
RESIDUAL COVERAGE MONITORING OF JAVA PROGRAMS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Christina Pavlopoulou

In Partial Ful�llment of the

Requirements for the Degree

of

Master of Science

August 1997



ii

ACKNOWLEDGMENTS

I would like to thank prof. Michal Young for his valuable help and guidance during

the building of the system and the writing of this report.



DISCARD THIS PAGE



iii

TABLE OF CONTENTS

Page

LIST OF TABLES : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : v

LIST OF FIGURES : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : vi

ABSTRACT : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : vii

1. INTRODUCTION : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1

1.1 Residual Testing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2
1.2 Related Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3
1.3 Current Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

2. RESIDUAL TESTING WITH SELECTIVE MONITORING : : : : : : : : 6

2.1 Basic Design : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6
2.1.1 Compile-time structures : : : : : : : : : : : : : : : : : : : : : 7
2.1.2 Run-time structures : : : : : : : : : : : : : : : : : : : : : : : 7
2.1.3 Processing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

2.2 Implementation Issues for Java : : : : : : : : : : : : : : : : : : : : : 10
2.3 Class File Format : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11
2.4 Identifying Basic Blocks : : : : : : : : : : : : : : : : : : : : : : : : : 15
2.5 Instrumentation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18
2.6 Identifying Line Information : : : : : : : : : : : : : : : : : : : : : : : 22
2.7 Related Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23

3. EXPERIENCE : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25

4. EXTENSIONS AND FUTURE WORK : : : : : : : : : : : : : : : : : : : 28

5. CONCLUSIONS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32



iv

Page

BIBLIOGRAPHY : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33

APPENDICES

Appendix A: Identifying Statements in Byte Codes : : : : : : : : : : : : 34



v

LIST OF TABLES

Table Page

2.1 Tables for maintaining the information needed for selective monitoring 9

3.1 ArcTest execution times in sec : : : : : : : : : : : : : : : : : : : : : : : 26

3.2 Sorting execution times in sec : : : : : : : : : : : : : : : : : : : : : : : 26

3.3 Elevator execution times in sec : : : : : : : : : : : : : : : : : : : : : : 26

3.4 Instrumentation program execution times in sec : : : : : : : : : : : : : 27

Appendix
Table



vi

LIST OF FIGURES

Figure Page

1.1 Instrumentation process : : : : : : : : : : : : : : : : : : : : : : : : : : 5

2.1 Compile-time structures for instrumentation process : : : : : : : : : : : 8

Appendix
Figure



vii

ABSTRACT

Pavlopoulou, Christina. MS, Purdue University, August 1997. Residual Coverage
Monitoring of Java Programs. Major Professor: Michal Young.

It is common for a product to be released without 100% coverage, since exhaus-

tive testing is impossible. The assumptions made for the remaining test obligations

(residue) is that it is either infeasible or occurs rarely. The purpose of residual testing

it to provide a user-adjustable monitoring of deployed software, and thereby to pro-

vide feedback that can be used to help validation and re�nement of quality assurance

activities by developers. This dissertation focuses on an important step towards the

above goal: residual coverage monitoring. Instrumentation is inserted in the user

program, so that its output indicates whether any test obligations not covered in

previous executions are covered during the current use.



1

1. INTRODUCTION

Quality assurance activities in the development environment, including system-

atic dynamic testing, cannot be performed exhaustively, therefore they always depend

on models. Static analysis depends on the �delity of models extracted for analysis.

Statistical testing for reliability estimation depends on models of program usage. Par-

tition testing depends on the models used to divide program behaviors into classes

that should be \covered." Discrepancies between these models and actual program

behavior are valuable information, even when they don't result in observed program

failures, because they indicate how quality assurance activities in the development en-

vironment can be improved. For example, having some way of judging when \enough"

testing has been done can be valuable in a negative sense. Test adequacy criteria in-

dicate, not when testing is de�nitely adequate, but when there is evidence that a set

of tests is inadequate because some signi�cant class of program behaviors has never

been tested.

The family of structural coverage criteria (statement coverage, branch coverage,

data
ow coverage, etc.) are based on syntactic models of program control and data


ow. These syntactic models are conservative in the sense that they include not only

all control and data 
ows that will occur in any execution, but also many infeasible

paths that can never occur. It is (provably) impossible to determine exactly which

paths are infeasible. Thus even exhaustive testing would often fail to satisfy structural

coverage criteria. When a software product is released without 100% coverage, testers

are explicitly or implicitly assuming that the remaining test obligations (the residue)

is either infeasible, or occurs in a vanishingly small set of possible executions.

In critical software systems such as avionics, these assumptions may be explicit.

For example, developers or testers may be asked to explain, for each block of code



2

which has not been executed under test, why such execution is infeasible (e.g., because

it is a handler for an error that should never occur). In applications with less stringent

reliability requirements, the assumptions may be implicit. For example, it is not

uncommon to set a target of less than 100% coverage. A target of, for example,

90% satisfaction of a test coverage criterion is implicitly an assumption that the

remaining 10% of test obligations are either infeasible or so rarely executed that they

have negligible impact on quality.

We cannot completely avoid models and assumptions. What we can do is validate

them. If we have implicitly or explicitly assumed that a particular path or region in

code is never, or almost never executed, then knowing that an execution of that path

or region has occurred in the deployed use is valuable information, even if the software

performed correctly in that case. However, in current practice this is not possible since

there is a sharp divide between unit, integration, and system testing on the one hand,

and feedback from deployed software on the other. While developers have access

to a variety of monitoring tools in the development environment, monitoring in the

deployed environment is typically limited to error and sanity checks, and the channel

from users back to developers is just a list of trouble reports.

