
Chapter 1. Tools

Table of Contents
cxxparse .. 2
cparse ... 3
f90parse .. 4
f95parse .. 5
pdbconv .. 6
pdbhtml ... 7
pdbmerge .. 8
pdbtree .. 9
pdbcomment .. 10
pdbStmt .. 11
xmlgen .. 12

1

Name
cxxparse -- Shell scripts that executes the right parsers and IL analyzers

cxxparse { C++ file } [-I directory] [-D define]

Description
C++ file is the source file for which a program database (PDB) file is generated. The filename of the
PDB file will have the basename of the C++ file and the suffix ".pdb".

You can also specify additional flags necessary for your program to compile. The configure script will
determine most, if not all, flags and incorporate these in cxxparse. Local options, such as an application
include directory, can be specified here.

Options
-I directory Adds a directory dir to the list of directories searched for INCLUDE statements.

-D define A list of file that this C file defines.

Example
cxxparse example.cc

Tools

2

Name
cparse -- Shell scripts that executes the right parsers and IL analyzers

cparse { C file } [-I directory] [-D define]

Description
C file is the source file for which a program database (PDB) file is generated. The filename of the PDB
file will have the basename of the C file and the suffix ".pdb".

You can also specify additional flags necessary for your program to compile. The configure script will
determine most, if not all, flags and incorporate these in cparse. Local options, such as an application in-
clude directory, can be specified here.

Options
-I directory Adds a directory dir to the list of directories searched for INCLUDE statements.

-D define A list of file that this C file defines.

Example
cparse example.c

Tools

3

Name
f90parse -- Shell scripts that executes the right parsers and IL analyzers

f90parse { Fortran file } [-F] [-I directory] [-M directory] [-R] [-r] [-U] [
-u] [-A] [-Llfile]

Description
Fortran file is the source file for which a program database (PDB) file is generated. The filename of the
PDB file will have the basename of the Fortran file and the suffix ".pdb".

You can also specify additional flags necessary for your program to compile. The configure script will
determine most, if not all, flags and incorporate these in cparse. Local options, such as an application in-
clude directory, can be specified here.

Options
-F Fixed form for source. By default, the form is free. In fixed form positions (columns) 1-5 can be
used only for lables, position 6 is for continuation and a "C" or "*" is for comment lines. The main pro-
gram must fall in positions 7-72.

-I<dir> Adds a directory dir to the list of directories searched for INCLUDE statements.

-M<dir> Specifies a list of directories for searching module definition files. Members of the list must
be separated by semicolon. While modules are defined or used this option is mandatory.

-R Suppress folding constant expressions but those that either are public constant values of modules or
define parameters of type.

-r Issue remarks, which are diagnostic messages even milder than warnings.

-U Case sensitivity for identifiers.

-u Disable implicit typing of identifiers. This has the same effect as IMPLICIT NONE statement as ap-
plied to the file.

-A Warn about use of non-F90 features, disable features that conflict with F90.

-Llfile Generate raw listing information in the file lfile. This information is used to generate a
formatted listing where each line begins with a key character that identifies the type: N - Normal line S -
Comment line R - Remark diagnostics W - Warning diagnostics E - Error diagnostics C - Catastrophic
error diagnostics.

Note
The Fortran 90 parser included in PDT adheres very strictly to the F90 language specification and does
not comply with extensions to the language typically implemented by vendors. This includes real*8 or
integer*8 types, kind parameters, and some continuation fields in fixed form. In some cases, the source
must be modified to comply with the standard before the PDT front-end can parse the program. f95parse
may be used to parse codes that f90parse cannot handle.

Example
f90parse example.f90

Tools

4

Name
f95parse -- Shell scripts that executes the right parsers and IL analyzers

f95parse { Fortran file } [-F] [-I directory] [-M directory] [-R] [-r] [-U] [
-u] [-A] [-Llfile] [-o pdbfile]

Description
Fortran file is the source file for which a program database (PDB) file is generated. The filename of the
PDB file will have the basename of the Fortran file and the suffix ".pdb".

You can also specify additional flags necessary for your program to compile. The configure script will
determine most, if not all, flags and incorporate these in cparse. Local options, such as an application in-
clude directory, can be specified here.

Options
-v Verbose flag. In this mode, all error messages and warnings are displayed.

-R free Specifies free form, -R fixed specifies fixed form for the Fortran source code. If your Fortran
source has a .f file extension and uses free form, it is important to specify this flag. By default the parser
assumes fixed form for F77. For other flags that f95parse accepts, please refer to the etc/flint.hls file.

-p invoke preprocessor.

-o<pdbfile> Specifies the name of the PDB file. Note: there is no space between -o and the file
name.

Note
You may specify multiple fortran files on the command-line to resolve module dependencies. e.g.,

% f95parse `find . -name "*.f90" -print` -omerged.pdb

parses all files with .f90 suffix to produce merged.pdb file.

Currently, f95parse can produce PDB files that have enough information for use with the TAU profiling
package. However, it does not have argument and calltree information that may be needed for other
tools such as CHASM. This will be added in future releases.

