
Residual Test Coverage Monitoring

Christina Pavlopoulou

Purdue University

Electrical and Computer Engineering

West Lafayette, Indiana 47906 USA

+1 650 494 3499

pavlo@ecn.purdue.edu

Michal Young

University of Oregon

Computer Science Department

Eugene, Oregon 97403-1202 USA

+1 541 346 4140

michal@cs.uoregon.edu

ABSTRACT

Structural coverage criteria are often used as an indica-

tor of the thoroughness of testing, but complete satisfac-

tion of a criterion is seldom achieved. When a software

product is released with less than 100% coverage, testers

are explicitly or implicitly assuming that executions sat-

isfying the remaining test obligations (the residue) are

either infeasible or occur so rarely that they have neg-

ligible impact on quality. Violation of this assumption

indicates shortcomings in the testing process.

Monitoring in the deployed environment, even in the

beta test phase, is typically limited to error and sanity

checks. Monitoring the residue of test coverage in ac-

tual use can provide additional useful information, but

it is unlikely to be accepted by users unless its perfor-

mance impact is very small. Experience with a proto-

type tool for residual test coverage monitoring of Java

programs suggests that, at least for statement coverage,

the simple strategy of removing all probes except those

corresponding to the residue of coverage testing reduces

execution overhead to acceptably low levels.

Keywords

Testing, coverage, instrumentation.

1 INTRODUCTION

Quality assurance activities in the development environ-

ment, including systematic dynamic testing, cannot be

performed exhaustively, therefore they always depend

on models. Static analysis depends on the �delity of

models extracted for analysis. Statistical testing for re-

liability estimation depends on models of program us-

age. Partition testing depends on the models used to di-

vide program behaviors into classes that should be \cov-

ered." Discrepancies between these models and actual

program behavior are valuable information, even when

they don't result in observed program failures, because

they indicate how quality assurance activities in the de-

velopment environment can be improved. For example,

having some way of judging when \enough" testing has

been done can be valuable in a negative sense. Test ad-

equacy criteria indicate, not when testing is de�nitely

adequate, but when there is evidence that a set of tests

is inadequate because some signi�cant class of program

behaviors has never been tested.

The family of structural coverage criteria (statement

coverage, branch coverage, dataow coverage, etc.) are

based on syntactic models of program control and data

ow. These syntactic models are conservative in the

sense that they include not only all control and data

ows that will occur in any execution, but also many

infeasible paths that can never occur. It is (provably)

impossible to determine exactly which paths are infea-

sible. Thus even exhaustive testing would often fail to

satisfy structural coverage criteria.1 When a software

product is released without 100% coverage, testers are

explicitly or implicitly assuming that the remaining test

obligations (the residue) is either infeasible, or occurs in

a vanishingly small set of possible executions.

We cannot completely avoid models and assumptions.

What we can do is validate the models we use. If we

have implicitly or explicitly assumed that a particular

path or region in code is never, or almost never exe-

cuted, then knowing that an execution of that path or

region has occurred in actual use is valuable informa-

tion, even if the software performed correctly in that

case. However, in current practice this is not possible

since there is a sharp divide between unit, integration,

and system testing on the one hand, and feedback from

deployed software on the other. While developers have

access to a variety of monitoring tools in the develop-

ment environment, monitoring in the deployed environ-

ment is typically limited to error and sanity checks, and

the channel from users back to developers is just a list

of trouble reports. Residual test coverage monitoring

exploits the opportunity provided by increasingly ubiq-

1Frankl [5] has de�ned variant criteria relative to feasible

paths, but practically speaking that does not change the prob-

lem considered here.

uitous networking to enrich the feedback channel and

validate one kind of model used in the development en-

vironment.

The remainder of this paper is organized as follows:

Section 2 discusses potential objections to residual test

coverage monitoring and motivates investigation of the

problem of performance impacts. Section 3 sketches the

design of a prototype tool constructed to evaluate a sim-

ple approach to minimizing performance impacts in the

deployed environment, and Section 4 reports measure-

ments obtained with the tool. Sections 5 discusses re-

lated work and open issues, and Section 6 concludes.

