repository
¶ Access by component

infrastructure

r View performance knowledge as component (PKC)
¶ PKC ports give access to performance knowledge
¶ to other components, back to original component
¶ Static/dynamic component control and composition
¶ Component composition performance knowledge

Component Performance Repository

performance
knowledge

ports

Performance
Knowledge

 • empirical
 • analytical

…

Component
Performance
Repository

repository
service
ports

Feb. 5, 2003 University of Oregon27

Performance Engineering Support in CCA

r Define a standard observation component interface for:
¶ Performance measurement

¶ Performance data query

¶ Performance control (enable/disable)

r Implement performance interfaces for use in CCA
¶ TAU performance system

¶ CCA component frameworks (CCAFFEINE, SIDL/Babel)

r Demonstrations
¶ Optimizing component
ÿ picks from a set of equivalent CCA port implementations

¶ Flame reaction-diffusion application

Feb. 5, 2003 University of Oregon28

CCA Performance Observation Component

r Design measurement port and measurement interfaces
¶ Timer
ÿ start/stop

ÿ set name/type/group

¶ Control
ÿ enable/disable groups

¶ Query
ÿ get timer names

ÿmetrics, counters, dump to disk

¶ Event
ÿ user-defined events

Feb. 5, 2003 University of Oregon29

CCA C++ (CCAFFEINE) Performance Interface
namespace performance {
 namespace ccaports {
 class Measurement: public virtual classic::gov::cca::Port {
 public:
 virtual ~ Measurement (){}

 /* Create a Timer interface */
 virtual performance::Timer* createTimer(void) = 0;
 virtual performance::Timer* createTimer(string name) = 0;
 virtual performance::Timer* createTimer(string name, string type) = 0;
 virtual performance::Timer* createTimer(string name, string type,

string group) = 0;

 /* Create a Query interface */
 virtual performance::Query* createQuery(void) = 0;

 /* Create a user-defined Event interface */
 virtual performance::Event* createEvent(void) = 0;
 virtual performance::Event* createEvent(string name) = 0;

 /* Create a Control interface for selectively enabling and disabling
 * the instrumentation based on groups */
 virtual performance::Control* createControl(void) = 0;
 };
 }
}

Measurement port

Measurement interfaces

Feb. 5, 2003 University of Oregon30

CCA Timer Interface Declaration

namespace performance {
 class Timer {
 public:
 virtual ~Timer() {}

 /* Implement methods in a derived class to provide functionality */

 /* Start and stop the Timer */
 virtual void start(void) = 0;
 virtual void stop(void) = 0;

 /* Set name and type for Timer */
 virtual void setName(string name) = 0;
 virtual string getName(void) = 0;
 virtual void setType(string name) = 0;
 virtual string getType(void) = 0;

 /* Set the group name and group type associated with the Timer */
 virtual void setGroupName(string name) = 0;
 virtual string getGroupName(void) = 0;

 virtual void setGroupId(unsigned long group) = 0;
 virtual unsigned long getGroupId(void) = 0;
 };
}

Timer interface methods

Feb. 5, 2003 University of Oregon31

Use of Observation Component in CCA Example

#include "ports/Measurement_CCA.h"
...
double MonteCarloIntegrator::integrate(double lowBound, double upBound,
 int count) {
 classic::gov::cca::Port * port;
 double sum = 0.0;
 // Get Measurement port
 port = frameworkServices->getPort ("MeasurementPort");
 if (port)
 measurement_m = dynamic_cast < performance::ccaports::Measurement * >(port);
 if (measurement_m == 0){
 cerr << "Connected to something other than a Measurement port";
 return -1;
 }
 static performance::Timer* t = measurement_m->createTimer(
 string("IntegrateTimer"));
 t->start();
 for (int i = 0; i < count; i++) {
 double x = random_m->getRandomNumber ();
 sum = sum + function_m->evaluate (x);
 }
 t->stop();
}

