
TAU Performance Toolkit
(WOMPAT 2004 OpenMP Lab)

Sameer Shende, Allen D. Malony
University of Oregon

{sameer, malony}@cs.uoregon.edu

The TAU Performance System WOMPAT 2004 OpenMP Lab2

Research Motivation

 Tools for performance problem solving
 Empirical-based performance optimization process

 Performance technology concerns

characterization

Performance
Tuning

Performance
Diagnosis

Performance
Experimentation

Performance
Observation

hypotheses

properties

• Instrumentation
• Measurement
• Analysis
• Visualization

Performance
Technology

• Experiment
management

• Performance
database

Performance
Technology

The TAU Performance System WOMPAT 2004 OpenMP Lab3

TAU Performance System

 Tuning and Analysis Utilities (11+ year project effort)

 Performance system framework for scalable parallel and
distributed high-performance computing

 Targets a general complex system computation model
 nodes / contexts / threads
 Multi-level: system / software / parallelism
 Measurement and analysis abstraction

 Integrated toolkit for performance instrumentation,
measurement, analysis, and visualization
 Portable performance profiling and tracing facility

 Open software approach with technology integration
 University of Oregon , Forschungszentrum Jülich, LANL

The TAU Performance System WOMPAT 2004 OpenMP Lab4

TAU Performance Systems Goals

 Multi-level performance instrumentation
 Multi-language automatic source instrumentation

 Flexible and configurable performance measurement

 Widely-ported parallel performance profiling system
 Computer system architectures and operating systems

 Different programming languages and compilers

 Support for multiple parallel programming paradigms
 Multi-threading, message passing, mixed-mode, hybrid

 Support for performance mapping

 Support for object-oriented and generic programming

 Integration in complex software systems and applications

The TAU Performance System WOMPAT 2004 OpenMP Lab5

Definitions – Profiling

 Profiling
 Recording of summary information during execution

 inclusive, exclusive time, # calls, hardware statistics, …

 Reflects performance behavior of program entities
 functions, loops, basic blocks
 user-defined “semantic” entities

 Very good for low-cost performance assessment

 Helps to expose performance bottlenecks and hotspots

 Implemented through
 sampling: periodic OS interrupts or hardware counter traps
 instrumentation: direct insertion of measurement code

The TAU Performance System WOMPAT 2004 OpenMP Lab6

Definitions – Tracing

 Tracing
 Recording of information about significant points (events)

during program execution
 entering/exiting code region (function, loop, block, …)
 thread/process interactions (e.g., send/receive message)

 Save information in event record
 timestamp
CPU identifier, thread identifier
Event type and event-specific information

 Event trace is a time-sequenced stream of event records

 Can be used to reconstruct dynamic program behavior

 Typically requires code instrumentation

The TAU Performance System WOMPAT 2004 OpenMP Lab7

TAU Performance System Architecture

EPILOG

Paraver

The TAU Performance System WOMPAT 2004 OpenMP Lab8

Strategies for Empirical Performance Evaluation

 Empirical performance evaluation as a series of
performance experiments
 Experiment trials describing instrumentation and

measurement requirements

 Where/When/How axes of empirical performance space
where are performance measurements made in program

 routines, loops, statements…
when is performance instrumentation done

 compile-time, while pre-processing, runtime…
 how are performance measurement/instrumentation chosen

 profiling with hw counters, tracing, callpath profiling…

The TAU Performance System WOMPAT 2004 OpenMP Lab9

TAU Instrumentation Approach

 Support for standard program events
 Routines

 Classes and templates

 Statement-level blocks

 Support for user-defined events
 Begin/End events (“user-defined timers”)

 Atomic events (e.g., size of memory allocated/freed)

 Selection of event statistics

 Support definition of “semantic” entities for mapping

 Support for event groups

 Instrumentation optimization

The TAU Performance System WOMPAT 2004 OpenMP Lab10

TAU Instrumentation

 Flexible instrumentation mechanisms at multiple levels
 Source code

manual
 automatic

 C, C++, F77/90/95 (Program Database Toolkit (PDT))
 OpenMP (directive rewriting (Opari), POMP spec)

