
Performance Observation

Sameer Shende and Allen D. Malony
{sameer,malony} @ cs.uoregon.edu

Performance Measurement Advanced Operating Systems, U. Oregon2

Outline

 Motivation

 Introduction to TAU

 Optimizing instrumentation: approaches

 Perturbation compensation

 Conclusion

Performance Measurement Advanced Operating Systems, U. Oregon3

Research Motivation

 Tools for performance problem solving
 Empirical-based performance optimization process

 Performance technology concerns

characterization

Performance
Tuning

Performance
Diagnosis

Performance
Experimentation

Performance
Observation

hypotheses

properties

• Instrumentation
• Measurement
• Analysis
• Visualization

Performance
Technology

• Experiment
management

• Performance
database

Performance
Technology

Performance Measurement Advanced Operating Systems, U. Oregon4

TAU Performance System

 Tuning and Analysis Utilities (11+ year project effort)

 Performance system framework for scalable parallel and
distributed high-performance computing

 Targets a general complex system computation model
 nodes / contexts / threads
 Multi-level: system / software / parallelism
 Measurement and analysis abstraction

 Integrated toolkit for performance instrumentation,
measurement, analysis, and visualization
 Portable performance profiling and tracing facility

 Open software approach with technology integration
 University of Oregon , Forschungszentrum Jülich, LANL

Performance Measurement Advanced Operating Systems, U. Oregon5

Definitions – Profiling

 Profiling
 Recording of summary information during execution

 inclusive, exclusive time, # calls, hardware statistics, …

 Reflects performance behavior of program entities
 functions, loops, basic blocks
 user-defined “semantic” entities

 Very good for low-cost performance assessment

 Helps to expose performance bottlenecks and hotspots

 Implemented through
 sampling: periodic OS interrupts or hardware counter traps
 instrumentation: direct insertion of measurement code

Performance Measurement Advanced Operating Systems, U. Oregon6

Definitions – Tracing

 Tracing
 Recording of information about significant points (events)

during program execution
 entering/exiting code region (function, loop, block, …)
 thread/process interactions (e.g., send/receive message)

 Save information in event record
 timestamp
CPU identifier, thread identifier
Event type and event-specific information

 Event trace is a time-sequenced stream of event records

 Can be used to reconstruct dynamic program behavior

 Typically requires code instrumentation

Performance Measurement Advanced Operating Systems, U. Oregon7

Event Tracing: Instrumentation, Monitor, Trace

1 master

2 slave

3 ...

void slave {
 trace(ENTER, 2);
 ...
 recv(A, tag, buf);
 trace(RECV, A);
 ...
 trace(EXIT, 2);
}

void master {
 trace(ENTER, 1);
 ...
 trace(SEND, B);
 send(B, tag, buf);
 ...
 trace(EXIT, 1);
}

MONITOR 58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

CPU A:

CPU B:

Event definition

timestamp

Performance Measurement Advanced Operating Systems, U. Oregon8

Event Tracing: “Timeline” Visualization

1 master

2 slave

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main
master
slave

58 60 62 64 66 68 70

B

A

Performance Measurement Advanced Operating Systems, U. Oregon9

TAU Performance System Architecture

EPILOG

Paraver

Performance Measurement Advanced Operating Systems, U. Oregon10

TAU Analysis

 Parallel profile analysis
 Pprof

 parallel profiler with text-based display

 ParaProf
Graphical, scalable, parallel profile analysis and display

 Trace analysis and visualization
 Trace merging and clock adjustment (if necessary)

 Trace format conversion (ALOG, SDDF, VTF, Paraver)

 Trace visualization using Vampir (Pallas/Intel)

Performance Measurement Advanced Operating Systems, U. Oregon11

Pprof Output (NAS Parallel Benchmark – LU)

 Intel Quad
PIII Xeon

 F90 +
MPICH

 Profile
 - Node
 - Context
 - Thread

 Events
 - code
 - MPI

Performance Measurement Advanced Operating Systems, U. Oregon12

Terminology – Example

 For routine “int main()”:
 Exclusive time

 100-20-50-20=10 secs
 Inclusive time

 100 secs

 Calls
 1 call

 Subrs (no. of child
routines called)
 3

 Inclusive time/call
 100secs

int main()
{ /* takes 100 secs */

 f1(); /* takes 20 secs */
 f2(); /* takes 50 secs */
 f1(); /* takes 20 secs */

 /* other work */
}

/*
Time can be replaced by counts
*/

Performance Measurement Advanced Operating Systems, U. Oregon13

ParaProf (NAS Parallel Benchmark – LU)

node,context, thread Global profiles Routine
profile across
all nodes

Event legend

Individual profile

Performance Measurement Advanced Operating Systems, U. Oregon14

Trace Visualization using Vampir [Intel/Pallas]

Timeline display Callgraph display

Parallelism display

Communications
display

Performance Measurement Advanced Operating Systems, U. Oregon15

PETSc ex19 (Tracing)