2 RESIDUAL TEST COVERAGE MONI-

TORING

The purpose of residual test coverage monitoring is to

provide richer feedback from actual use of deployed soft-

ware to developers, helping developers validate and re-

�ne the models they have relied upon in quality assur-

ance. To be successful, run-time monitoring must over-

come at least two classes of potential objections from

users.

The �rst class of potential objections is related to secu-

rity, con�dentiality, and privacy. There is probably no

complete solution to the con�dentiality problem since

the most innocuous seeming communications to devel-

opers could convey con�dential information gathered

from users.2 Communication of any information from

actual use will be unacceptable to some users and in

some application domains. This class of objections can

be partially avoided by targeting the beta test phase,

in which users are already used to providing some infor-

mation to developers, and by limiting communication to

forms that are observable and controllable by the end-

user (for example small textual e-mail messages that the

user can inspect before sending).

The second class of potential objections is related to per-

formance, including degradation of responsiveness and

perturbation of real-time behavior. Sensitivity to per-

formance concerns di�ers widely among di�erent classes

of software, and there will be some applications in which

no run-time monitoring is acceptable. On the other

hand, we believe there is a large class of applications

in which some very modest performance degradation is

acceptable, particularly in the beta test phase.

In the longer term, we believe it will be useful to pro-

vide deployed software with adjustable levels and focus

to address performance requirements with user control

to address concerns of security, and con�dentiality. One

2In standard terminology, this information is a potential covert

channel. The basic block information described in the following

sections can be used as a covert channel by including tests of of

con�dential information in the application, so that execution of a

particular block indicates the outcome of the test.

can easily imagine uses for very detailed monitoring,

su�cient to completely reproduce an unanticipated be-

havior, and there are no doubt situations in which the

inevitable overhead of such detailed monitoring would

be acceptable. However, we have chosen to concentrate

initially on the other end of the spectrum, establishing

that some useful information can be gathered even when

the tolerance for performance degradation is small.

The prototype tool described in the following sections

of this paper selectively monitors execution of Java pro-

grams for a simple test coverage criterion, equivalent to

statement coverage. Initially, all basic blocks are mon-

itored, but subsequent to a few test runs the program

can be instrumented again, removing monitoring of ba-

sic blocks that have already been covered and leaving

only the probes needed to recognize execution of the

\residue" of unexecuted code. Since the high-frequency

program paths tend to be executed on almost every pro-

gram run, the cost of selective reinstrumentation quickly

decreases. For the programs we have tested, after a few

iterations of testing and reinstrumentation the run-time

overhead of execution monitoring becomes insigni�cant.

3 A RESIDUAL COVERAGE TOOL FOR

JAVA

We have implemented a simple residual test coverage

monitoring tool for Java applications and applets. The

prototype tool provides a record of which basic blocks

(hence which statements) have been executed at least

once in a series of test runs. An XEmacs library pro-

vides a way to view cumulative coverage graphically,

by highlighting regions of code that have not been ex-

ecuted. This section sketches the overall design of the

tool and a few details of its implementation; full de-

tails can be found in the M.S. thesis of the �rst author

[13]. Except for the choice of object code instrumen-

tation, which is speci�c to Java, the design should be

equally applicable to traditionally compiled procedural

and object-oriented languages.

Overall process

Figure 1 illustrates the overall process of program in-

strumentation and coverage monitoring. An object code

instrumenter places instrumentation in the program, re-

ferring to a cumulative coverage table to place probes

only on the as-yet unexecuted \residue." Initially noth-

ing has been covered, so a probe is placed in every basic

block of the program. The instrumented class �les are

executed by an (unmodi�ed) Java interpreter, and as a

side e�ect the instrumentation creates a �le recording

which basic blocks were executed. After one or several

test runs, the instrumenter is invoked again to place

probes only in the blocks that remain unexecuted.

Key structures

As one would expect, the prototype tool is designed to

2

.class

Instrumenter
Cumulative
Coverage
Table

Display

Java
Interpreter

identify
residue

hit_keys(saved at end of run)

instrument
residue

Figure 1: Instrumentation process: in every iteration the basic blocks that were not covered in previous executions

are instrumented and the new class �le is executed in order to collect coverage information.

minimize execution time overhead by moving as much

computation as possible to the instrumentation and

post-processing phases. Residual test coverage moni-

toring provides one extra opportunity for optimization,

compared to conventional coverage monitoring: Since

the number of blocks monitored may be far fewer than

the number of blocks in the program, we can use smaller

keys to index blocks at run time. This introduces an

extra level of indirection in the auxillary tables which

are produced at instrumentation time and interpreted

in post-processing.