 Object code
 pre-instrumented libraries (e.g., MPI using PMPI)
 statically-linked and dynamically-linked

 Executable code
 dynamic instrumentation (pre-execution) (DynInstAPI)
 virtual machine instrumentation (e.g., Java using JVMPI)

The TAU Performance System WOMPAT 2004 OpenMP Lab11

Multi-Level Instrumentation

 Targets common measurement interface
 TAU API

 Multiple instrumentation interfaces
 Simultaneously active

 Information sharing between interfaces
 Utilizes instrumentation knowledge between levels

 Selective instrumentation
 Available at each level
 Cross-level selection

 Targets a common performance model
 Presents a unified view of execution

 Consistent performance events

The TAU Performance System WOMPAT 2004 OpenMP Lab12

Program Database Toolkit (PDT)

 Program code analysis framework
 develop source-based tools

 High-level interface to source code information

 Integrated toolkit for source code parsing, database
creation, and database query
 Commercial grade front-end parsers

 Portable IL analyzer, database format, and access API

 Open software approach for tool development

 Multiple source languages

 Implement automatic performance instrumentation tools
 tau_instrumentor

The TAU Performance System WOMPAT 2004 OpenMP Lab13

Program Database Toolkit (PDT)

Application
/ Library

C / C++
parser

Fortran parser
F77/90/95

C / C++
IL analyzer

Fortran
IL analyzer

Program
Database

Files

IL IL

DUCTAPE

PDBhtml

SILOON

CHASM

TAU_instr

Program
documentation

Application
component glue

C++ / F90/95
interoperability

Automatic source
instrumentation

The TAU Performance System WOMPAT 2004 OpenMP Lab14

PDT 3.1 Functionality

 C++ statement-level information implementation
 for, while loops, declarations, initialization, assignment…

 PDB records defined for most constructs

 DUCTAPE
 Processes PDB 1.x, 2.x, 3.x uniformly

 PDT applications
 XMLgen

PDB to XML converter
Used for CHASM and CCA tools

 PDBstmt
Statement callgraph display tool

The TAU Performance System WOMPAT 2004 OpenMP Lab15

PDT 3.1 Functionality (continued)

 Cleanscape Flint parser fully integrated for F90/95
 Flint parser (f95parse) is very robust

 Produces PDB records for TAU instrumentation (stage 1)
Linux (x86, IA-64, Opteron, Power4), HP Tru64, IBM AIX,

Cray X1,T3E, Solaris, SGI, Apple, Windows, Power4
Linux (IBM Blue Gene/L compatible)

 Full PDB 2.0 specification (stage 2) [SC’04]

 Statement level support (stage 3) [SC’04]

 PDT 3.1 released in March 2004.

 URL:
http://www.cs.uoregon.edu/research/paracomp/pdtoolkit

The TAU Performance System WOMPAT 2004 OpenMP Lab16

Instrumentation of OpenMP Constructs

 OOpenMP PPragma AAnd RRegion IInstrumentor
 Source-to-Source translator to insert POMP calls

around OpenMP constructs and API functions
 Done: Supports

 Fortran77 and Fortran90, OpenMP 2.0
 C and C++, OpenMP 1.0
 POMP Extensions
 EPILOG and TAU POMP implementations
 Preserves source code information (#line line
file)

 Work in Progress:
Investigating standardization through OpenMP Forum

The TAU Performance System WOMPAT 2004 OpenMP Lab17

Using Opari with TAU

Step I: Configure KOJAK/opari [Download from http://www.fz-juelich.de/zam/kojak/]

% cd kojak-1.0; cp mf/Makefile.defs.sgi Makefile.defs;
 edit Makefile
% make

Builds opari

Step II: Configure TAU with Opari (used here with MPI and PDT)
% configure
 –opari=/galaxy/wompat/sameer/kojak/sun/kojak-1.0/opari
 -mpiinc=/usr/include
 –mpilib=/usr/lib
 –pdt=/galaxy/wompat/sameer/pdtoolkit-3.1
% make clean; make install