Commonly seen
communicaton
behavior

Performance Measurement Advanced Operating Systems, U. Oregon16

TAU’s EVH1 Execution Trace in Vampir

MPI_Alltoall
is an execution
bottleneck

Performance Measurement Advanced Operating Systems, U. Oregon17

Strategies for Empirical Performance Evaluation

 Empirical performance evaluation as a series of
performance experiments
 Experiment trials describing instrumentation and

measurement requirements

 Where/When/How axes of empirical performance space
where are performance measurements made in program

 routines, loops, statements…
when is performance instrumentation done

 compile-time, while pre-processing, runtime…
 how are performance measurement/instrumentation chosen

 profiling with hw counters, tracing, callpath profiling…

Performance Measurement Advanced Operating Systems, U. Oregon18

TAU Instrumentation Approach

 Support for standard program events
 Routines

 Classes and templates

 Statement-level blocks

 Support for user-defined events
 Begin/End events (“user-defined timers”)

 Atomic events

 Selection of event statistics

 Support definition of “semantic” entities for mapping

 Support for event groups

 Instrumentation optimization

Performance Measurement Advanced Operating Systems, U. Oregon19

TAU Instrumentation

 Flexible instrumentation mechanisms at multiple levels
 Source code

manual
 automatic

 C, C++, F77/90/95 (Program Database Toolkit (PDT))
 OpenMP (directive rewriting (Opari), POMP spec)

 Object code
 pre-instrumented libraries (e.g., MPI using PMPI)
 statically-linked and dynamically-linked

 Executable code
 dynamic instrumentation (pre-execution) (DynInstAPI)
 virtual machine instrumentation (e.g., Java using JVMPI)

Performance Measurement Advanced Operating Systems, U. Oregon20

Multi-Level Instrumentation

 Targets common measurement interface
 TAU API

 Multiple instrumentation interfaces
 Simultaneously active

 Information sharing between interfaces
 Utilizes instrumentation knowledge between levels

 Selective instrumentation
 Available at each level
 Cross-level selection

 Targets a common performance model
 Presents a unified view of execution

 Consistent performance events

Performance Measurement Advanced Operating Systems, U. Oregon21

TAU Measurement Options

 Parallel profiling
 Function-level, block-level, statement-level

 Supports user-defined events

 TAU parallel profile data stored during execution

 Hardware counts values

 Support for multiple counters

 Support for callgraph and callpath profiling

 Tracing
 All profile-level events

 Inter-process communication events

 Trace merging and format conversion

Performance Measurement Advanced Operating Systems, U. Oregon22

Optimizing Instrumentation

 Grouping
 Enable/disable profile groups at runtime

 Selective Instrumentation
 Include/exclude events (or files) for instrumentation

 Re-instrumentation
 Profile, overhead analysis, exclude events, re-instrument

 Compensation
 Overhead calibration, removal

Performance Measurement Advanced Operating Systems, U. Oregon23

Grouping Performance Data in TAU

 Profile Groups
 A group of related routines forms a profile group

 Statically defined
TAU_DEFAULT, TAU_USER[1-5], TAU_MESSAGE,

TAU_IO, …

 Dynamically defined
 group name based on string, such as “adlib” or “particles”
 runtime lookup in a map to get unique group identifier
 uses tau_instrumentor to instrument

 Ability to change group names at runtime

 Group-based instrumentation and measurement control

Performance Measurement Advanced Operating Systems, U. Oregon24

Selective Instrumentation

 Selection of which performance events to observe
 Could depend on scope, type, level of interest

 Could depend on instrumentation overhead

 How is selection supported in instrumentation system?
 No choice

 Include / exclude routine and file lists (TAU)

 Environment variables

 Static vs. dynamic

Performance Measurement Advanced Operating Systems, U. Oregon25

Automatic Instrumentation of Source Code

% cxxparse file.cpp -I/dir -Dflags [PDT: Program Database Toolkit]
% tau_instrumentor
Usage : tau_instrumentor <pdbfile> <sourcefile> [-o <outputfile>] [-noinline]
[-g groupname] [-i headerfile] [-c|-c++|-fortran] [-f <instr_req_file>]
For selective instrumentation, use –f option
% tau_instrumentor foo.pdb foo.cpp –o foo.inst.cpp –f selective.dat
% cat selective.dat
Selective instrumentation: Specify an exclude/include list of routines/files.
BEGIN_EXCLUDE_LIST
void quicksort(int *, int, int)
void sort_5elements(int *)
void interchange(int *, int *)
END_EXCLUDE_LIST

BEGIN_FILE_INCLUDE_LIST
Main.cpp
Foo?.c
*.C
END_FILE_INCLUDE_LIST
Instruments routines in Main.cpp, Foo?.c and *.C files only
Use BEGIN_[FILE]_INCLUDE_LIST with END_[FILE]_INCLUDE_LIST

