
Performance Observation

Sameer Shende and Allen D. Malony
{sameer,malony} @ cs.uoregon.edu

Performance Measurement Advanced Operating Systems, U. Oregon2

Outline

 Motivation

 Introduction to TAU

 Optimizing instrumentation: approaches

 Perturbation compensation

 Conclusion

Performance Measurement Advanced Operating Systems, U. Oregon3

Research Motivation

 Tools for performance problem solving
 Empirical-based performance optimization process

 Performance technology concerns

characterization

Performance
Tuning

Performance
Diagnosis

Performance
Experimentation

Performance
Observation

hypotheses

properties

• Instrumentation
• Measurement
• Analysis
• Visualization

Performance
Technology

• Experiment
management

• Performance
database

Performance
Technology

Performance Measurement Advanced Operating Systems, U. Oregon4

TAU Performance System

 Tuning and Analysis Utilities (11+ year project effort)

 Performance system framework for scalable parallel and
distributed high-performance computing

 Targets a general complex system computation model
 nodes / contexts / threads
 Multi-level: system / software / parallelism
 Measurement and analysis abstraction

 Integrated toolkit for performance instrumentation,
measurement, analysis, and visualization
 Portable performance profiling and tracing facility

 Open software approach with technology integration
 University of Oregon , Forschungszentrum Jülich, LANL

Performance Measurement Advanced Operating Systems, U. Oregon5

Definitions – Profiling

 Profiling
 Recording of summary information during execution

 inclusive, exclusive time, # calls, hardware statistics, …

 Reflects performance behavior of program entities
 functions, loops, basic blocks
 user-defined “semantic” entities

 Very good for low-cost performance assessment

 Helps to expose performance bottlenecks and hotspots

 Implemented through
 sampling: periodic OS interrupts or hardware counter traps
 instrumentation: direct insertion of measurement code

Performance Measurement Advanced Operating Systems, U. Oregon6

Definitions – Tracing

 Tracing
 Recording of information about significant points (events)

during program execution
 entering/exiting code region (function, loop, block, …)
 thread/process interactions (e.g., send/receive message)

 Save information in event record
 timestamp
CPU identifier, thread identifier
Event type and event-specific information

 Event trace is a time-sequenced stream of event records

 Can be used to reconstruct dynamic program behavior

 Typically requires code instrumentation

Performance Measurement Advanced Operating Systems, U. Oregon7

Event Tracing: Instrumentation, Monitor, Trace

1 master

2 slave

3 ...

void slave {
 trace(ENTER, 2);
 ...
 recv(A, tag, buf);
 trace(RECV, A);
 ...
 trace(EXIT, 2);
}

void master {
 trace(ENTER, 1);
 ...
 trace(SEND, B);
 send(B, tag, buf);
 ...
 trace(EXIT, 1);
}

MONITOR 58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

CPU A:

CPU B:

Event definition

timestamp

Performance Measurement Advanced Operating Systems, U. Oregon8

Event Tracing: “Timeline” Visualization

1 master

2 slave

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main
master
slave

58 60 62 64 66 68 70

B

A

Performance Measurement Advanced Operating Systems, U. Oregon9

TAU Performance System Architecture

EPILOG

Paraver

Performance Measurement Advanced Operating Systems, U. Oregon10

TAU Analysis

 Parallel profile analysis
 Pprof

 parallel profiler with text-based display

 ParaProf
Graphical, scalable, parallel profile analysis and display

 Trace analysis and visualization
 Trace merging and clock adjustment (if necessary)

 Trace format conversion (ALOG, SDDF, VTF, Paraver)

 Trace visualization using Vampir (Pallas/Intel)

Performance Measurement Advanced Operating Systems, U. Oregon11

Pprof Output (NAS Parallel Benchmark – LU)

 Intel Quad
PIII Xeon

 F90 +
MPICH

 Profile
 - Node
 - Context
 - Thread

 Events
 - code
 - MPI

Performance Measurement Advanced Operating Systems, U. Oregon12

Terminology – Example

 For routine “int main()”:
 Exclusive time

 100-20-50-20=10 secs
 Inclusive time

 100 secs

 Calls
 1 call

 Subrs (no. of child
routines called)
 3

 Inclusive time/call
 100secs

int main()
{ /* takes 100 secs */

 f1(); /* takes 20 secs */
 f2(); /* takes 50 secs */
 f1(); /* takes 20 secs */

 /* other work */
}

/*
Time can be replaced by counts
*/

Performance Measurement Advanced Operating Systems, U. Oregon13

ParaProf (NAS Parallel Benchmark – LU)

node,context, thread Global profiles Routine
profile across
all nodes

Event legend

Individual profile

Performance Measurement Advanced Operating Systems, U. Oregon14

Trace Visualization using Vampir [Intel/Pallas]

Timeline display Callgraph display

Parallelism display

Communications
display

Performance Measurement Advanced Operating Systems, U. Oregon15

PETSc ex19 (Tracing)