The TAU Performance System WOMPAT 2004 OpenMP Lab18

OpenMP API Instrumentation

 Transform
 omp_#_lock() → pomp_#_lock()
 omp_#_nest_lock()→ pomp_#_nest_lock()

[# = init | destroy | set | unset | test]

 POMP version
 Calls omp version internally

 Can do extra stuff before and after call

The TAU Performance System WOMPAT 2004 OpenMP Lab19

Example: !$OMP PARALLEL DO Instrumentation

!$OMP PARALLEL DO clauses...

do loop

!$OMP END PARALLEL DO

!$OMP PARALLEL other-clauses...

!$OMP DO schedule-clauses, ordered-clauses,
 lastprivate-clauses
do loop

!$OMP END DO

!$OMP END PARALLEL DO

 NOWAIT

!$OMP BARRIER

call pomp_parallel_fork(d)

call pomp_parallel_begin(d)

call pomp_parallel_end(d)

call pomp_parallel_join(d)

call pomp_do_enter(d)

call pomp_do_exit(d)

call pomp_barrier_enter(d)

call pomp_barrier_exit(d)

The TAU Performance System WOMPAT 2004 OpenMP Lab20

Opari Instrumentation: Example

 OpenMP directive instrumentation

pomp_for_enter(&omp_rd_2);
#line 252 "stommel.c"
#pragma omp for schedule(static) reduction(+: diff) private(j)
firstprivate (a1,a2,a3,a4,a5) nowait

for(i=i1;i<=i2;i++) {
for(j=j1;j<=j2;j++){
new_psi[i][j]=a1*psi[i+1][j] + a2*psi[i-1][j] + a3*psi[i][j+1]
+ a4*psi[i][j-1] - a5*the_for[i][j];

diff=diff+fabs(new_psi[i][j]-psi[i][j]);
}

}
pomp_barrier_enter(&omp_rd_2);
#pragma omp barrier
pomp_barrier_exit(&omp_rd_2);
pomp_for_exit(&omp_rd_2);
#line 261 "stommel.c"

The TAU Performance System WOMPAT 2004 OpenMP Lab21

OPARI: Basic Usage (f90)

 Reset OPARI state information
 rm -f opari.rc

 Call OPARI for each input source file
 opari file1.f90
...
opari fileN.f90

 Generate OPARI runtime table, compile it with ANSI C
 opari -table opari.tab.c
cc -c opari.tab.c

 Compile modified files *.mod.f90 using OpenMP

 Link the resulting object files, the OPARI runtime table
opari.tab.o and the TAU POMP RTL

The TAU Performance System WOMPAT 2004 OpenMP Lab22

OPARI: Makefile Template (C/C++)

OMPCC = ... # insert C OpenMP compiler here
OMPCXX = ... # insert C++ OpenMP compiler here

.c.o:
opari $<
$(OMPCC) $(CFLAGS) -c $*.mod.c

.cc.o:
opari $<
$(OMPCXX) $(CXXFLAGS) -c $*.mod.cc

opari.init:
rm -rf opari.rc

opari.tab.o:
opari -table opari.tab.c
$(CC) -c opari.tab.c

myprog: opari.init myfile*.o ... opari.tab.o
$(OMPCC) -o myprog myfile*.o opari.tab.o -lpomp

myfile1.o: myfile1.c myheader.h
myfile2.o: ...

The TAU Performance System WOMPAT 2004 OpenMP Lab23

OPARI: Makefile Template (Fortran)

OMPF77 = ... # insert f77 OpenMP compiler here
OMPF90 = ... # insert f90 OpenMP compiler here

.f.o:
opari $<
$(OMPF77) $(CFLAGS) -c $*.mod.F

.f90.o:
opari $<
$(OMPF90) $(CXXFLAGS) -c $*.mod.F90

opari.init:
rm -rf opari.rc

opari.tab.o:
opari -table opari.tab.c
$(CC) -c opari.tab.c

myprog: opari.init myfile*.o ... opari.tab.o
$(OMPF90) -o myprog myfile*.o opari.tab.o -lpomp

myfile1.o: myfile1.f90
myfile2.o: ...