Performance Measurement Advanced Operating Systems, U. Oregon26

Distortion of Performance Data

 Problem: Controlling instrumentation of small routines
 High relative measurement overhead

 Significant intrusion and possible perturbation

 Solution: Re-instrument the application!
 Weed out frequently executing lightweight routine

 Feedback to instrumentation system

Performance Measurement Advanced Operating Systems, U. Oregon27

Re-instrumentation

 Tau_reduce: rule based overhead analysis
 Analyze the performance data to determine events with

high (relative) overhead performance measurements
 Create a select list for excluding those events
 Rule grammar (used in tau_reduce tool [N. Trebon, UO])

[GroupName:] Field Operator Number
 GroupName indicates rule applies to events in group
 Field is a event metric attribute (from profile statistics)

 numcalls, numsubs, percent, usec, cumusec, count [PAPI],
totalcount, stdev, usecs/call, counts/call

 Operator is one of >, <, or =
 Number is any number
 Compound rules possible using & between simple rules

Performance Measurement Advanced Operating Systems, U. Oregon28

Example Rules

 #Exclude all events that are members of TAU_USER
#and use less than 1000 microseconds
TAU_USER:usec < 1000

 #Exclude all events that have less than 100
#microseconds and are called only once
usec < 1000 & numcalls = 1

 #Exclude all events that have less than 1000 usecs per
#call OR have a (total inclusive) percent less than 5
usecs/call < 1000
percent < 5

 Scientific notation can be used
 usec>1000 & numcalls>400000 & usecs/call<30 & percent>25

Performance Measurement Advanced Operating Systems, U. Oregon29

TAU_REDUCE

 Reads profile files and rules

 Creates selective instrumentation file
 Specifies which routines should be excluded from

instrumentation

tau_reduce

rules

profile

Selective
instrumentation file

Performance Measurement Advanced Operating Systems, U. Oregon30

Compensation of Overhead

 Runtime estimation of a single timer overhead

 Evaluation of number of timer calls along a calling path

 Compensation by subtracting timer overhead

 Recalculation of performance metrics

Performance Measurement Advanced Operating Systems, U. Oregon31

Estimating Timer Overheads

 Introduce a pair of timer calls (start/stop)

time

code

Tactual = Tmeasured - (b+c)

a
b

c

d

Tmeasured

start

stop

a
b

c

start

stop
d

a
b t1 t2n

c
d

t1 = n * (b+c)
t2 = b+n*(a+b+c+d)+c

Toverhead = a+b+c+d = (t2 - (t1/n))/n
Tnull = b+c = t1/n

Performance Measurement Advanced Operating Systems, U. Oregon32

Recalculating Inclusive Time

 Number of children/grandchildren… nodes

 Traverse callstack

a
b

c

d

Tmeasured

start

stop

Tactual = Tmeasured - (b+c) - ndescendants * Toverhead

main
 =>
 f1
 => f2
 …
 f3
 => f4

Performance Measurement Advanced Operating Systems, U. Oregon33

Parallel Performance Compensation

 Compensate for synchronization operations

Timer start/stop call

Message
Process A

Process B

Time

wait

Performance Measurement Advanced Operating Systems, U. Oregon34

Lamport’s Logical Time [Lamport 1978]

 Logical time incremented by timer start/stop
 Accumulate timer overhead on local process
 Send local timer overhead with message

Timer start/stop call

Message
Process A

Process B

Time

wait

tA
overhead

tA
overhead

tA
overhead > tB

overhead?
Yes : tB

overhead = tA
overhead

twait
’
 = twait - (tAoverhead - tBoverhead)

 = 0 (if negative)

Performance Measurement Advanced Operating Systems, U. Oregon35

Compensation (contd.)

 Message passing programs
 Adjust wait times (MPI_Recv, MPI_Wait…)

 Adjust barrier wait times (MPI_Barrier)
Each process sends its timer overheads to all other tasks
Each task compares its overhead with max overhead

 Shared memory multi-threaded programs
 Adjust barrier synchronization wait times

Each task compares its overhead to max overhead from all
participating threads

 Adjust semaphore/condition variable wait times
Each task compares its overhead with other thread’s

overhead

Performance Measurement Advanced Operating Systems, U. Oregon36

Conclusions

 Complex software and parallel computing systems pose
challenging performance analysis problems that require
robust methodologies and tools

 Optimizing instrumentation is a key step towards
balancing the volume of performance data with accuracy
of measurements

 Present new research in the area of performance
perturbation compensation techniques for profiling

 http://www.cs.uoregon.edu/research/paracomp/tau

Performance Measurement Advanced Operating Systems, U. Oregon37

Support Acknowledgements

 Department of Energy (DOE)
 Office of Science contracts
 University of Utah DOE ASCI Level 1

sub-contract
 DOE ASCI Level 3 (LANL, LLNL)

 NSF National Young Investigator (NYI)
award

 Research Centre Juelich
 John von Neumann Institute for

Computing
 Dr. Bernd Mohr

 Los Alamos National Laboratory