With ubiquitous networking this is no longer necessary. The internet provides a

new opportunity for extending monitoring capabilities from the development environ-

ment into the �elded environment.

1.1 Residual Testing

The goal is to provide deployed software with monitoring of adjustable level and

focus to address varying performance requirements with user control to address con-

cerns of security, and con�dentiality. Feedback of the monitored software will help

validation and re�nement of models and assumptions used in quality assurance ac-

tivities based on actual usage.



3

An important step towards the above goal is very low-cost monitoring of the

\residue" of coverage testing, i.e., checking for test obligations which were not ful-

�lled in the development environment but correspond to execution behaviors that

occur in actual use. Residual coverage monitoring should use the output of perma-

nent instrumentation of the developed programs to indicate whether any test obliga-

tions not covered in the development phase are covered during the current use. This

could occur, for example, if an execution path that has been presumed infeasible by

developers is in fact feasible.

1.2 Related Work

Residual monitoring coverage is a new idea and therefore has di�erent goals and

complications from other software veri�cation and validation techniques. The most

closely related area is assertion-based testing which also uses the run-time information

of instrumented programs to decide whether they conform to the desired behavior as

described with a speci�cation language. Systems implementing this technique include

Anna [LvH85], TSL [Ros91], APP [Ros95], Nana, [Mak], ADL [SH94].

Anna (ANNotated Ada) is a language extension to Ada to include facilities for

formal speci�cation of intended program behavior. The user inserts annotations in

the source program which are just comments for Ada but obey the syntactic and

semantic rules of Anna. Anna can be used in many stages of software development

among which is construction of self-checking production-quality software ([SL86]).

In this case,the annotations are transformed into runtime checks that can be left

permanently in the user program. A transformation tool produces a program that

is self-checking and reports inconsistencies during program operation between the

actual Ada code and the Anna speci�cations. APP, Nana, and ADL are essentially

reimplementations of parts of ANNA functionality for the C programming language.

Similarly, TSL (Task Sequencing Language) ([Ros91]) is a language that supports

writing speci�cations for concurrent Ada systems at a high level of abstraction. The

TSL compiler transforms these speci�cations into Ada code and the TSL runtime



4

system automatically checks an Ada tasking program's execution behavior for consis-

tency with its TSL speci�cations by comparing the events generated by an execution

program with those expressed in the speci�cations.

Furthermore, Bytecode Instrumenting Tool (BIT) ([Lee97a], [Lee97b]) is a tool

for instrumenting Java bytecodes which was developed independently of this system.

However, since it is more closely related to the implementation issues and not the

concept of this work more details about it will be referred in a later chapter.

1.3 Current Work

The primary question addressed by the current work is whether residual moni-

toring can have su�ciently low impact on execution characteristics, particularly e�-

ciency and responsiveness, to be acceptable to users. I have constructed a proof-of-

concept prototype system, which selectively monitors execution of Java programs for

basic blocks. Initially, all basic blocks1 are monitored, but subsequent to a few test

runs the program can be instrumented again, removingmonitoring of basic blocks that

have already been covered and leaving only the probes needed to recognize execution

of the \residue" of unexecuted code. Since the high-frequency program paths tend

to be executed on almost every program run, the cost of selective reinstrumentation

quickly decreases and for the programs I have examined it approaches zero.

Figure 1.1 illustrates the whole process. Initially, instrumentation is inserted to all

the basic blocks in the Java class �les. The modi�ed class �les are executed through

the Java interpreter and as a side e�ect the instrumentation creates a �le containing

the basic blocks executed. Next, this �le is used to determine the set of basic blocks

that were not executed previously and will be instrumented in the next running of

the instrumenter. Every time the process is repeated, the input is the set of basic

blocks the were not executed in previous executions. The basic blocks that have been

executed can be viewed using a graphical user environment like Emacs.

1The precise meaning of a basic block is explained in chapter 2.



5

.class

Instrumenter
Cumulative
Coverage
Table

Display

Java
Interpreter

identify
residue

hit_keys(saved at end of run)

instrument
residue

Figure 1.1 Instrumentation process: in every iteration the basic blocks that were not
covered in previous executions are instrumented and the new class �le is executed in
order to collect coverage information.



6

2. RESIDUAL TESTING WITH SELECTIVE MONITORING

For a �rst proof of concept we limit the problem to selective monitoring of block

coverage, i.e. which basic blocks of the user application have been executed under a

test case. A basic block [SU86] is a sequence of instructions in which 
ow of control

enters at the beginning and leaves at the end without halt or possibility of branching

except at the end. First, we will describe the main approach independently of the

language used and then discuss in more detail an implementation on the Java Virtual

Machine.

2.1 Basic Design

Our design must accommodate the following:

� instrumentation of basic blocks that have not been executed in previous runs

(or all the basic blocks upon request of the user)

� association of basic blocks with the corresponding line numbers of the source

�le so that coverage results can be viewed

� simple run-time processing so that the overhead of the instrumentation is as

small as possible

We divide the design into compile-time processing and run-time processing. Dur-

ing the compile-time processing the instrumentation in the user code is inserted in

each basic block that has not been previously executed. During the run-time pro-

cessing the user program is executed under test. After the run-time processing, in-

formation about which basic blocks were covered during this execution need to be

gathered.