Feb. 5, 2003 University of Oregon32

Using TAU Component in CCAFEINE
repository get TauTimer
repository get Driver
repository get MidpointIntegrator
repository get MonteCarloIntegrator
repository get RandomGenerator
repository get LinearFunction
repository get NonlinearFunction
repository get PiFunction

create LinearFunction lin_func
create NonlinearFunction nonlin_func
create PiFunction pi_func
create MonteCarloIntegrator mc_integrator
create RandomGenerator rand

create TauTimer tau
connect mc_integrator RandomGeneratorPort rand RandomGeneratorPort
connect mc_integrator FunctionPort nonlin_func FunctionPort
connect mc_integrator TimerPort tau TimerPort
create Driver driver
connect driver IntegratorPort mc_integrator IntegratorPort
go driver Go
quit

Feb. 5, 2003 University of Oregon33

SIDL Interface for Performance Component

version performance 1.0;
package performance
{
 interface Timer
 { /* Start/stop the Timer */
 void start();
 void stop();

 /* Set/get the Timer name */
 void setName(in string name);
 string getName();

 /* Set/get Timer type information (e.g., signature of the routine) */
 void setType(in string name);
 string getType();

 /* Set/get the group name associated with the Timer */
 void setGroupName(in string name);
 string getGroupName();

 /* Set/get the group id associated with the Timer */
 void setGroupId(in long group);
 long getGroupId();
 } …

Feb. 5, 2003 University of Oregon34

SIDL Interface : Control

interface Control
 { /* Enable/disable group id */
 void enableGroupId(in long id);
 void disableGroupId(in long id);

 /* Enable/disable group name */
 void enableGroupName(in string name);
 void disableGroupName(in string name);

 /* Enable/disable all groups */
 void enableAllGroups();
 void disableAllGroups();
 }
/* Implementation of performance component Control interface*/
 class TauControl implements-all Control
 {
 }

 /* Implementation of performance component Measurement interface*/
 class TauMeasurement implements-all Measurement, gov.cca.Component
 {
 }

Feb. 5, 2003 University of Oregon35

SIDL Interface : Query

/* Query interface to obtain timing information */
 interface Query
 { /* Get the list of Timer and Counter names */
 array<string> getTimerNames();
 array<string> getCounterNames();
 void getTimerData(in array<string> timerList,
 out array<double, 2> counterExclusive,
 out array<double, 2> counterInclusive, out array<int> numCalls,
 out array<int> numChildCalls, out array<string> counterNames,
 out int numCounters);
 /* Writes instantaneous profile to disk in a dump file. */
 void dumpProfileData();
 /* Writes the instantaneous profile to disk in a dump file whose name
 * contains the current timestamp. */
 void dumpProfileDataIncremental();

 /* Writes the list of timer names to a dump file on the disk */
 void dumpTimerNames();
 /* Writes the profile of the given set of timers to the disk. */
 void dumpTimerData(in array<string> timerList);

 /* Writes the profile of the given set of timers to the disk. The dump
 * file name contains the current timestamp when the data was dumped. */
 void dumpTimerDataIncremental(in array<string> timerList); }

Feb. 5, 2003 University of Oregon36

SIDL Interface :Event

 /* User defined event profiles for application specific events */
 interface Event
 { /* Set the name of the event */
 void setName(in string name);

 /* Trigger the event */
 void trigger(in double data);
 }

Feb. 5, 2003 University of Oregon37

Measurement Port Implementation

r Use of Measurement port (i.e., instrumentation)

¶ independent of choice of measurement tool

¶ independent of choice of measurement type

r TAU performance observability component
¶ Implements the Measurement port

¶ Implements Timer, Control, Query, Control

¶ Port can be registered with the CCAFEINE framework

r Components instrument to generic Measurement port

¶ Runtime selection of TAU component during execution
¶ TauMeasurement_CCA port implementation uses a

specific TAU library for choice of measurement type

Feb. 5, 2003 University of Oregon38

What’s Going On Here?

