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Research Motivation
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TAU Performance System

 Tuning and Analysis Utilities (11+ year project effort)

 Performance system framework for scalable parallel and
distributed high-performance computing

 Targets a general complex system computation model
 nodes / contexts / threads
 Multi-level: system / software / parallelism
 Measurement and analysis abstraction

 Integrated toolkit for performance instrumentation,
measurement, analysis, and visualization
 Portable performance profiling and tracing facility

 Open software approach with technology integration
 University of Oregon , Forschungszentrum Jülich, LANL
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Definitions – Profiling

 Profiling
 Recording of summary information during execution

 inclusive, exclusive time, # calls, hardware statistics, …

 Reflects performance behavior of program entities
 functions, loops, basic blocks
 user-defined “semantic” entities

 Very good for low-cost performance assessment

 Helps to expose performance bottlenecks and hotspots

 Implemented through
 sampling: periodic OS interrupts or hardware counter traps
 instrumentation: direct insertion of measurement code
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Definitions – Tracing

 Tracing
 Recording of information about significant points (events)

during program execution
 entering/exiting code region (function, loop, block, …)
 thread/process interactions (e.g., send/receive message)

 Save information in event record
 timestamp
CPU identifier, thread identifier
Event type and event-specific information

  Event trace is a time-sequenced stream of event records

  Can be used to reconstruct dynamic program behavior

 Typically requires code instrumentation
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Event Tracing: Instrumentation, Monitor, Trace

1 master

2 slave

3 ...

void slave {
  trace(ENTER, 2);
  ...
  recv(A, tag, buf);
  trace(RECV, A);
  ...
  trace(EXIT, 2);
}

void master {
  trace(ENTER, 1);
  ...
  trace(SEND, B);
  send(B, tag, buf);
  ...
  trace(EXIT, 1);
}

MONITOR 58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

CPU A:

CPU B:

Event definition

timestamp
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Event Tracing: “Timeline” Visualization

1 master

2 slave

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main
master
slave

58 60 62 64 66 68 70

B

A
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TAU Performance System Architecture

EPILOG

Paraver



Performance Measurement Advanced Operating Systems, U. Oregon10

TAU Analysis

 Parallel profile analysis
 Pprof

 parallel profiler with text-based display

 ParaProf
Graphical, scalable, parallel profile analysis and display

 Trace analysis and visualization
 Trace merging and clock adjustment (if necessary)

 Trace format conversion (ALOG, SDDF, VTF, Paraver)

 Trace visualization using Vampir (Pallas/Intel)
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Pprof Output (NAS Parallel Benchmark – LU)

 Intel Quad
PIII Xeon

 F90 +
MPICH

 Profile
 - Node
 - Context
 - Thread

 Events
 - code
 - MPI
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Terminology – Example

 For routine “int main( )”:
 Exclusive time

 100-20-50-20=10 secs
 Inclusive time

 100 secs

 Calls
 1 call

 Subrs (no. of child
routines called)
 3

 Inclusive time/call
 100secs

int main( )
{ /* takes 100 secs */

  f1(); /* takes 20 secs */
  f2(); /* takes 50 secs */
  f1(); /* takes 20 secs */

  /* other work */
}

/*
Time can be replaced by  counts
*/
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ParaProf (NAS Parallel Benchmark – LU)

node,context, thread Global profiles Routine
profile across
all nodes

Event legend

Individual profile
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Trace Visualization using Vampir [Intel/Pallas]

Timeline display Callgraph display

Parallelism display

Communications
display
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PETSc ex19 (Tracing)

Commonly seen
communicaton
behavior
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TAU’s EVH1 Execution Trace in Vampir

MPI_Alltoall
is an execution
bottleneck
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Strategies for Empirical Performance Evaluation