7

2.1.1 Compile-time structures

Several compile-time structures are needed to keep track of what to instrument

each time:

� A table (IdTable) which associates a unique identi�er (block id) with each basic

block. The IdTable should be stable in the sense that, if the same program is

compiled twice without changes, the same unique identi�ers are associated with

each basic block.

� A table (CoverageTable) consisting of the basic block id's that have been covered

in previous executions. This table does not maintain any information other

than presence or absence of a basic block id. It can be a table of booleans

with CoverageTable[i] set to true when the basic block with block id i has

been executed. The testing tool reads this table to determine whether to insert

monitoring code for a particular basic block.

� A table (CorrespondenceTable) that associates integers (hit keys) with block ids.

This table may change with every compilation, because it associates integers

only with those block id's that are not in the coverage table. The purpose of

this table is to provide a simple, e�cient key for the run-time table.

For example, for a program with 6 basic blocks the above compile-time structures

might have the contents illustrated in Figure 2.1.

2.1.2 Run-time structures

During the run-time processing we need one table HitTable indexed by the hit

keys, that will contain information about what has been executed. It can be just an

array of booleans, initially all false. HitTable[i] will be set to true when the i-th

basic block has been executed. Furthermore, we need a procedure that will initialize

the above array at the beginning of the user application and a procedure that will

dump the array at the end of the user application.



8

block 0
block 1
block 2
block 3
block 4
block 5

0
1
2
3
4
5

block block_id

0
1
2
3
4
5

true
false
true
true
false
true

1
4

0
1

IdTable Coverage Table
block_id covered

CorrespondenceTable
block_id hit_key

Figure 2.1 Compile-time structures: IdTable assigns a unique integer to every basic
block in the program, CoverageTable keeps track of which basic blocks have been
executed so far, and CorrespondenceTable assigns new unique integers to the basic
blocks that have not yet been covered.



9

Table Name Associates

IdTable basic block ! block id

CoverageTable block id ! ftrue, falseg

CorrespondenceTable block id ! hitkey

HitTable hit key! ftrue, falseg

Table 2.1 Tables for maintaining the information needed for selective monitoring

The relation among the various tables appears in Table 2.1

2.1.3 Processing

During the compile-time processing, the IdTable for the basic blocks is con-

structed. The CoverageTable is loaded and for all its false entries (i.e. basic blocks

not previously covered), an entry in the CorrespondenceTable is created and a unique

integer (hit key) is associated to it. For each of the basic blocks that have been as-

signed hit key i, code is inserted that sets HitTable[i] to true. At the beginning of

the user program code to initialize HitTable and code to dump it is inserted.

When the user executes his or her application the HitTable is modi�ed as a side-

e�ect of running the program. When the program terminates and the HitTable is

dumped to a �le, we will have information about which basic blocks were covered

during this particular execution.

What remains to be done is the processing of the dumped �le. The post-processor

reads the dumped table, the IdTable, the CorrespondenceTable and the CoverageTable.

Each hit key is translated to a basic block id through the CorrespondenceTable. If

the block id is not already present in the coverage table, it is added, i.e. the corres-

ponding entry is set to true. The modi�ed CorrespondenceTable is then written back

to the disk, to be used in the next compilation. During every post processing phase

the HitTable needs to be processed, since it contains the basic blocks covered in the

last execution.



10

Furthermore, using line information that associates the basic blocks with line

numbers in the source code, the user source code listing is marked using colors in a

visual display.

2.2 Implementation Issues for Java

We implemented the above ideas for Java. The �rst approach tried was to modify

the front-end of the Java compiler. The idea was to insert the necessary instrumen-

tation in the abstract syntax tree and then let the compiler generate the code. This

was not overly di�cult but would not be successful regarding the clean separation

of the instrumentation processing from other aspects of the compiler. Any changes

to the source code of the compiler or the language itself would require corresponding

substantial programming e�ort to update the test instrumentation tool.

The idea for directly instrumenting the byte code representation of the Java pro-

gram (the .class �le) appeared more attractive for several reasons. Assembly language

has a small and simple repertoire of instructions and its structures are much simpler

than those of the original language. The Java Virtual Machine is well speci�ed and

changes to it can have a small impact on our tool. A compiler (AppletMagic by Inter-

metrics) that translates Ada to Java byte codes has appeared, so with small changes

and little e�ort we could have the same tool for Ada as well. The programming ef-

fort and complication could be reduced by using source code by Sun to load classes.

Furthermore, debugging information can be used for relating the assembly code with

the source �le.

The main steps that we follow to selectively monitor class �les are:

� Instrumentation Phase

The user class �les are instrumented.

{ Load the class �les.

{ Construct or read the tables that keep track of the basic blocks previously

executed.



11

{ Identify basic blocks.

{ For each basic block, insert monitoring code.

� Post-processing phase

Information from the execution of instrumented class �les is collected.

{ Load the class �les.

{ Read the tables that keep track of the basic blocks executed.

{ Update these arrays.

{ Output line information.

2.3 Class File Format

This section to describes brie
y those aspects of the class �le format that are

critical for understanding the main implementation issues. For more details the reader

can refer to [LY96].

