Performance Observation

Sameer Shende and Allen D. Malony
{sameer,malony} @ cs.uoregon.edu

O

UNIVERSITY
OF OREGON

Outline

0 Motivation

3 Introduction to TAU

0 Optimizing instrumentation: approaches
0 Perturbation compensation

3 Conclusion

Performance Measurement 2 Advanced Operating Systems, U. Oregon

7

Research Motivation oy

3 Tools for performance problem solving

O Empirical-based performance optimization process

O Performance technology concerns

Performance
Technology

Performance Measurement

Performance
Tuning

hypotheses ¢

Performance
Diagnosis

characterization

Performance
Technology

Advanced Operating Systems, U. Oregon

5

TAU Performance System

0 Tuning and Analysis Utilities (11+ year project effort)

O Performance system framework for scalable parallel and
distributed high-performance computing

0 Targets a general complex system computation model
O nodes / contexts / threads
O Multi-level: system / software / parallelism
O Measurement and analysis abstraction

O Integrated toolkit for performance instrumentation,
measurement, analysis, and visualization
O Portable performance profiling and tracing facility

O Open software approach with technology integration
0 University of Oregon , Forschungszentrum Julich, LANL

Performance Measurement 4 Advanced Operating Systems, U. Oregon

Definitions — Profiling

3 Profiling
O Recording of summary information during execution
» Inclusive, exclusive time, # calls, hardware statistics, ...

O Reflects performance behavior of program entities
» functions, loops, basic blocks
» user-defined “semantic” entities

O Very good for low-cost performance assessment
O Helps to expose performance bottlenecks and hotspots

O Implemented through
» sampling: periodic OS interrupts or hardware counter traps
» Instrumentation: direct insertion of measurement code

Performance Measurement 5 Advanced Operating Systems, U. Oregon

Definitions — Tracing

1 Tracing

O Recording of information about significant points (events)
during program execution
» entering/exiting code region (function, loop, block, ...)
> thread/process interactions (e.g., send/receive message)

O Save information 1n event record

> timestamp
» CPU 1dentifier, thread 1dentifier
» Event type and event-specific information

O Event trace 1s a time-sequenced stream of event records
O Can be used to reconstruct dynamic program behavior
O Typically requires code instrumentation

Performance Measurement 6 Advanced Operating Systems, U. Oregon

Event Tracing: Instrumentation, Monitor, Trace

Event definition
CPU A:
void master { 1 | master
trace(ENTER, 1); 2 | slave

3

:t.r.ace(SEND, B); .
send(B, tag, buf); \ ltlmeStamp

trace(EXIT, 1);

)
MONITOR ’ 58| A | ENTER | 1
CPU B: 60| B | ENTER | 2
void slave { 62| A | SEND B
trace(ENTER, 2); sal Al ExiT]
recv(A, tag, buf); 68| B| RECV | A
trace(RECV, A); 69l B | EXIT 5

trace(EXIT, 2);

}

Performance Measurement 7 Advanced Operating Systems, U. Oregon

Event Tracing: “Timeline” Visualization

1 | master .main
2 | slave B master
3] ... M slave
58| A | ENTER | 1
60| B | ENTER | 2
62| A|SEND |B A
a|lAlEXT [1]| =
68| B |RECV | A)
69| B|EXIT |2
1T 1 1 17 1771

58 60 62 64 66 68 70

Performance Measurement 8 Advanced Operating Systems, U. Oregon

TAU Performance System Architecture

Instrumentation

Measurement

Analysis

Instrumented
Source Pre- Source %bj:—l-;ct Ex::;:u[tlable Binary Rewrite
. . ode
Code processor Code Compiler ode Linker [: ::l Dynamic
Virtual
libraries Machine
PROFILE m Run-Time Library Modules @ TRACE
@ Profile Function Statistics @
. Groups Database
Profiling Event Traces
Data Files E [z [Z Event Tables
Function Hardware User-Level
Callstack Counters Timers
Paraver
Racy ASCII Trace -
JRacy Report Logs Vampir
EPILOG