 Empirical performance evaluation as a series of
performance experiments
 Experiment trials describing instrumentation and

measurement requirements

 Where/When/How axes of empirical performance space
where are performance measurements made in program

 routines, loops, statements…
when is performance instrumentation done

 compile-time, while pre-processing, runtime…
 how are performance measurement/instrumentation chosen

 profiling with hw counters, tracing, callpath profiling…
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TAU Instrumentation Approach

 Support for standard program events
 Routines

 Classes and templates

 Statement-level blocks

 Support for user-defined events
 Begin/End events (“user-defined timers”)

 Atomic events

 Selection of event statistics

 Support definition of “semantic” entities for mapping

 Support for event groups

 Instrumentation optimization
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TAU Instrumentation

 Flexible instrumentation mechanisms at multiple levels
 Source code

manual
 automatic

 C, C++, F77/90/95 (Program Database Toolkit (PDT))
 OpenMP (directive rewriting (Opari), POMP spec)

 Object code
 pre-instrumented libraries (e.g., MPI using PMPI)
 statically-linked and dynamically-linked

 Executable code
 dynamic instrumentation (pre-execution) (DynInstAPI)
 virtual machine instrumentation (e.g., Java using JVMPI)
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Multi-Level Instrumentation

 Targets common measurement interface
 TAU API

 Multiple instrumentation interfaces
 Simultaneously active

 Information sharing between interfaces
 Utilizes instrumentation knowledge between levels

 Selective instrumentation
 Available at each level
 Cross-level selection

 Targets a common performance model
 Presents a unified view of execution

 Consistent performance events
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TAU Measurement Options

 Parallel profiling
 Function-level, block-level, statement-level

 Supports user-defined events

 TAU parallel profile data stored during execution

 Hardware counts values

 Support for multiple counters

 Support for callgraph and callpath profiling

 Tracing
 All profile-level events

 Inter-process communication events

 Trace merging and format conversion
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Optimizing Instrumentation

 Grouping
 Enable/disable profile groups at runtime

 Selective Instrumentation
 Include/exclude events (or files) for instrumentation

 Re-instrumentation
 Profile, overhead analysis, exclude events, re-instrument

 Compensation
 Overhead calibration, removal
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Grouping Performance Data in TAU

 Profile Groups
 A group of related routines forms a profile group

 Statically defined
TAU_DEFAULT, TAU_USER[1-5], TAU_MESSAGE,

TAU_IO, …

 Dynamically defined
 group name based on string, such as “adlib” or “particles”
 runtime lookup in a map to get unique group identifier
 uses tau_instrumentor to instrument

 Ability to change group names at runtime

 Group-based instrumentation and measurement control
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Selective Instrumentation

 Selection of which performance events to observe
 Could depend on scope, type, level of interest

 Could depend on instrumentation overhead

 How is selection supported in instrumentation system?
 No choice

 Include / exclude routine and file lists (TAU)

 Environment variables

 Static vs. dynamic
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Automatic Instrumentation of Source Code

% cxxparse file.cpp -I/dir -Dflags      [PDT: Program Database Toolkit]
% tau_instrumentor
Usage : tau_instrumentor <pdbfile> <sourcefile> [-o <outputfile>] [-noinline]
[-g groupname] [-i headerfile] [-c|-c++|-fortran] [-f <instr_req_file> ]
For selective instrumentation, use –f option
% tau_instrumentor foo.pdb foo.cpp –o foo.inst.cpp –f selective.dat
% cat selective.dat
# Selective instrumentation: Specify an exclude/include list of routines/files.
BEGIN_EXCLUDE_LIST
void quicksort(int *, int, int)
void sort_5elements(int *)
void interchange(int *, int *)
END_EXCLUDE_LIST

BEGIN_FILE_INCLUDE_LIST
Main.cpp
Foo?.c
*.C
END_FILE_INCLUDE_LIST
# Instruments routines in Main.cpp, Foo?.c and *.C files only
# Use BEGIN_[FILE]_INCLUDE_LIST with END_[FILE]_INCLUDE_LIST
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Distortion of Performance Data