A class �le, which is produced after compiling a Java source �le, can be viewed as

a Java class (or C structure) containing the following �elds:

BinaryClass {

int magic;

short minorVersion;

short majorVersion;

short constantPoolCount;

cpInfo constantPool[constantPoolCount-1];

short accessFlags;

short thisClass;

short superClass;

short interfacesCount;

short interfaces[interfacesCount];



12

short fieldsCount;

fieldInfo fields[fieldsCount];

short methodsCount;

methodInfo methods[methodsCount];

short attributesCount;

attributeInfo attributes[attributesCount];

}

where int is represented by 4 bytes and short by 2 bytes.

constantPool is a table of variable length structures representing various string

constants, class names, �eld names, and other constants that are referred to within

the BinaryClass structure and its substructures. Each entry is of the form:

cpInfo {

byte tag;

byte info[];

}

The format and length of the array info[] is speci�ed from the value of the tag

�eld. Currently, there are tags for constant arithmetic values (integer, 
oat, long,

double), as well as for constant strings, names of classes, interfaces, �elds, methods

and signatures.

methods is a table of variable length methodInfo structures, which provide a

complete description of the methods explicitly declared in this class. In the case

of interfaces, there is only the interface initialization method. The format of the

methodInfo structure is the following:

methodInfo {

short accessFlags;

short nameIndex;

short descriptorIndex;

short attributesCount;



13

attributeInfo attributes[attributesCount];

}

attributes is a table of variable length attributeInfo structures used to provide

information about the various structures and substructures of a class �le. There are

several attributes and all have the following general format:

attributeInfo {

short attributeNameIndex;

int attributeLength;

byte info[attributeLength];

}

attributeNameIndex points to an entry of the constant pool which is a constant

string representing the name of the attribute. There are several prede�ned attributes

in JDK (Java Development Kit) release 1.1, and some of them are important for

the correct loading of a class �le by the interpreter. Any additional attributes are

not allowed to in
uence the semantics of the Virtual Machine. In the case of the

methodInfo structure, the prede�ned attribute that is used for the implementation

of the tool is the Code attribute.

The attributeInfo representing the Code attribute has the following format:

codeAttribute {

short attributeNameIndex;

int attributeLength;

short maxStack;

short maxLocals;

int codeLength;

byte code[codeLength];

short exceptionTableLength;

{ short startPC;

short endPC;



14

short handlerPC;

short catchType;

} exceptionTable[excpetionTableLength];

short attributesCount;

attributeInfo attributes[attributesCound];

}

code is the array of the actual Virtual Machine byte codes that implement this

method. The instrumentation process modi�es this array. The exceptionTable

consists of entries describing an exception handler in the code array. Each exception

handler is described by four values: startPC and endPC indicate the ranges in the

code array at which the exception handler is active, handlerPC indicates the start of

the exception handler and catchType is an index to the constant pool representing

the name of the class of exceptions. attributes is an array of attributeInfo, from

which the LineNumberTable Attribute is used. The latter has the following format:

lineNumberTableAttribute {

short attributeNameIndex;

int attributeLength;

short lineNumberTableLength;

{ short startPC;

short lineNumber;

} lineNumbertable[lineNumberTableLength];

}

Each entry in the lineNumberTable contains the items startPC which indicates

the index into the code array at which the code for a new line in the original Java

source �le begins, and lineNumber which gives the corresponding line number in the

original Java source �le. The LineNumberTable attribute is present when debugging

information is included, as when Sun's Java compiler is invoked with the -g option.



15

This information is used by the testing tool to provide the user with information

about which lines of the source code have been executed.

2.4 Identifying Basic Blocks

Partitioning the byte codes generated for a Java method into basic blocks is

straightforward. The main idea is sketched below and is adapted from [SU86]:

1. Scan the byte code array to determine which byte codes can be the leaders, i.e.

the �rst byte codes of the basic blocks. The rules for distinguishing leaders are:

(a) The �rst bytecode is a leader.

(b) Any bytecode that is a target of a control transfer instruction or the target

of the lookupswitch or tableswitch instructions is a leader.

(c) Any instruction that immediately follows a control transfer instruction is

a leader.

2. For each leader, each basic block consists of the leader and all instructions up

to but not including the next leader.

For example consider the following program fragment (the numbers at the left are

the line numbers at which the method can be found in the source �le):

14 void BubbleSort() {

15 for (int i = a.length; --i>=0; )

16 for (int j = 0; j<i; j++) {

17 if (a[j] > a[j+1]) {

18 swap(j, j + 1);

19 }

20 }

21 }

Its translation to byte codes will be the following:



16

Method void BubbleSort()

0 aload_0

1 getfield #16 <Field sorting.a [I>

4 arraylength

5 istore_1

6 goto 47

9 iconst_0

10 istore_2

11 goto 42

14 aload_0

15 getfield #16 <Field sorting.a [I>

18 iload_2

19 iaload

20 aload_0

21 getfield #16 <Field sorting.a [I>

24 iload_2

25 iconst_1

26 iadd

27 iaload

28 if_icmple 39

31 aload_0

32 iload_2

33 iload_2

34 iconst_1

35 iadd

36 invokevirtual #32 <Method sorting.swap(II)V>

39 iinc 2 1

42 iload_2

43 iload_1



17

44 if_icmplt 14

47 iinc 1 -1

50 iload_1

51 ifge 9

54 return



18

The basic blocks identi�ed by the previous procedure are:

block start byte code index end byte code index

0 0 8

1 9 13

2 14 30

3 31 38

4 39 41

5 42 46

6 47 53

7 54 55

2.5 Instrumentation

The instrumentation statements must be inserted in such a way that the the Java

Virtual Machine Speci�cation is not violated, since before executing any class �le the

Java interpreter will ensure that the speci�c class �le is legal, that is:

1. it conforms to the format dictated by the Java Virtual Machine Speci�cation

2. the interpreter will be able to execute it, i.e. instructions have the correct

format, the appropriate arguments are on the top of the stack when needed,

etc.