TAU Analysis

0 Parallel profile analysis
O Pprof
» parallel profiler with text-based display

O ParaProf
» Graphical, scalable, parallel profile analysis and display

0 Trace analysis and visualization

O Trace merging and clock adjustment (if necessary)
O Trace format conversion (ALOG, SDDF, VTF, Paraver)
O Trace visualization using Vampir (Pallas/Intel)

Performance Measurement 10 Advanced Operating Systems, U. Oregon

I ¢ 1 d .=.i Emacs@Rettron.cs.uoreqon. edi I a iQJ
O nte Qua Buffers Files Tools Edit Search Mule Help
PIII Xeon Feading Profile files 1n profile.*
NODE O{CONTEXT -0|;FRREAD O
+ ___
D F9O #Time Exclusiwve ITnclusive #Call #5ubrs Inclusiwve Mame
MPICH msec total msec usecscall
100.0R 1 3:11.293 1 15 191293269 applu
99 .6 3,667 3:10.463 3 37517 63457925 bcast_inputs
O Profile 67 .1 '451 .08 .326 37200 37200 5450 exchange 1
: 44 .5 6,461 1:25.159 9300 18600 9157 buts
- NOd 41.0 1:18.436 1:18.436 18600 0 4217 MPI_Recw()
29.5 5,778 96,407 9300 18500 bOES blts
_C e 26.2 50,142 50,142 19204 0 2611 MPI_Send()
16.2 24,451 31,031 301 BOZ 103096 rhs
3.9 7,801 7,801 9300 0 807 jacld
- 3.4 838 6,594 G044 1812 10918 exchange_3
""""""""" 3.4 6,590 6,590 9300 0 709 jacu
2.6 4,959 4,959 603 0 8206 MPI_Wait()
O Events 0.2 0.44 400 1 4 400081 init_comm
0.2 393 399 1 39 399634 MPI_Init()
- Code 0.1 140 247 1 47616 247086 setiv
0.1 131 131 57252 0 2 exact
MPI 0.1 849 103 1 2 103168 erhs
- 0.1 0.968 95 1 2 95458 read_input
0.0 85 85 5 0 10603 MPI_Bcasti)
0.0 26 44 1 7937 44878 error
0.0 24 24 BOE 0 40 MPI_Irecw()
0.0 13 13 1 tal 15630 MPI_Finalizel)
0.0 4 12 1 1700 12335 sethw
0.0 7 3 3 3 28493 1Znaorm
0.0 3 3 g 0 491 MPI_Allreduce()
0.0 1 3 1 6 3874 pintgr
o.o 1 1 1 0 1007 MPI_Barrier()
o.o 0.11p 0.837 1 4 837 exchange_4
o.o 0.51% 0.512 1 0 512 MPI_Keywval_createl)
o.o 0.121 0.353 1 2 353 exchange_b
o.o 0.024 o.191 1 2 191 exchange_b
0.0 0,103 0,103 =] 0] 17 MPI_Type_contiguous()

Performance Measurement | 11 Advanced Operating Systems, U. Orégon

Terminology — Example

3 For routine “int main()”; |irt main()
. . { /* takes 100 secs */
O Exclusive time

O 100-20-50-20=10 secs £1(); /* takes 20 secs */
£f2(); /* takes 50 secs */

£f1(); /* takes 20 secs */

3 Inclusive time

O 100 secs
O CaHS /* other work */
O 1 call }
3 Subrs (no. of child /*
I‘Outines Called) Time can be replaced by counts
*/
O3

A Inclusive time/call

O 100secs 7

Performance Measurement 12 Advanced Operating Systems, U. Oregon

ParaProf (NAS Parallel Benchmark — LU)

node,context, thread

Global profiles

—

l Mean

nct 0,00
nct 1,00
nct 2,00
nct 3,00

F|Ie Windows Help

Event legend

|| mpiRecv)

B mPSend)