Commonly seen
communicaton
behavior

Performance Measurement Advanced Operating Systems, U. Oregon16

TAU’s EVH1 Execution Trace in Vampir

MPI_Alltoall
is an execution
bottleneck

Performance Measurement Advanced Operating Systems, U. Oregon17

Strategies for Empirical Performance Evaluation

 Empirical performance evaluation as a series of
performance experiments
 Experiment trials describing instrumentation and

measurement requirements

 Where/When/How axes of empirical performance space
where are performance measurements made in program

 routines, loops, statements…
when is performance instrumentation done

 compile-time, while pre-processing, runtime…
 how are performance measurement/instrumentation chosen

 profiling with hw counters, tracing, callpath profiling…

Performance Measurement Advanced Operating Systems, U. Oregon18

TAU Instrumentation Approach

 Support for standard program events
 Routines

 Classes and templates

 Statement-level blocks

 Support for user-defined events
 Begin/End events (“user-defined timers”)

 Atomic events

 Selection of event statistics

 Support definition of “semantic” entities for mapping

 Support for event groups

 Instrumentation optimization

Performance Measurement Advanced Operating Systems, U. Oregon19

TAU Instrumentation

 Flexible instrumentation mechanisms at multiple levels
 Source code

manual
 automatic

 C, C++, F77/90/95 (Program Database Toolkit (PDT))
 OpenMP (directive rewriting (Opari), POMP spec)

 Object code
 pre-instrumented libraries (e.g., MPI using PMPI)
 statically-linked and dynamically-linked

 Executable code
 dynamic instrumentation (pre-execution) (DynInstAPI)
 virtual machine instrumentation (e.g., Java using JVMPI)

Performance Measurement Advanced Operating Systems, U. Oregon20

Multi-Level Instrumentation

 Targets common measurement interface
 TAU API

 Multiple instrumentation interfaces
 Simultaneously active

 Information sharing between interfaces
 Utilizes instrumentation knowledge between levels

 Selective instrumentation
 Available at each level
 Cross-level selection

 Targets a common performance model
 Presents a unified view of execution

 Consistent performance events

Performance Measurement Advanced Operating Systems, U. Oregon21

TAU Measurement Options

 Parallel profiling
 Function-level, block-level, statement-level

 Supports user-defined events

 TAU parallel profile data stored during execution

 Hardware counts values

 Support for multiple counters

 Support for callgraph and callpath profiling

 Tracing
 All profile-level events

 Inter-process communication events

 Trace merging and format conversion

Performance Measurement Advanced Operating Systems, U. Oregon22

Optimizing Instrumentation

 Grouping
 Enable/disable profile groups at runtime

 Selective Instrumentation
 Include/exclude events (or files) for instrumentation

 Re-instrumentation
 Profile, overhead analysis, exclude events, re-instrument

 Compensation
 Overhead calibration, removal

Performance Measurement Advanced Operating Systems, U. Oregon23

Grouping Performance Data in TAU

 Profile Groups
 A group of related routines forms a profile group

 Statically defined
TAU_DEFAULT, TAU_USER[1-5], TAU_MESSAGE,

TAU_IO, …

 Dynamically defined
 group name based on string, such as “adlib” or “particles”
 runtime lookup in a map to get unique group identifier
 uses tau_instrumentor to instrument

 Ability to change group names at runtime

 Group-based instrumentation and measurement control

Performance Measurement Advanced Operating Systems, U. Oregon24

Selective Instrumentation

 Selection of which performance events to observe
 Could depend on scope, type, level of interest

 Could depend on instrumentation overhead

 How is selection supported in instrumentation system?
 No choice

 Include / exclude routine and file lists (TAU)

 Environment variables

 Static vs. dynamic

Performance Measurement Advanced Operating Systems, U. Oregon25

Automatic Instrumentation of Source Code

% cxxparse file.cpp -I/dir -Dflags [PDT: Program Database Toolkit]
% tau_instrumentor
Usage : tau_instrumentor <pdbfile> <sourcefile> [-o <outputfile>] [-noinline]
[-g groupname] [-i headerfile] [-c|-c++|-fortran] [-f <instr_req_file>]
For selective instrumentation, use –f option
% tau_instrumentor foo.pdb foo.cpp –o foo.inst.cpp –f selective.dat
% cat selective.dat
Selective instrumentation: Specify an exclude/include list of routines/files.
BEGIN_EXCLUDE_LIST
void quicksort(int *, int, int)
void sort_5elements(int *)
void interchange(int *, int *)
END_EXCLUDE_LIST

BEGIN_FILE_INCLUDE_LIST
Main.cpp
Foo?.c
*.C
END_FILE_INCLUDE_LIST
Instruments routines in Main.cpp, Foo?.c and *.C files only
Use BEGIN_[FILE]_INCLUDE_LIST with END_[FILE]_INCLUDE_LIST