The instrumentation statements are calls to methods of the Java class Monitor,

whose methods and �elds are listed below:

public class Monitor {

static boolean hitTable[];

public static void init(int length);

public static void dump();

public static void hit(int index);

}



19

The method init initializes the array hitTable and the method dump dumps the

array in a �le after the execution of the user program. hit is invoked every time a

basic block is executed.

For each basic block of each method of each class �le which has not been previously

executed, we �nd its hit id and before its corresponding byte codes we insert the

necessary code for the call Monitor.hit(hit_id). The translation to byte codes of

the above statement depends on the value of hit id. If it is less than 256, then we can

use the following code:

bipush hit_id

invokestatic #index

bipush puts the value hit id on top of the stack, index points to the entry of

Monitor.hit(hit_id) in the constant pool. If hit id is greater than or equal to 256,

then the following assembly instructions can be used:

ldc #hit_index

invokestatic #index

Here ldc puts on top of the stack the integer constant found in the entry of the

constant pool pointed to by hit index.

After inserting all the necessary calls to Monitor.hit(int index) we must insert

calls to Monitor.init(length) and Monitor.dump(). This is done in every method:

public static void main(String argv[])

since the execution of a Java program starts from and terminates to the method with

the above header of the class that serves as the main class. (In particular, every class

is allowed to have one main method but since it is not known in advance from which

class of the program the user wants to start the execution, we instrument the main

methods of all the classes.) The call to Monitor.init(length) is inserted at the

beginning of the method and the call to dump before each return.



20

The constant pool contains only the constants used by the speci�c class and since

the Monitor class is not known to the user there are no entries in the constant pool

for its methods. Therefore, we need to modify the constant pool of each class �le

suitably.

Finally, we must increment the size of the stack of each of the methods by 4 in

order to support the execution of the added byte codes.

However, adding code changes the address of instructions, and thus we need

to update the target addresses of the control transfer instructions, the instructions

lookupswitch and tableswitch, as well as the exception table.

For this reason we construct a table, that for each byte code it associates its old

address with its new address. After the monitoring code has been inserted, the byte

codes are examined and all the target addresses are updated. The new target address

should not simply point to the same instruction as previously. In case that instrumen-

tation has been inserted at the beginning of the basic block the target address should

point at the beginning of the instrumentation. Moreover, the lookupswitch and

tableswitch instructions require some 0-bytes to ensure alignment of data. Since

the address of these instructions change, the number of 0-bytes need to be inserted

may have to change.

For example the instrumented method from the previous section will be:

Method void BubbleSort()

0 bipush 1

2 invokestatic #134 <Method test.Monitor.hit(I)V>

5 aload_0

6 getfield #16 <Field sorting.a [I>

9 arraylength

10 istore_1

11 goto 77

14 bipush 2

16 invokestatic #134 <Method test.Monitor.hit(I)V>



21

19 iconst_0

20 istore_2

21 goto 67

24 bipush 3

26 invokestatic #134 <Method test.Monitor.hit(I)V>

29 aload_0

30 getfield #16 <Field sorting.a [I>

33 iload_2

34 iaload

35 aload_0

36 getfield #16 <Field sorting.a [I>

39 iload_2

40 iconst_1

41 iadd

42 iaload

43 if_icmple 59

46 bipush 4

48 invokestatic #134 <Method test.Monitor.hit(I)V>

51 aload_0

52 iload_2

53 iload_2

54 iconst_1

55 iadd

56 invokevirtual #32 <Method sorting.swap(II)V>

59 bipush 5

61 invokestatic #134 <Method test.Monitor.hit(I)V>

64 iinc 2 1

67 bipush 6

69 invokestatic #134 <Method test.Monitor.hit(I)V>



22

72 iload_2

73 iload_1

74 if_icmplt 24

77 bipush 7

79 invokestatic #134 <Method test.Monitor.hit(I)V>

82 iinc 1 -1

85 iload_1

86 ifge 14

89 bipush 8

91 invokestatic #134 <Method test.Monitor.hit(I)V>

94 return

Notice the insertion of calls to Monitor.hit(hit_key) as well as the change of

the target addresses of the control transfer instructions.

2.6 Identifying Line Information

In order to be able to produce some visible and comprehensive output we must

�nd the correspondence between the basic blocks executed and the source code. For

that we use the LineNumberTable attribute of each class �le. As mentioned earlier,

the line information for a method is contained in an array of the form:

index start byte code index line number

0 s0 `0

1 s1 `1

2 s2 `2
...

...
...

The si values appear in an increasing order and only once, whereas the li values

may appear more than once and generally not in sorted order. Note that a line

number points to the �rst of the byte codes to which this line has been translated to.