B MPi_Type_commit()

—

[T T 1] File oOptions wWindg
T TR ey recvo
[[T 1] mean I 40. 95%
[T | et 00,0 I 41 0%
] [Tl | ot 1,0,0 N 2. 16%

File Options Windows Help

Bar Mulitiple

Routine
[profile across

all nodes

ot 2,00 N 2. 59%
Hnct 3,00 M 37.73%

100.0% |

| appiu

99.57% [beast_inputs

B MPi_Type_contiguous()
B MPi Type_struct()

O mrrwait)
||l mr_wiime0

O applu

B beast_inputs
O bits

B ehs

. error

Performance Measurement

g

67. 08% NN - change_ 1
44. 525 [b:sts
41. 0% I /17)_Recv()
29.49% [T bits
26.21% I \MPi_S end)
16.22% M rhs
3.92% [jacld

Individual profile

3.45% 0 exchange_3
3 44% U jacu

13

2.61% [MPI_Wait()

0.21% | infl_comm

Advanced Operating ystems, U. Oregon

[4]

Trace Visualization using Vampir [Intel/Pallas]

Callgraph display

Timeline display

lu.pv: Call Tree Process 0

—>init_comm (1 : 16,968 ms)
E)HF’IﬁddreSS() (18 : 0.9%4 ms)

lu.pv: Global Timeline {1:00.613 - 1:01.161 = 0.547 s5)
1ﬂp£ tﬂ@ﬂ tqtﬂ

IWIIII’ I'I"
i

>MPI_Type_struct() (9 : 0,656 ms)
>MPI_Comm_rank{} {1 : 0,138 ms)

1011

e

>MPI_Comm_size() {1 : 89,0 ps)
>nodedim (1 : 81,0 ps)
—>read_input (1 ; 0,14 s)
>MPI_Comm_size() (1 : 0,105 ms)
>beast_inputs (1 : 1,888 ms)
L>MPI_Bcast{} (9 : 1,027 ms)

| Process0

>proc_grid (1 : 88,0 ps)
>neighbors (1 : 64,0 ps)
—>subdomaineighbors {1 : 74,0 ps)
—>setcoeff (1 : 75.0 ps)
—>sethyper (1 : 83,0 ps)
—>setbwv neighborsethyper (1 : 0,208 s}
L>exact (1700 : 94,538 ms)
—>setiv (1 ; 5.915 s)
L>exact (47618 : 2.688 s)
—>erhs (1 : 1.845 s)
L>exchange_3 (2 : 1.586 s)
E)NF’I_Send() (2 : 1.58 s)

il
A

wa

Parallehsm display

Process 1

Process 2

i

>MPI_Irecw() (2 : 0.189 ms)

>MPI_Wait{} (2 : 2.348 ms)
—>bcast_inputs (2 : 1:49.127)
>rhs {301 : 17.735 s)
L>exchange_3 (602 : 1.695 s)
>MPI_Send() (602 : 0,246 s)
>MPI_Irecw() (602 : 41,97 ms)

>MPI_MWait() (602 : 0,672 s)
>12norm WHw (3 : 5.575 ms)
L>MPI_Allreduce() (3 : 0.565 ms)

ssaye Statistics (Sum. Len t
(e ol I . zu P eceive (. Iuse|J Search| »| Print| Fold/Unfold| v| 4| _i ASCII W |nt:|u

1005
] | \II

hlts

hl::ast _inputs !
IEWIL1N \I \I Il\l m ,MI = 8 B> Communications
N IH | ST T \ g sl display

Performance Measurement 14 Advanced Operating Systems, U. Oregon

PETSc ex19 (Tracing)