The TAU Performance System WOMPAT 2004 OpenMP Lab24

Performance Analysis and Visualization

 Analysis of parallel profile and trace measurement

 Parallel profile analysis
 ParaProf

 Profile generation from trace data

 Performance database framework (PerfDBF)

 Parallel trace analysis
 Translation to VTF 3.0 and EPILOG

 Integration with VNG (Technical University of Dresden)

 Online parallel analysis and visualization

The TAU Performance System WOMPAT 2004 OpenMP Lab25

ParaProf Framework Architecture

 Portable, extensible, and scalable tool for profile analysis

 Try to offer “best of breed” capabilities to analysts

 Build as profile analysis framework for extensibility

The TAU Performance System WOMPAT 2004 OpenMP Lab26

Profile Manager Window

 Structured AMR toolkit (SAMRAI++), LLNL

The TAU Performance System WOMPAT 2004 OpenMP Lab27

Node / Context / Thread Profile Window

The TAU Performance System WOMPAT 2004 OpenMP Lab28

Derived Metrics

The TAU Performance System WOMPAT 2004 OpenMP Lab29

Full Profile Window (Metric-specific)

51
2

pr
oc

es
se

s

The TAU Performance System WOMPAT 2004 OpenMP Lab30

Tracing Hybrid Executions – TAU and Vampir

The TAU Performance System WOMPAT 2004 OpenMP Lab31

Profiling Hybrid Executions

The TAU Performance System WOMPAT 2004 OpenMP Lab32

OpenMP + MPI Ocean Modeling (HW Profile)

% configure -papi=../packages/papi -openmp -c++=pgCC -cc=pgcc
 -mpiinc=../packages/mpich/include -mpilib=../packages/mpich/lib

FP
instructions

Integrated
OpenMP +
MPI events

The TAU Performance System WOMPAT 2004 OpenMP Lab33

TAU Performance System Status

 Computing platforms (selected)
 IBM SP / pSeries, SGI Origin 2K/3K, Cray T3E / SV-1 /

X1, HP (Compaq) SC (Tru64), Sun, Hitachi SR8000,
NEC SX-5/6, Linux clusters (IA-32/64, Alpha, PPC, PA-
RISC, Power, Opteron), Apple (G4/5, OS X), Windows

 Programming languages
 C, C++, Fortran 77/90/95, HPF, Java, OpenMP, Python

 Thread libraries
 pthreads, SGI sproc, Java,Windows, OpenMP

 Compilers (selected)
 Intel KAI (KCC, KAP/Pro), PGI, GNU, Fujitsu, Sun,

Microsoft, SGI, Cray, IBM (xlc, xlf), Compaq, NEC, Intel

The TAU Performance System WOMPAT 2004 OpenMP Lab34

Concluding Remarks

 Complex parallel systems and software pose challenging
performance analysis problems that require robust
methodologies and tools

 To build more sophisticated performance tools, existing
proven performance technology must be utilized

 Performance tools must be integrated with software and
systems models and technology
 Performance engineered software

 Function consistently and coherently in software and
system environments

 TAU performance system offers robust performance
technology that can be broadly integrated

The TAU Performance System WOMPAT 2004 OpenMP Lab35

Support Acknowledgements

 Department of Energy (DOE)
 Office of Science contracts
 University of Utah DOE ASCI Level 1

sub-contract
 DOE ASCI Level 3 (LANL, LLNL)

 NSF National Young Investigator (NYI)
award

 Research Centre Juelich
 John von Neumann Institute for

Computing
 Dr. Bernd Mohr

 Los Alamos National Laboratory