23

Suppose that for a basic block bi which starts from byte code index si and ends

at byte code index ei , we want to �nd the line numbers of the source �le to which

it corresponds. Assuming that the class �le is unoptimized, the bytecodes of a basic

block are contained in consecutive lines. The way to proceed is the following:

1. Find the line number that corresponds to an entry j such that si � sj.

2. Find the line number that corresponds to an entry k such that ei � sj.

The reason for the above inequalities comes from the way the line number

information is generated: not all byte codes to which a method is translated to

are contained in the line number table.

3. The line numbers to which the basic block bi corresponds to are all li for j �

i � k.

For example, the line information generated for the BubbleSort method (stated

earlier) is:

Line numbers for method void BubbleSort()

line 15: 0

line 16: 9

line 17: 14

line 18: 31

line 16: 39

line 15: 47

line 14: 54

Using the above idea, line 15 corresponds to basic block 0, line 16 to basic block

1, etc.

2.7 Related Work

As mentioned earlier, BIT is also a system that instruments Java bytecodes and it

was developed independently and contemporaneously with the residual testing tool.



24

The purpose of BIT is to provide a general, easy to use tool to insert method calls to

the user class �les, whereas the residual testing tool inserts speci�c method calls to

the user program and at the same time provides data structures to maintain runtime

information. Because of the diverse goals, the systems present many other di�erences.

BIT allows the user to specify the instrumentation statements, whereas it does not

provide the capability of removing monitoring code automatically and of using the

debugging information to relate source code and bytecodes. Moreover, the addition

of statements leads to changes in the instruction addresses and a�ects exception

handling code, something that is not taken care of by BIT.



25

3. EXPERIENCE

The experiments were conducted in a SPARC 5 processor at 70 MHz, using four

Java applications: ArcTest, Sorting, Elevator, and the instrumentation program itself.

The general observation is that the execution of a fully instrumented program

may have signi�cant overhead but after successive reinstrumentations the overhead

reduces dramatically. The additional execution time required for the instrumentation

statements of a program depends mainly on the size and number of loops as well as

on the size of the input data.

The execution times for the various applications are contained in the tables that

follow. In each table, the �rst row contains the execution times of the uninstrumented

application for di�erent data inputs. The execution times regarding the instrumented

program (second row in the tables) were measured as follows: initially instrumentation

is inserted in every basic block and the program is executed with the �rst test case

(time in �rst column); then instrumentation is inserted in those basic blocks that

did not execute previously and the program is run with the second test case (time

in second column); the process is repeated for all test cases. Finally the last row

contains the number of basic blocks that were instrumented for each test case.

The �rst application ArcTest is a simple program that draws on the screen a

number of arcs with random beginning and end. In this case the overhead from the

instrumentation is small, because the time to execute a monitoring statement is small

compared to the time to execute the original code.

The Sorting program sorts an array of randomly generated numbers using either

binary or quick sort. The �rst test case is sorting numbers with binary sort, the

second test case is sorting numbers with quicksort and the third is sorting numbers

with quicksort again. In the �rst two tests the instrumented code needs more than



26

test 1

original 4.5

instrumented 5.0

blocks 29

Table 3.1 ArcTest execution times in sec

test 1 test2 test3

original 24 2 2

instrumented 55 4.5 2

blocks 43 25 6

Table 3.2 Sorting execution times in sec

double than the time that the original needs, since these cases force the execution of

di�erent parts of the program. However, the third test case is executed in the same

time with the original program, as no instrumentation code is executed.

Elevator is a simulation program for the operation of two elevators that can go

up or down a number of 
oors. In this case the overhead is not signi�cant since loops

containing monitoring code are not executed many times.

test 1 test 2 test 3

original 5.5 6.1 6.5

instrumented 6.3 6.8 6.6

blocks 323 240 119

Table 3.3 Elevator execution times in sec



27

test 1 test 2 test 3

original 4.3 1.7 4.4

instrumented 4.7 1.8 4.4

blocks 1000 614 547

Table 3.4 Instrumentation program execution times in sec

Finally, the instrumentation system itself has been instrumented and has been

used to instrument the program Sorting. Again the execution time of the instru-

mented version is not much more than the execution time of the original version.



28

4. EXTENSIONS AND FUTURE WORK

Point-based coverage, which has been investigated so far, gives us information

only about which basic blocks have been executed.

However, one usual question regarding testing is which de�nition-use pairs have

been covered. The answer to that involves path-oriented testing, which provides

information about the paths executed at each run. However, some test coverage

criteria involve sub-paths rather than individual points. The best known of these

is data 
ow coverage testing, in which execution of particular "de�nition use" pairs

(what compiler writers know as "reaching de�nitions") is monitored. The interested

reader may refer to [RW85] for de�nitions and an in-depth discussion of data 
ow

testing.

We consider again whether the run-time performance impact of test coverage

monitoring can be made insigni�cant. Whereas in point-based monitoring it is easy

to reduce the instrumentation overhead, since once a basic block has been executed

we can remove the monitoring code, in path-based monitoring it is not clear how and

when the overhead can be reduced.

In the worst case we might have code like the following code:

if (cond1)

x = ...; // 1

else

y = ...; // 2

if (cond2)

z = x; // 3

else



29

z = y; // 4

with the assumptions that

� the code occurs in a high frequency loop,

� in each of the two if statements, the \then" branch is taken 50% of the time

and the \else" branch is taken 50% of time,

� when the \then" branch is taken in the �rst \if" statement, the \else" branch

is always taken in the second, and when the \else" branch is taken in the �rst

\if" statement, the \then" branch is always taken in the second.

