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Research Motivation oy
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TAU Performance System

0 Tuning and Analysis Utilities (11+ year project effort)

O Performance system framework for scalable parallel and
distributed high-performance computing

0 Targets a general complex system computation model
O nodes / contexts / threads
O Multi-level: system / software / parallelism
O Measurement and analysis abstraction

O Integrated toolkit for performance instrumentation,
measurement, analysis, and visualization
O Portable performance profiling and tracing facility

O Open software approach with technology integration
0 University of Oregon , Forschungszentrum Julich, LANL
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Definitions — Profiling

3 Profiling
O Recording of summary information during execution
» Inclusive, exclusive time, # calls, hardware statistics, ...

O Reflects performance behavior of program entities
» functions, loops, basic blocks
» user-defined “semantic” entities

O Very good for low-cost performance assessment
O Helps to expose performance bottlenecks and hotspots

O Implemented through
» sampling: periodic OS interrupts or hardware counter traps
» Instrumentation: direct insertion of measurement code
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Definitions — Tracing

1 Tracing

O Recording of information about significant points (events)
during program execution
» entering/exiting code region (function, loop, block, ...)
> thread/process interactions (e.g., send/receive message)

O Save information 1n event record

> timestamp
» CPU 1dentifier, thread 1dentifier
» Event type and event-specific information

O Event trace 1s a time-sequenced stream of event records
O Can be used to reconstruct dynamic program behavior
O Typically requires code instrumentation
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Event Tracing: Instrumentation, Monitor, Trace

Event definition
CPU A:
void master { 1 | master
trace(ENTER, 1); 2 | slave

3

:t.r.ace(SEND, B); .
send(B, tag, buf); \ ltlmeStamp

trace(EXIT, 1);

)
MONITOR ’ 58| A | ENTER | 1
CPU B: 60| B | ENTER | 2
void slave { 62| A | SEND B
trace(ENTER, 2); sal Al ExiT ]
recv(A, tag, buf); 68| B| RECV | A
trace(RECV, A); 69l B | EXIT 5

trace(EXIT, 2);

}
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Event Tracing: “Timeline” Visualization

1 | master .main
2 | slave B master
3] ... M slave
58| A | ENTER | 1
60| B | ENTER | 2
62| A|SEND |B A
a|lAlEXT [1]| =
68| B |RECV | A )
69| B|EXIT |2
1T 1 1 17 1771

58 60 62 64 66 68 70
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TAU Performance System Architecture
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TAU Analysis

0 Parallel profile analysis
O Pprof
» parallel profiler with text-based display

O ParaProf
» Graphical, scalable, parallel profile analysis and display

0 Trace analysis and visualization

O Trace merging and clock adjustment (if necessary)
O Trace format conversion (ALOG, SDDF, VTF, Paraver)
O Trace visualization using Vampir (Pallas/Intel)
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Terminology — Example

3 For routine “int main( )”; |irt main()
. . { /* takes 100 secs */
O Exclusive time

O 100-20-50-20=10 secs £1(); /* takes 20 secs */
£f2(); /* takes 50 secs */

£f1(); /* takes 20 secs */

3 Inclusive time

O 100 secs
O CaHS /* other work */
O 1 call }
3 Subrs (no. of child /*
I‘Outines Called) Time can be replaced by counts
*/
O3

A Inclusive time/call

O 100secs 7
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ParaProf (NAS Parallel Benchmark — LU)
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Trace Visualization using Vampir [Intel/Pallas]
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PETSc ex19 (Tracing)
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TAU’s EVHI Execution Trace in Vambir
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Strategies for Empirical Performance Evaluation

0 Empirical performance evaluation as a series of
performance experiments

O Experiment trials describing instrumentation and
measurement requirements

O Where/When/How axes of empirical performance space
» where are performance measurements made in program
® routines, loops, statements. ..
» when 1s performance instrumentation done
e compile-time, while pre-processing, runtime...
» how are performance measurement/instrumentation chosen
e profiling with hw counters, tracing, callpath profiling...