= VAMPIR - Global Timeline - H;E;

ex19.pv: Global Timeline (31.397 5 - 46.6455=15.248 5)
340s 360s 38.0s 400s 420s 440s 460s

sl

TAU_USER
EMPI
Inode{Mat, Mat ' X

Process 0 _int MatLUFiactnrNumeric_Seqﬂi.l

Process 1 acto - + I I" I
=~ U

' ,.”lll“llln-.. _.'
Mg Il\l““l ’
' N

Process 2

:, Il 1ng, | |
Process 3 nt M atLUF;ar.tnrNumeric_Squi.l_Inude(Mat, Mat ‘} &
‘= VAMPIR - Summary Chart ia -Dj .=.§ - VAMPIR - State Dialog i a ; | . |
E « | ex19.py: Summary Chart (Times, 0.0 5-58.892 5) . ex19.py: State Dialog I \ P
Global \
int MatLUFactorHumeric_SeqAlJ_Inode(Mat, Mat *): 36.308% C Ommonly S e en
communicaton
behavior
| Close [
199.954%,/100% i

Performance Measurement ‘ 15 Advanced Operating Systems, U. Oregon

TAU’s EVHI Execution Trace in Vambir

31.854s

EMPI
| Process0 lqn .35 -m MPI Autnaln;) e BV

Process 1 | FRMias 11 (ULl [YEIWITeNTR i

Process2 |40 PRMias7 SRR RRRemar TTTESEAREREMAR [MPI_Alitoall(PPM miewap
Process 3 Iaslw MP1_Alltoall(. B

Process 4 .3 .w MPI_Alltoall{) .

Process § Ias.w _Alltoallg MPI Alltoall
| e 1 T (1 |
| poues7 | TR lasm SN =1 | 'S 21 Cxccution

Process 8 .:ﬁm MPI_Alltoall) | = bottleneck

T

Pmcessm.as.w__

Process 12 .35 .m MPI_Alltoall(
| MPI_AIItuaII()
| Process14 .35 \f MP1_Alltoall(
| Process 15 Ias ‘ MP1_Alltoall(

Performance Measurement 16 Advanced Operating Systems, U. Oregon

Strategies for Empirical Performance Evaluation

0 Empirical performance evaluation as a series of
performance experiments

O Experiment trials describing instrumentation and
measurement requirements

O Where/When/How axes of empirical performance space
» where are performance measurements made in program
® routines, loops, statements. ..
» when 1s performance instrumentation done
e compile-time, while pre-processing, runtime...
» how are performance measurement/instrumentation chosen
e profiling with hw counters, tracing, callpath profiling...

Performance Measurement 17 Advanced Operating Systems, U. Oregon

TAU Instrumentation Approach

3 Support for standard program events
O Routines
O Classes and templates
O Statement-level blocks
3 Support for user-defined events
O Begin/End events (“user-defined timers™)
O Atomic events
O Selection of event statistics
O Support definition of “semantic” entities for mapping
O Support for event groups

O Instrumentation optimization

Performance Measurement 18 Advanced Operating Systems, U. Oregon

TAU Instrumentation

0 Flexible instrumentation mechanisms at multiple levels

O Source code
> manual

> automatic
e C, C++,F77/90/95 (Program Database Toolkit (PDT))

® OpenMP (directive rewriting (Opari), POMP spec)

O Object code
> pre-instrumented libraries (e.g., MPI using PMPI)
»> statically-linked and dynamically-linked

O Executable code
» dynamic instrumentation (pre-execution) (Dyn/nstAPI)
» virtual machine instrumentation (e.g., Java using JVMPI)

Performance Measurement 19 Advanced Operating Systems, U. Oregon

Multi-Level Instrumentation

0 Targets common measurement interface
O TAU API
0 Multiple instrumentation interfaces
O Simultaneously active
O Information sharing between interfaces
O Utilizes instrumentation knowledge between levels
O Selective mstrumentation
O Available at each level
O Cross-level selection
0 Targets a common performance model
0 Presents a unified view of execution
O Consistent performance events

Performance Measurement 20 Advanced Operating Systems, U. Oregon

TAU Measurement Options

0 Parallel profiling
O Function-level, block-level, statement-level
O Supports user-defined events
O TAU parallel profile data stored during execution
O Hardware counts values
O Support for multiple counters
O Support for callgraph and callpath profiling
1 Tracing
O All profile-level events
O Inter-process communication events