 Problem: Controlling instrumentation of small routines
 High relative measurement overhead

 Significant intrusion and possible perturbation

 Solution: Re-instrument the application!
 Weed out frequently executing lightweight routine

 Feedback to instrumentation system
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Re-instrumentation

 Tau_reduce: rule based overhead analysis
 Analyze the performance data to determine events with

high (relative) overhead performance measurements
 Create a select list for excluding those events
 Rule grammar (used in tau_reduce tool [N. Trebon, UO])

[GroupName:] Field Operator Number
 GroupName indicates rule applies to events in group
 Field is a event metric attribute (from profile statistics)

 numcalls, numsubs, percent, usec, cumusec, count [PAPI],
totalcount, stdev, usecs/call, counts/call

 Operator is one of >, <, or =
 Number is any number
 Compound rules possible using & between simple rules
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Example Rules

 #Exclude all events that are members of TAU_USER
#and use less than 1000 microseconds
TAU_USER:usec < 1000

 #Exclude all events that have less than 100
#microseconds and are called only once
usec < 1000 & numcalls = 1

 #Exclude all events that have less than 1000 usecs per
#call OR have a (total inclusive) percent less than 5
usecs/call < 1000
percent < 5

 Scientific notation can be used
 usec>1000 & numcalls>400000 & usecs/call<30 & percent>25
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TAU_REDUCE

 Reads profile files and rules

 Creates selective instrumentation file
 Specifies which routines should be excluded from

instrumentation

tau_reduce

rules

profile

Selective
instrumentation file
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Compensation of Overhead

 Runtime estimation of a single timer overhead

 Evaluation of number of timer calls along a calling path

 Compensation by subtracting timer overhead

 Recalculation of performance metrics
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Estimating Timer Overheads

 Introduce a pair of timer calls (start/stop)

time

code

Tactual = Tmeasured - (b+c)

a
b

c

d

Tmeasured

start

stop

a
b

c

start

stop
d

a
b t1 t2n

c
d

t1 = n * (b+c)
t2 = b+n*(a+b+c+d)+c

Toverhead = a+b+c+d = (t2 - (t1/n))/n
Tnull     = b+c = t1/n
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Recalculating Inclusive Time

 Number of children/grandchildren… nodes

 Traverse callstack

a
b

c

d

Tmeasured

start

stop

Tactual = Tmeasured - (b+c) - ndescendants * Toverhead

main
 =>
    f1
     => f2 
   …
    f3
      => f4
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Parallel Performance Compensation

 Compensate for synchronization operations

Timer start/stop call

Message
Process A

Process B

Time 

wait
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Lamport’s Logical Time [Lamport 1978]

 Logical time incremented by timer start/stop
 Accumulate timer overhead on local process
 Send local timer overhead with message

Timer start/stop call

Message
Process A

Process B

Time 

wait

tA
overhead

tA
overhead

tA
overhead > tB

overhead?
Yes :  tB

overhead =  tA
overhead

twait
’
 = twait - (tAoverhead -  tBoverhead)

       = 0 (if negative)
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Compensation (contd.)

 Message passing programs
 Adjust wait times (MPI_Recv, MPI_Wait…)

 Adjust barrier wait times (MPI_Barrier)
Each process sends its timer overheads to all other tasks
Each task compares its overhead with max overhead

 Shared memory multi-threaded programs
 Adjust barrier synchronization wait times

Each task compares its overhead to max overhead from all
participating threads

 Adjust semaphore/condition variable wait times
Each task compares its overhead with other thread’s

overhead
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Conclusions

 Complex software and parallel computing systems pose
challenging performance analysis problems that require
robust methodologies and tools

 Optimizing instrumentation is a key step towards
balancing the volume of performance data with accuracy
of measurements

 Present new research in the area of performance
perturbation compensation techniques for profiling

 http://www.cs.uoregon.edu/research/paracomp/tau
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