TAU API

runtime TAU
performance data

TAU API

application
component

performance
component

other API

…

Alternative implementations
of performance component

Two instrumentation
paths using TAU API

Two query and control
paths using TAU API

application
component

Feb. 5, 2003 University of Oregon39

Simple Runtime Performance Optimization

r Components are “plug-and-play”
¶ One can choose from a set of equivalent port

implementations based on performance measurements

¶ An outside agent can monitor and select an optimal
working set of components

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Feb. 5, 2003 University of Oregon40

Component Optimizing Performance Results

Feb. 5, 2003 University of Oregon41

Computational Facility for Reacting Flow Science

r Sandia National Laboratory
¶ DOE SciDAC project (http://cfrfs.ca.sandia.gov)

¶ Jaideep Ray

r Component-based simulation and analysis
¶ Sandia’s CCAFFEINE framework

¶ Toolkit components for assembling flame simulation
ÿ integrator, spatial discretizations, chemical/transport models

ÿ structured adaptive mesh, load-balancers, error-estimators

ÿ in-core, off-machine, data transfers for post-processing

¶ Components are C++ and wrapped F77 and C code

r Kernel for 3D, adaptive mesh low Mach flame simulation

Feb. 5, 2003 University of Oregon42

Flame Reaction-Diffusion Demonstration

CCAFFEINE

Feb. 5, 2003 University of Oregon43

Meeting CCA Performance Engineering Goals?

r Language interoperability?
¶ SIDL and Babel give access to all supported languages

¶ TAU supports multi-language instrumentation

¶ Component interface instrumentation automated with PDT

r Platform interoperability?
¶ Implement observability component across platforms

¶ TAU runs wherever CCA runs

r Execution model transparent?
¶ TAU measurement support for multiple execution models

r Reuse with any CCA-compliant framework?
¶ Demonstrated with SIDL/Babel, CCAFEINE, SCIRun

Feb. 5, 2003 University of Oregon44

Importance to Grid Computing and Performance

r Component software is a natural model for developing
applications for the Grid
¶ ICENI (Imperial College), CCAT / XCAT (U. Indiana)

r Our work leverages abstraction power of CCA as well as
the infrastructure of CCA frameworks
¶ Similarly leverage Grid infrastructure and services

¶ Mostly riding back of CCA framework development

r Application-level performance view coupled with Grid
resource assessment and monitoring
¶ More responsive to performance dynamics

¶ Beginning work with NWS forecaster in applications

Feb. 5, 2003 University of Oregon45

Meeting CCA Performance Engineering Goals?

r Component performance knowledge?
¶ Representation and performance repository work to do

¶ Utilize effectively for deployment and steering

¶ Build repository with TAU performance database

r Performance of component compositions?
¶ Component-to-component performance
ÿPer connection instrumentation and measurement

ÿUtilize performance mapping support

¶ Ensemble-wide performance monitoring
ÿ connect performance “producers” to “consumers”

ÿ component-style implementation

Feb. 5, 2003 University of Oregon46

Concluding Remarks

r Parallel component systems pose challenging
performance analysis problems that require robust
methodologies and tools

r New performance problems will arise
¶ Instrumentation and measurement

¶ Data analysis and presentation

¶ Diagnosis and tuning

¶ Performance modeling

r Performance engineered components
¶ Performance knowledge, observation, query and control

r Available from:
http://www.cs.uoregon.edu/research/paracomp/tau/tauprofile/dist/taucomponent.tar.gz

Support Acknowledgement

r TAU and PDT support:
¶ Department of Energy (DOE)

ÿDOE 2000 ACTS contract

ÿDOE MICS contract

ÿDOE ASCI Level 3 (LANL, LLNL)

ÿU. of Utah DOE ASCI Level 1 subcontract

¶ DARPA

¶ NSF National Young Investigator (NYI) award