We observe that the de�nition-use pairs (1,3) and (2,4) are never executed, even

though every point in the path is executed 50% of the time. In this case, unless we

transform the code, we cannot avoid monitoring at a point that is executing so often,

unlike the case of point-oriented monitoring. The hope is that such cases do not occur

very often and thus the instrumentation of every point in such paths does not lead

in signi�cant overhead. However, experimental evidence is needed to determine the

frequency with which such cases occur in real programs.

A simple heuristic is to use point-oriented monitoring wherever it is su�cient.

For example, if a de�nition pre-dominates 1 a reference and all the paths from the

de�nition to the reference are de�nition-free, then it su�ces to instrument only the

reference. Similarly, one can instrument only the de�nition if the reference post-

dominates the de�nition and all the paths between them are de�nition-free. Again

experimentation is needed to determine the usefulness of the approach.

Another more complicated approach can be based on the path pro�ling algorithm

described by Ball and Larus [BL96]. Essentially, the algorithm identi�es distinct

paths with distinct states and encodes them as integers from 0 to n � 1. Minimal

1In a rooted, directed graph G , node p pre-dominates node q if every path from the root of G
to q passes through p. If the graph has a set of "end" nodes e1, e2, etc. (e.g., the exit nodes from a
procedure 
ow graph), then node q is said to post-dominate node p if every path from p to an exit
node passes through q.



30

instrumentation is then placed in the user program so that transitions are computed

by simple arithmetic operations.

More speci�cally, �rst the simple case of a directed acyclic graph (DAG) with a

unique source vertex ENTRY and a sink exit EXIT is considered. This DAG is

obtained from the control 
ow graph (CFG) of a program after removal of the loop

backedges. The main steps followed are:

� A non-negative constant value is assigned to each edge in the DAG such that

no two paths compute the same path sum.

� Given an edge value assignment, a minimal cost set of edges is found along

which these values will be computed. This minimal set is the set of edges that

do not belong in a maximal cost spanning tree of the graph. The weighting of

the graph can be speci�ed by the frequencies of execution of various edges.

� The edges found in the previous stage are instrumented appropriately. The

instrumentation code contains additions to �nd the index of the path currently

being executed.

� After collecting the run time information, the executed paths are derived.

In case of CFGs that include loop backedges, the following can be done:

� For each vertex v that is the target of one or more backedges, we add a dummy

edge ENTRY ! v. For each vertex w that is the source of one (or more)

backedges, we add a dummy edge w! EXIT .

� We eliminate the backedges from the graph and the steps of the algorithm

described earlier are applied.

The good performance of the above algorithm depends on how much the cost of

the instrumentation code can be reduced. If we have access to many registers, then

the additions needed to �nd the index of the path become cheap. This is not however



31

the case with the Java Virtual Machine, since it is a stack-oriented machine where

we cannot control the registers.

Cheap path-oriented monitoring is harder than the corresponding point-oriented

problem. Experiments to give an idea about the frequency of the di�erent cases

mentioned above would help decide about a suitable course of action. Furthermore,

combination of simple heuristics as the one described above that exploit speci�c fea-

tures might lead to small monitoring overhead.



32

5. CONCLUSIONS

A proof of concept system that implements residual testing has been presented.

The system inserts instrumentation code in each basic block of the user program that

has not been executed in previous runs. When the user program is executed under

some test cases, information about which monitored basic blocks have been covered

is produced.

The instrumentation takes place in Java class �les. The simple repertoire of the

instructions and the platform independence make JVM a reasonable choice for the

implementation of the system. Although JVM performs various checks prior to the

execution of a class �le, it is possible to insert code directly into a class �le without

violating any of the JVM speci�cations.

The main issue addressed in this thesis is the run-time impact of residual testing,

since users would be unlikely to sacri�ce much performance to provide more infor-

mation to testers. The results however seem encouraging for point-based monitoring.

Although the instrumentation overhead initially can be large especially for programs

with frequently executed loops, after a few reinstrumentations it decreases fast and

approaches zero for the experiment programs.

Interesting but more di�cult is the problem of path-based monitoring. No solu-

tion that guarantees small overhead seems obvious, since there are cases where certain

paths are never executed, whereas every point of them is executed frequently. Exper-

iments must be conducted to see how often such cases occur in programs. If these

are rare, then with the help of simple heuristics path-oriented residual testing might

also lead to good results.

In general, with the widespread use of networking facilities and internet, residual

testing might prove a useful way of testing software with the help of users.



BIBLIOGRAPHY



33

BIBLIOGRAPHY

[BL96] T. Ball and J. Larus. E�cient path pro�ling. In Proc. MICRO-29. IEEE,
1996.

[Lee97a] H. Lee. Bit: A tool for instrumenting java bytecodes. In Proc. USITS, 1997.

[Lee97b] H. Lee. Bit: Bytecode instrumenting tool. Master's thesis, University of
Colorado, 1997.

[LvH85] D. Luckham and F. von Henke. An overview of Anna, a speci�cation lan-
guage for Ada. IEEE Software, 2(2):9{22, 1985.

[LY96] T. Lindholm and F. Yellin. The Java Virtual Machine Speci�cation.
Addison-Wesley, 1996.

[Mak] P. J. Maker. Gnu Nana: improving support for assertions and logging in
c and c++ (web page). http://www.cs.ntu.edu.au/homepages/pjm/nana-
home/.