O Trace merging and format conversion

Performance Measurement 21 Advanced Operating Systems, U. Oregon

Optimizing Instrumentation

3 Grouping
O Enable/disable profile groups at runtime
J Selective Instrumentation
O Include/exclude events (or files) for instrumentation
J Re-instrumentation
O Profile, overhead analysis, exclude events, re-instrument
1 Compensation

O Overhead calibration, removal

Performance Measurement 22 Advanced Operating Systems, U. Oregon

Grouping Performance Data in TAU

3 Profile Groups
O A group of related routines forms a profile group

O Statically defined

> TAU DEFAULT, TAU USER[1-5], TAU MESSAGE,
TAU 1O, ...

O Dynamically defined
» group name based on string, such as “adlib” or “particles”
» runtime lookup 1n a map to get unique group i1dentifier
> uses fau instrumentor to mstrument

O Ability to change group names at runtime

O Group-based instrumentation and measurement control

Performance Measurement 23 Advanced Operating Systems, U. Oregon

Selective Instrumentation

3 Selection of which performance events to observe
O Could depend on scope, type, level of interest
O Could depend on instrumentation overhead
1 How 1s selection supported in instrumentation system?
O No choice
O Include / exclude routine and file lists (TAU)
O Environment variables

O Static vs. dynamic

Performance Measurement 24 Advanced Operating Systems, U. Oregon

Automatic Instrumentation of Source Code

% cxxparse file.cpp -I/dir -Dflags [PDT: Program Database Toolkit]
% tau_ instrumentor

Usage : tau instrumentor <pdbfile> <sourcefile> [-o <outputfile>] [-noinline]
[-g groupname] [-i headerfile] [-c|-c++|-fortran] [-f <instr req file>]

For selective instrumentation, use -f option

% tau_instrumentor foo.pdb foo.cpp -o foo.inst.cpp -f selective.dat

% cat selective.dat

Selective instrumentation: Specify an exclude/include list of routines/files.
BEGIN EXCLUDE LIST

void quicksort(int *, int, int)

void sort S5elements (int ¥)

void interchange (int *, int ¥*)

END EXCLUDE LIST

BEGIN FILE INCLUDE LIST
Main.cpp

Foo?.c

*.C

END FILE INCLUDE LIST

Instruments routines in Main.cpp, Foo?.c and *.C files only
Use BEGIN [FILE] INCLUDE LIST with END [FILE] INCLUDE LIST

Performance Measurement 25 Advanced Operating Systems, U. Oregon

Distortion of Performance Data

13 Problem: Controlling instrumentation of small routines
O High relative measurement overhead
O Significant intrusion and possible perturbation
13 Solution: Re-1nstrument the application!
O Weed out frequently executing lightweight routine
O Feedback to mstrumentation system

Performance Measurement 26 Advanced Operating Systems, U. Oregon

Re-instrumentation

0 Tau reduce: rule based overhead analysis

0 Analyze the performance data to determine events with
high (relative) overhead performance measurements

O Create a select list for excluding those events

0 Rule grammar (used in fau reduce tool [N. Trebon, UO])
[GroupName:] Field Operator Number
O GroupName indicates rule applies to events 1in group

O Field 1s a event metric attribute (from profile statistics)

» numcalls, numsubs, percent, usec, cumusec, count [PAPI],
totalcount, stdev, usecs/call, counts/call

O Operator 1s one of >, <, or =
O Number 1s any number
O Compound rules possible using & between simple rules

Performance Measurement 27 Advanced Operating Systems, U. Oregon

Example Rules

0 #Exclude all events that are members of TAU USER
#and use less than 1000 microseconds
TAU USER:usec <1000

3 #Exclude all events that have less than 100
#microseconds and are called only once
usec < 1000 & numcalls = 1