Performance Measurement 17 Advanced Operating Systems, U. Oregon



TAU Instrumentation Approach

3 Support for standard program events
O Routines
O Classes and templates
O Statement-level blocks
3 Support for user-defined events
O Begin/End events (“user-defined timers™)
O Atomic events
O Selection of event statistics
O Support definition of “semantic” entities for mapping
O Support for event groups

O Instrumentation optimization
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TAU Instrumentation

0 Flexible instrumentation mechanisms at multiple levels

O Source code
> manual

> automatic
e C, C++,F77/90/95 (Program Database Toolkit (PDT))

® OpenMP (directive rewriting (Opari), POMP spec)

O Object code
> pre-instrumented libraries (e.g., MPI using PMPI)
»> statically-linked and dynamically-linked

O Executable code
» dynamic instrumentation (pre-execution) (Dyn/nstAPI)
» virtual machine instrumentation (e.g., Java using JVMPI)
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Multi-Level Instrumentation

0 Targets common measurement interface
O TAU API
0 Multiple instrumentation interfaces
O Simultaneously active
O Information sharing between interfaces
O Utilizes instrumentation knowledge between levels
O Selective mstrumentation
O Available at each level
O Cross-level selection
0 Targets a common performance model
0 Presents a unified view of execution
O Consistent performance events
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TAU Measurement Options

0 Parallel profiling
O Function-level, block-level, statement-level
O Supports user-defined events
O TAU parallel profile data stored during execution
O Hardware counts values
O Support for multiple counters
O Support for callgraph and callpath profiling
1 Tracing
O All profile-level events
O Inter-process communication events

O Trace merging and format conversion
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Optimizing Instrumentation

3 Grouping
O Enable/disable profile groups at runtime
J Selective Instrumentation
O Include/exclude events (or files) for instrumentation
J Re-instrumentation
O Profile, overhead analysis, exclude events, re-instrument
1 Compensation

O Overhead calibration, removal
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Grouping Performance Data in TAU

3 Profile Groups
O A group of related routines forms a profile group

O Statically defined

> TAU DEFAULT, TAU USER[1-5], TAU MESSAGE,
TAU 1O, ...

O Dynamically defined
» group name based on string, such as “adlib” or “particles”
» runtime lookup 1n a map to get unique group i1dentifier
> uses fau instrumentor to mstrument

O Ability to change group names at runtime

O Group-based instrumentation and measurement control
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Selective Instrumentation

3 Selection of which performance events to observe
O Could depend on scope, type, level of interest
O Could depend on instrumentation overhead
1 How 1s selection supported in instrumentation system?
O No choice
O Include / exclude routine and file lists (TAU)
O Environment variables

O Static vs. dynamic
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Automatic Instrumentation of Source Code

% cxxparse file.cpp -I/dir -Dflags [PDT: Program Database Toolkit]
% tau_ instrumentor

Usage : tau instrumentor <pdbfile> <sourcefile> [-o <outputfile>] [-noinline]
[-g groupname] [-i headerfile] [-c|-c++|-fortran] [-f <instr req file> ]

For selective instrumentation, use -f option

% tau_instrumentor foo.pdb foo.cpp -o foo.inst.cpp -f selective.dat

% cat selective.dat

# Selective instrumentation: Specify an exclude/include list of routines/files.
BEGIN EXCLUDE LIST

void quicksort(int *, int, int)

void sort S5elements (int ¥)

void interchange (int *, int ¥*)

END EXCLUDE LIST

BEGIN FILE INCLUDE LIST
Main.cpp

Foo?.c

*.C

END FILE INCLUDE LIST

# Instruments routines in Main.cpp, Foo?.c and *.C files only
# Use BEGIN [FILE] INCLUDE LIST with END [FILE] INCLUDE LIST
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Distortion of Performance Data