The key data structures are:

� An Id Table which associates a unique identi�er

(block id) with each basic block in a program. The

Id Table must be stable in the sense that, if the

same program is compiled twice without changes,

the same unique identi�ers are associated with each

basic block.

� A Coverage Table recording the basic blocks (ele-

ments of the Id Table) that have been covered in

previous executions; this corresponds to the cumu-

lative coverage table in Figure 1. It could be a

simple list of block identi�ers or, as in our imple-

mentation, an array of booleans indexed by block

id.

� A Correspondence Table that associates integers

(hit keys) with block ids. Hit keys are integers in

the range 0 : : : n, where n is the number of basic

blocks that have not been covered when the instru-

menter is run. When n is small, a more e�cient

code sequence can be used for each run-time probe.

The instrumenter creates a new set of hit keys each

time the program is reinstrumented, and creates

0
1
2
3
4
5
6
7
8
9
10

0
1
2
3

ID Table: block id → basic block
(stable)

Correspondence: hit key → block id
(changes at each re-instrumentation)

Hit table
(run-time)

Coverage table

Hit keys

Block Ids

Source code

Figure 2: Tables for maintaining the information needed

for selective monitoring

the correspondence table so that a post-processor

can update the coverage table from a smaller table

of hit keys.

� When an instrumented program is executed, a Hit-

Table indexed by hit keys is maintained. The hit

table is a simple array of booleans, initially all false.

HitTable[i] will be set to true when the i-th basic

block has been executed.

The relation among the various tables appears in Fig-

ure 2.

Execution of a probe at run time causes a single boolean

to be set in the hit table. The table is dumped to a

3

�le at the end of execution, and a post-processor up-

dates the coverage table correspondingly. In the case

of deployed software, the usual case would be an empty

hit table, and the writing and post-processing phases

could be skipped except in the exceptional cases when

an untested region of code has been executed; the post-

processing phase would also take place in the develop-

ment environment rather than the �eld environment. In

our prototype, however, we simply dump and process

the hit table after every run.

Object Code Instrumentation

While the structures and processing described above

should apply to most procedural and object-oriented

languages, the strategy we chose for instrumenting pro-

grams was strongly inuenced by the target language.

Java programs and applets are typically compiled to

a byte-code format and interpreted by a byte-code in-

terpreter called Java virtual machine [10]. For other

languages, an instrumenter based on source-to-source

translation or modi�cation of an existing compiler might

have been a better choice, but for Java we found direct

instrumentation of object code (class �les) more attrac-

tive.

Java byte code is stack-oriented, whereas the instruction

set architectures of the dominant contemporary proces-

sors are register-oriented. The only practical way to

insert instrumentation that a�ects register allocation is

to insert the instrumentation at the level of source or

intermediate code, leaving adjustment of the register

allocation to the compiler back end. In contrast, it is

relatively easy to insert a few stack-oriented instructions

in a stack-oriented instruction stream, leaving the stack

unchanged. Equally important is what is not possible

in stack-oriented code: In a machine with a generous

set of registers, it is worthwhile to work very hard at

minimizing the number of memory accesses by making

clever use of registers (e.g., as in the path pro�ling tech-

nique of Ball and Larus [2]), but stack code presents no

such temptation.

At a more pragmatic level, we had access to standard

Java packages for reading, interpreting, and writing

Java class �les, which greatly reduced the e�ort re-

quired to produce an object-code instrumenter. It is

relatively simple to extract control structure and other

information from the assembly-language level of infor-

mation provided by these Java packages, and the �les

also contain debugging information that served our need

for associating regions of object code with regions in the

source �les.

Basic blocks are identi�ed in the byte codes using stan-

dard algorithms [20]. At the head of each basic block

that has not previously been executed we insert a call

to Monitor.hit(hit_key), a method that stores one

value in a boolean array. If the hit key is less than 256,

the code is

bipush hit_key

invokestatic #index

where index is the location of the address of method

Monitor.hit(int) in the constant pool. Class Monitor

is the run-time library which encapsulates the hit table

and provides initialization and �nalization. Directly ac-

cessing the array might be faster than a method call,

but would require more inline code.