0 #Exclude all events that have less than 1000 usecs per
#call OR have a (total inclusive) percent less than 5

usecs/call < 1000
percent <5

O Scientific notation can be used
O usec>1000 & numcalls>400000 & usecs/call<30 & percent>25

Performance Measurement 28 Advanced Operating Systems, U. Oregon

TAU REDUCE

0d Reads profile files and rules

3 Creates selective instrumentation file

O Specifies which routines should be excluded from
Instrumentation

> Selective
Instrumentation file

Performance Measurement 29 Advanced Operating Systems, U. Oregon

Compensation of Overhead

0 Runtime estimation of a single timer overhead

0 Evaluation of number of timer calls along a calling path
0 Compensation by subtracting timer overhead

3 Recalculation of performance metrics

Performance Measurement 30 Advanced Operating Systems, U. Oregon

Estimating Timer Overheads

O Introduce a pair of timer calls (start/stop)

~Na start P

‘ start (- = i
) v measured
me _st: NS — @ Clc) |

code P d - d

stop |, —d

Tactual - Tmeasured B (b‘|'C)
t, =n * (b+tc)

t, = btn*(atbt+ct+d)+c

Toverhead = atbtctd = (t2 B (tl/ Il))/ n
T,,, =bfc=t/n

Performance Measurement 31 Advanced Operating Systems, U. Oregon

Recalculating Inclusive Time

0 Number of children/grandchildren... nodes

3 Traverse callstack

main
tart N —
sta o fl
—_— Tmeasured => {2
C
Stop \ PRI
d 3
—> 4
Tactual - Tmeasured B (b‘|'C) = Dyescendants * Toverhead

Performance Measurement

32

Advanced Operating Systems, U. Oregon

Parallel Performance Compensation

1 Compensate for synchronization operations

= T1mer start/stop call
Process A

B > \Message
Process B
= >
wait
Time —>

Performance Measurement 33 Advanced Operating Systems, U. Oregon

Lamport’s Logical Time [Lamport 1978]

1 Logical time incremented by timer start/stop
1 Accumulate timer overhead on local process
3 Send local timer overhead with message

= T1mer start/stop call

tonerhead Process A
> \ Message
tA
overhead
Process B
>
' A B
wait t overhead > 1 overhead?

Yes: tB = tA

twait’ - tWait B (tonerhead B tBoverhead)
= (0 (1f negative)

overhead overhead

Time —>

Performance Measurement 34 Advanced Operating Systems, U. Oregon

Compensation (contd.)

0 Message passing programs
O Adjust wait times (MPI Recv, MPI Wait...)

O Adjust barrier wait times (MPI Barrier)
» Each process sends its timer overheads to all other tasks
> Each task compares its overhead with max overhead

0 Shared memory multi-threaded programs

O Adjust barrier synchronization wait times

» Each task compares its overhead to max overhead from all
participating threads

O Adjust semaphore/condition variable wait times

» Each task compares its overhead with other thread’s
overhead

Performance Measurement 35 Advanced Operating Systems, U. Oregon

Conclusions

0 Complex software and parallel computing systems pose
challenging performance analysis problems that require
robust methodologies and tools

0 Optimizing instrumentation 1s a key step towards
balancing the volume of performance data with accuracy
of measurements

O Present new research 1n the area of performance
perturbation compensation techniques for profiling

O

Performance Measurement 36 Advanced Operating Systems, U. Oregon

Support Acknowledgements

pZ_==" Office of

3 Department of Energy (DOE)) 4 Science

O Oftice of Science contracts

O University of Utah DOE ASCI Level 1
sub-contract

O DOE ASCI Level 3 (LANL, LLNL) ﬁ7 |

3 NSF National Young Investigator (NYI)) Los Alamos
award

3 Research Centre Juelich
O John von Neumann Institute for ___ NICT
Computing
O Dr. Bernd Mohr O
0 Los Alamos National Laboratory

IIIIIIIIII

Performance Measurement 37 Advanced Operating Systems, U. Oregon