Performance Measurement Advanced Operating Systems, U. Oregon26

Distortion of Performance Data

 Problem: Controlling instrumentation of small routines
 High relative measurement overhead

 Significant intrusion and possible perturbation

 Solution: Re-instrument the application!
 Weed out frequently executing lightweight routine

 Feedback to instrumentation system

Performance Measurement Advanced Operating Systems, U. Oregon27

Re-instrumentation

 Tau_reduce: rule based overhead analysis
 Analyze the performance data to determine events with

high (relative) overhead performance measurements
 Create a select list for excluding those events
 Rule grammar (used in tau_reduce tool [N. Trebon, UO])

[GroupName:] Field Operator Number
 GroupName indicates rule applies to events in group
 Field is a event metric attribute (from profile statistics)

 numcalls, numsubs, percent, usec, cumusec, count [PAPI],
totalcount, stdev, usecs/call, counts/call

 Operator is one of >, <, or =
 Number is any number
 Compound rules possible using & between simple rules

Performance Measurement Advanced Operating Systems, U. Oregon28

Example Rules

 #Exclude all events that are members of TAU_USER
#and use less than 1000 microseconds
TAU_USER:usec < 1000

 #Exclude all events that have less than 100
#microseconds and are called only once
usec < 1000 & numcalls = 1

 #Exclude all events that have less than 1000 usecs per
#call OR have a (total inclusive) percent less than 5
usecs/call < 1000
percent < 5

 Scientific notation can be used
 usec>1000 & numcalls>400000 & usecs/call<30 & percent>25

Performance Measurement Advanced Operating Systems, U. Oregon29

TAU_REDUCE

 Reads profile files and rules

 Creates selective instrumentation file
 Specifies which routines should be excluded from

instrumentation

tau_reduce

rules

profile

Selective
instrumentation file

Performance Measurement Advanced Operating Systems, U. Oregon30

Compensation of Overhead

 Runtime estimation of a single timer overhead

 Evaluation of number of timer calls along a calling path

 Compensation by subtracting timer overhead

 Recalculation of performance metrics

Performance Measurement Advanced Operating Systems, U. Oregon31

Estimating Timer Overheads

 Introduce a pair of timer calls (start/stop)

time

code

Tactual = Tmeasured - (b+c)

a
b

c

d

Tmeasured

start

stop

a
b

c

start

stop
d

a
b t1 t2n

c
d

t1 = n * (b+c)
t2 = b+n*(a+b+c+d)+c

Toverhead = a+b+c+d = (t2 - (t1/n))/n
Tnull = b+c = t1/n

Performance Measurement Advanced Operating Systems, U. Oregon32

Recalculating Inclusive Time

 Number of children/grandchildren… nodes

 Traverse callstack

a
b

c

d

Tmeasured

start

stop

Tactual = Tmeasured - (b+c) - ndescendants * Toverhead

main
 =>
 f1
 => f2
 …
 f3
 => f4

Performance Measurement Advanced Operating Systems, U. Oregon33

Parallel Performance Compensation

 Compensate for synchronization operations

Timer start/stop call

Message
Process A

Process B

Time

wait

Performance Measurement Advanced Operating Systems, U. Oregon34

Lamport’s Logical Time [Lamport 1978]

 Logical time incremented by timer start/stop
 Accumulate timer overhead on local process
 Send local timer overhead with message

Timer start/stop call

Message
Process A

Process B

Time

wait

tA
overhead

tA
overhead

tA
overhead > tB

overhead?
Yes : tB

overhead = tA
overhead

twait
’
 = twait - (tAoverhead - tBoverhead)

 = 0 (if negative)

Performance Measurement Advanced Operating Systems, U. Oregon35

Compensation (contd.)

 Message passing programs
 Adjust wait times (MPI_Recv, MPI_Wait…)

 Adjust barrier wait times (MPI_Barrier)
Each process sends its timer overheads to all other tasks
Each task compares its overhead with max overhead

 Shared memory multi-threaded programs
 Adjust barrier synchronization wait times

Each task compares its overhead to max overhead from all
participating threads

 Adjust semaphore/condition variable wait times
Each task compares its overhead with other thread’s

overhead

Performance Measurement Advanced Operating Systems, U. Oregon36

Conclusions

 Complex software and parallel computing systems pose
challenging performance analysis problems that require
robust methodologies and tools

 Optimizing instrumentation is a key step towards
balancing the volume of performance data with accuracy
of measurements

 Present new research in the area of performance
perturbation compensation techniques for profiling

 http://www.cs.uoregon.edu/research/paracomp/tau

Performance Measurement Advanced Operating Systems, U. Oregon37

Support Acknowledgements

 Department of Energy (DOE)
 Office of Science contracts
 University of Utah DOE ASCI Level 1

sub-contract
 DOE ASCI Level 3 (LANL, LLNL)

 NSF National Young Investigator (NYI)
award

 Research Centre Juelich
 John von Neumann Institute for

Computing
 Dr. Bernd Mohr

 Los Alamos National Laboratory