Example
f95parse example.f95

Tools

5

Name
pdbconv -- Simple tool that checks the consistency/correctness of a PDB file and converts it to a more
verbose, human-readable format.

pdbconv [-c] [-o <outfile>] [-A] [-G] [-M] [-N] [-P] [-R] [-S] [-T] [-Y] {
<pdbfile> }

Description
Called without any options, pdbconv reads the PDB file <pdbfile> checks it for correctness, and prints it
out again in a standard form. The following options are available:

Options
-c Check for correctness only

-o <outfile> Write output to file >outfile<

-A Convert (A)ll item output to verbose format

-G Print only (G)roup items (in verbose format)

-M Print only (M)acro items (in verbose format)

-N Print only (N)amespace items (in verbose format)

-P Print only (P)ragma items (in verbose format)

-R Print only (R)outine items (in verbose format)

-S Print only (S)ource file items (in verbose format)

-T Print only (T)emplate items (in verbose format)

-Y Print only t(Y)pe items (in verbose format)

Example

%>pdbconv -Y testApp.pdb
TY#1 double
location: [UNKNOWN]
kind: c/c++Float
floatKind: double
...

Tools

6

Name
pdbhtml -- Produces "htmlized" versions of all source and header files

pdbhtml { <pdbfile> }

Description
Produces "htmlized" versions of all source and header files contained in the program database file
<pdbfile>. It also produces an HTML index of Classes, Templates, Namespaces, and Functions called
"index.html".

Options
<pdbfile>

Tools

7

Name
pdbmerge -- Takes a set of program database files and merges them into one.

pdbmerge [-v] [-o <outfile>] [<pdbfiles>]

Description
-v Verbose

-o <outfile> Write merged database to file <outfile> instead of cout.

Note
Namespace definitions spread over several files are not merged correctly yet.

Example

%>pdbmerge -o new.pdb test1.pdb test2.pdb

Tools

8

Name
pdbtree -- Prints the source file inclusion tree, class hierarchy (IS-A + HAS-A), and function call graph.

pdbtree [-C] [-R] [-S] { <pdbfile> }

Description
Prints the source file inclusion tree, class hierarchy (IS-A + HAS-A), and function call graph.

Options
-C Print only the (C)lass hierarchy

-R Print only the (R)outine call graph

-S Print only the (S)ource file inclusion tree

Note
Class hierarchy is a DAG, not a tree, and therefore display is bad.

Example

%>pdbtree -R tutorial.pdb
void B::callA(A)
`--> bool A::isZero(int)

Tools

9

Name
pdbcomment -- Scans all (non-system) source files related to a PDB file for C, C++, Fortran comments,
C/C++ pragmas, and Fortran directives and prints out a new enhanced PDB file containing this addition-
al information.

pdbcomment [-o <outfile>] [-c] [-p] [-d] [-v] [-D string]

Description
Scans all (non-system) source files related to a PDB file for C, C++, Fortran comments, C/C++ pragmas,
and Fortran directives and prints out a new enhanced PDB file containing this additional information.

Options
-o <outfile> Write output to file <outfile>

-c Only scan for comments (ignore pragmas)

-p Only scan for pragmas (ignore comments)

-d Fortran only: Consider lines with a 'D' in the first column also as comments.

-v Verbose mode

-D string Fortran only: Scan also for directives which are marked with the sentinel 'string'. This op-
tion can be specified several times, once for each directive sentinel to scan for. Case does NOT matter
when specifiying 'string'. pdbcomment recognizes OpenMP (sentinel $omp) by default.

Example

% pdbcomment test.pdb
<PDB 3.0>
lang c++

so#1 testApp.cc
scom co#0 c so#1 1 1 so#1 3 2 /*\n class T\n*/
scom co#1 c++ so#1 8 3 so#1 8 19 // create float.

Tools

10

Name
pdbStmt -- Scans pdb file and prints every statement in the pdb file.

pdbStmt { pdbFile }

Description
Scans pdb file and prints every statement in the pdb file.

Example

% pdbstmt testApp.pdb
--------------- int T::foo(double, int):
st#1 (7, 2) : {
st#2 (9, 3) (9,12): decl
st#0 (10, 3) (10,13): return

(11, 2): }

Tools

11

Name
xmlgen -- Converts a PDB file to an XML file.

xmlgen [-c] [-s] [-l]

Options
-c optional flag. forces generator to assume C, not C++.

-s optional flag. causes generator to emit statement level info.

-l optional flag. causes generator to emit locations with -s.

Note
In the current release, support for Fortran is mostly complete. C++ templates or multiple inheritance are
not yet supported. The CHASM project [http://sourceforge.net/projects/chasm-interop] at LANL de-
veloped xmlgen.

Example

% xmlgen testApp.pdb

Tools

12

	Chapter 1. Tools
	Table of Contents
	cxxparse
	cparse
	f90parse
	f95parse
	pdbconv
	pdbhtml
	pdbmerge
	pdbtree
	pdbcomment
	pdbStmt
	xmlgen