[Ros91] D. Rosenblum. Specifying concurrent systems with TSL. IEEE Software,
8(3):52{61, 1991.

[Ros95] D. Rosenblum. Towards a method of programming with assertions. IEEE

Transactions on Software Engineering, 21(1):19{31, 1995.

[RW85] S. Rapps and E. J. Weyuker. Selecting software test data using data 
ow
information. IEEE Transactions on Software Engineering, 11(4):367{375,
1985.

[SH94] S. Sankar and R. Hayes. Specifying and testing software components using
ADL. Technical Report SMLI TR-94-23, Sun Microsystems Laboratories,
Inc., April 1994.

[SL86] D. Rosenblum S. Sankar and D. Luckham. Concurrent runtime checking of
annotated Ada programs. In Proceedings of the 6th Conference on Foun-

dations of Software Technology and Theoretical Computer Science, pages
10{35. Springer-Verlag-Lecture Notes in Computer Science, 241, 1986.

[SU86] A. Aho R. Sethi and J. Ullman. Compilers: Principles Techniques and

Tools. Addison-Wesley, 1986.



APPENDICES



34

Appendix A: Identifying Statements in Byte Codes

Given a class �le, we want to �nd which byte codes correspond to which statements

of the source program. An algorithm for that would in fact be the inverse procedure

of the code generation phase. Thus by observing the way the code is generated, we

can associate byte codes of a class �le to java statements of the corresponding source

�le.

Most of the Virtual Machine instructions involve manipulation of the stack, i.e.

they expect to �nd the necessary arguments on the top of the stack. For example

the instruction fadd removes the top two elements of the stack, adds them, and puts

the result back in the stack. A statement of a source program is translated into a

sequence of assembly instructions that �rst manipulate the stack and then perform

the necessary operations on the arguments placed on top of the stack. Based on that,

it is possible to separate the Java Virtual Machine instructions into groups according

to whether the code generation of a statement can end to such an instruction and

under which conditions.

The groups that the VM instructions can be separated are:

� EndOfStatement: set of instructions which are de�nitely found at the end of the

sequence of instructions to which a statement is translated. Such instructions

are: return instructions, some control transfer instructions, instructions to

which the switch statement is translated (lookupswitch and tableswitch).

� AlmostEndOfStatement: set of instructions which can be found at the end of

the sequence of instructions to which a statement is translated, if the next

instruction does not belong to the EndOfStatement group. Such instructions

are: store instructions, instructions for method invocation, etc.

� NotEndOfStatement: Contains all the instructions that do not belong in the

previous groups, that is instructions that cannot be found at the end of a se-

quence of assembly code corresponding to a Java statement. For example, stack



35

manipulation instructions, load instructions, casting instructions, arithmetic

instructions, etc.

Based on the above categorization, the general algorithm that identi�es to which

byte codes a source statement translates, follows:

get_first_instructionCode

for all instructionCode of the method {

if (instructionCode is in isNotEndInstr) then

statements[instructionCode] = false

else

if (instructionCode is in isEndInstr)

statements[instructionCode] = true

else {

if (next InstructionCode is in isEndInstr)

statements[instructionCode] = false

else

statements[instructionCode] = true

}

get_next_instructionCode

}

For each byte in the byte code array there is an associated 
ag which is set to true

if this byte code corresponds to the last of the byte codes to which a statement is

translated, and is set to false otherwise. To see more clearly the algorithm, consider

the following simple method (taken from [LY96]):

0 MyObj example() {

1 MyObj o = newMyobj();

2 return silly(o);

3 }



36

The byte codes generated for the above source code, using their mnemonic names,

are:

0 new #2 //Class MyObj

3 dup

4 invokespecial #5 //Method MyObj.<init>()V

7 astore_1

8 aload_0

9 aload_1

10 invokevirtual #4

// Method Example.silly(LMyObj;)LMyObj;

13 areturn

The indices at the beginning of each of the assembly instructions may be thought

as a byte o�set from the beginning of the method. Applying the above algorithm, we

get the following correspondence between byte codes and source statements:

statement start byte code index end byte code index

0 0 7

1 8 13

In fact there are more complications than the above sketch of algorithm indicates.

In the case where the source code contains finally some of the code generated does

not correspond to a source statement. For example:

0 void tryFinally() {

1 try{

2 tryItOut();

3 } finally {

4 wrapItUp();

5 }

6 }



37

is translated to:

0 aload_0 //Beginning of try block

1 invokevirtual #6 //Method Example.tryItOut()V

4 jsr 14 //Call finally block

7 return //End of try block

8 astore_1 //Beginning og handler for any throw

9 jsr 14 //Call finally block

12 aload_1 //Push thrown value

13 athrow //and rethrow the value to the invokers

14 astore_2 //Beginning of finally block

15 aload_0 //Push this onto stack

16 invokevirtual #5 //Method Example.wrapItUp()V

19 ret2 //Return from finally block

Exception Table:

From To Target Type

0 4 8 Any

Observe that the previous algorithm would associate the byte codes 8 till 13 some

statements of the source �les whereas they are generated to handle exceptions. The

solutions adopted for the above are:

� Ignore the byte codes that are generated to implement the finally statement.

We can do that by looking at the exceptions array to �nd if there are any

exception handlers of type any.

� Ensure that a control transfer instruction always branches to an instruction that

has been identi�ed as corresponding to the beginning of a statement.