13 Problem: Controlling instrumentation of small routines
O High relative measurement overhead
O Significant intrusion and possible perturbation
13 Solution: Re-1nstrument the application!
O Weed out frequently executing lightweight routine
O Feedback to mstrumentation system
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Re-instrumentation

0 Tau reduce: rule based overhead analysis

0 Analyze the performance data to determine events with
high (relative) overhead performance measurements

O Create a select list for excluding those events

0 Rule grammar (used in fau reduce tool [N. Trebon, UO])
[GroupName:] Field Operator Number
O GroupName indicates rule applies to events 1in group

O Field 1s a event metric attribute (from profile statistics)

» numcalls, numsubs, percent, usec, cumusec, count [PAPI],
totalcount, stdev, usecs/call, counts/call

O Operator 1s one of >, <, or =
O Number 1s any number
O Compound rules possible using & between simple rules
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Example Rules

0 #Exclude all events that are members of TAU USER
#and use less than 1000 microseconds
TAU USER:usec <1000

3 #Exclude all events that have less than 100
#microseconds and are called only once
usec < 1000 & numcalls = 1

0 #Exclude all events that have less than 1000 usecs per
#call OR have a (total inclusive) percent less than 5

usecs/call < 1000
percent <5

O Scientific notation can be used
O usec>1000 & numcalls>400000 & usecs/call<30 & percent>25

Performance Measurement 28 Advanced Operating Systems, U. Oregon



TAU REDUCE

0d Reads profile files and rules

3 Creates selective instrumentation file

O Specifies which routines should be excluded from
Instrumentation

> Selective
Instrumentation file
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Compensation of Overhead

0 Runtime estimation of a single timer overhead

0 Evaluation of number of timer calls along a calling path
0 Compensation by subtracting timer overhead

3 Recalculation of performance metrics
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Estimating Timer Overheads

O Introduce a pair of timer calls (start/stop)

~Na start P

‘ start ( - = i
) v measured
me _st: NS — @ Clc) |

code P d - d

stop |, —d

Tactual - Tmeasured B (b‘|'C)
t, =n * (b+tc)

t, = btn*(atbt+ct+d)+c

Toverhead = atbtctd = (t2 B (tl/ Il))/ n
T,,, =bfc=t/n
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Recalculating Inclusive Time

0 Number of children/grandchildren... nodes

3 Traverse callstack

main
tart N —
sta o fl
—_— Tmeasured => {2
C
Stop \ PRI
d 3
—> 4
Tactual - Tmeasured B (b‘|'C) = Dyescendants * Toverhead

Performance Measurement
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Parallel Performance Compensation

1 Compensate for synchronization operations

= T1mer start/stop call
Process A

B > \Message
Process B
= >
wait
Time —>
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Lamport’s Logical Time [Lamport 1978]

1 Logical time incremented by timer start/stop
1 Accumulate timer overhead on local process
3 Send local timer overhead with message

= T1mer start/stop call

tonerhead Process A
> \ Message
tA
overhead
Process B
>
' A B
wait t overhead > 1 overhead?

Yes: tB = tA

twait’ - tWait B (tonerhead B tBoverhead)
= (0 (1f negative)

overhead overhead

Time —>
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Compensation (contd.)

0 Message passing programs
O Adjust wait times (MPI Recv, MPI Wait...)

O Adjust barrier wait times (MPI Barrier)
» Each process sends its timer overheads to all other tasks
> Each task compares its overhead with max overhead

0 Shared memory multi-threaded programs

O Adjust barrier synchronization wait times

» Each task compares its overhead to max overhead from all
participating threads

O Adjust semaphore/condition variable wait times

» Each task compares its overhead with other thread’s
overhead
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Conclusions

0 Complex software and parallel computing systems pose
challenging performance analysis problems that require
robust methodologies and tools

0 Optimizing instrumentation 1s a key step towards
balancing the volume of performance data with accuracy
of measurements

O Present new research 1n the area of performance
perturbation compensation techniques for profiling

O
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