In Java, every class is allowed to have a \main" method,

and the user can begin execution from any class, so

we simply instrument the main methods of all classes.

This simple expedient was adequate for our purposes, al-

though obviously inappropriate for a production-quality

tool.

Producing valid bytecode

Instrumentation must be inserted in such a way that

the Java Virtual Machine Speci�cation is not violated.

The Java interpreter checks each class �le to deter-

mine that it it conforms to the format dictated by

the virtual machine speci�cation and that appropri-

ately typed arguments are on the top of the stack

when needed. The stack-typing requirement is easily

met, since the inserted instrumentation has no net ef-

fect on the stack contents (it pushes and then con-

sumes one argument), but the maximum stack depth

of each method must be incremented by four to acco-

modate the added instructions. Method calls in Java are

made by indirection through a table of constants (recall

the invokestatic #index instruction in the sample

code above), so entries for the instrumentation meth-

ods must also be added to the constant pool of each

instrumented class. In addition, the target addresses

of control transfer instructions and the exception table

must be adjusted. Target addresses of lookupswitch

and tableswitch must also be adjusted and, in some

cases, aligned by inserting zero bytes.

Multi-threading

Java programs typically have multiple concurrent

threads of control. Execution of a coverage probe at

run-time is simple and does not require mutual exclu-

sion, on the fairly conservative assumption that con-

current stores of the same boolean value to a memory

location will result in that value being stored. The only

real issues we encountered were in ensuring proper ini-

tialization and �nalization (dumping to a �le) of the

run-time table.

Multithreaded programs can be applets or programs

that use threads or graphics. In the case of applets,

execution of the program begins from the constructor

4

of the applet and ends at the destroy method. Thus,

unlike single-threaded programs, we do not need to in-

strument the main method. While applets are designed

primarily for execution in web browsers, we executed

them in the appletviewer application to relax the usual

web browser security restriction against writing to a �le.

The case of multithreaded Java applications which are

not applets is more di�cult. The beginning of execu-

tion is easy to recognize (execution begins at the main

method of some class), but termination can occur in dif-

ferent places; basically whenever there is a system call to

exit the program. In multithreaded testcases the call to

dump the �le with execution information was inserted

manually before the approriate system calls.

4 EXPERIENCE

We have measured the performance impact of residual

test coverage monitoring on four applications ranging

in size from 55 to 4000 lines. The experiments were

conducted in a SPARC 5 processor at 70 MHz, run-

ning the Solaris operating system. Two of the applica-

tions, ArcTest and Sorting, are an applet and applica-

tion taken from the examples distributed with the Sun

Java Development Kit (JDK), version 1.0. The other

two are Java applications that were developed in our

laboratory, the larger of these being the residual in-

strumentation tool itself. In general, no changes were

needed in the code to execute the di�erent test cases,

except for minor changes to catch the beginning and

ending of execution in multithreaded programs as dis-

cussed in the previous section. Java applications were

executed by the Java interpreter provided in the JDK,

and Java applets were executed in the appletviewer ap-

plication provided in the JDK.

We observed generally that while the execution of a fully

instrumented program may have signi�cant overhead,

after a few iterations of test execution and reinstrumen-

tation the overhead reduces dramatically. The addi-

tional execution time required for the instrumentation

statements of a program depends mainly on the size

and number of loops as well as on the size of the input

data. In practice one would reinstrument only after sev-

eral test executions, but for measurement purposes we

reinstrumented after processing each test case.

The execution time (elapsed wall time) of each test pro-

gram was measured with the Java system service for

time measurement. The execution times in the tables

below are averages over ten runs, rounded to the nearest

0.1 second. The �rst row of each table contains the ex-

ecution times of the uninstrumented application for dif-

ferent data inputs. The execution times for the instru-

mented program (second row in the tables) were mea-

sured as follows: initially instrumentation is inserted in

every basic block and the program is executed (10 times)

test 1

original 4.5

instrumented 5.0

blocks instrumented 29

Table 1: ArcTest execution times in seconds and num-

ber of blocks executed

with the �rst test case (time in �rst column); then the

program is reinstrumented, placing probes inserted in

those basic blocks that did not execute previously and

the program is run with the second test case (time in

second column); the process is repeated for all test cases.

The last row of each table contains the number of basic

blocks that were instrumented for each test case.

The �rst program, ArcTest, is a simple applet of ap-

proximately 80 lines that draws on the screen a number

of arcs with random beginning and end. In this case the

overhead even from complete instrumentation is small

relative to the cost of the graphics operations. Rein-

strumentation was not performed on this example; we

include it here for comparison because it is the only ap-

plet in this group of programs.

The Sorting program (55 lines) sorts an array of ran-

domly generated numbers using either binary or quick

sort. The �rst test case is sorting numbers with bi-

nary sort, the second test case is sorting numbers with

quicksort and the third is sorting numbers with quick-

sort again. In the program distributed with the JDK,

run times vary considerably depending on the sorting

algorithm; we made them comparable by increasing the

size of the arrays for the faster algorithms, to make the

trend in instrumentation overhead easier to see in the

tables (we have also measured the program without this

modi�cation, with similar results). In the �rst test, the

instrumentation overhead is nearly 130%. In the second

test, which executes a di�erent sorting algorithm and

therefore mostly in a di�erent region of code, overhead

remains very high at nearly 160%. The third test case

uses the same sorting algorithm as the �rst, and there-

fore executes in the same region of code. In this case

no probes are executed, and the program with residual

instrumentation executes in essentially the same time

as the uninstrumented program.

Elevator (650 lines) is a simulation program for the op-

eration of two elevators. Unlike the sorting algorithm,

it does not consist primarily of tight loops, so even

the overhead of complete instrumentation is only about

15%. After two iterations of testing and reinstrumenta-

tion the overhead is reduced to 1.5%.

Finally, the instrumentation system itself (approx. 4000

5

test 1 test2 test3

original 24 20 20

instrumented 55 52 20

blocks instrumented 43 25 6

Table 2: Sorting execution times in seconds and number

of blocks instrumented

test 1 test 2 test 3

original 5.5 6.1 6.5

instrumented 6.3 6.8 6.6

blocks instrumented 323 240 119

Table 3: Elevator execution times in seconds and num-

ber of blocks executed

lines) has been instrumented and has been used to in-

strument the program Sorting. The execution over-

head of full instrumentation is approximately 9.3%. Af-

ter two iterations of testing and reinstrumentation, the

overhead of residual coverage monitoring falls below the

level that we were able to measure.

5 DISCUSSION

Related work

We are not aware of prior attempts to gather struc-

tural test coverage information from deployed software,

although Cusamano and Selby report that Microsoft

gathers detailed use pro�les from specially instrumented

versions of its products [3, pp. 377{378].

One class of \residual" monitoring that is already com-

mon, though, is run-time checks of assertions. As with

coveragemonitoring, tolerance of run-time overheads for

assertion checking di�ers between the development en-

vironment and the deployed environment. For example,

evaluating a quanti�er by enumerating elements of a

�nite set may be acceptable when testing software in

the development environment, but unacceptable for de-

ployed software. Some assertion checking systems rule

out very expensive predicates entirely (ADL [19] takes

this approach), while others like Gnu Nana [12] provide

exible ways to deactivate some checks while leaving

test 1 test 2 test 3

original 4.3 1.7 4.4

instrumented 4.7 1.8 4.4

blocks instrumented 1000 614 547

Table 4: Instrumentation program execution times in

seconds and number of blocks executed

others active. The Anna project [11, 18] is the root of

much of the recent research in enriching run-time checks

[16, 17, 19].

Instrumentation for cheap run-time coverage monitor-

ing has obvious relations to cheap instrumentation for

other purposes, including performance pro�ling. Cov-

erage monitoring requires less information than perfor-

mance pro�ling, since the latter does not distinguish

whether code is executed once or one thousand times,

and this makes the design of cheap coverage monitor-

ing considerably simpler than cheap performance pro-

�ling. Agrawal has shown that the number of program

probes needed for basic block coverage monitoring can

be reduced considerably by using control ow analysis

(pre- and post-dominator information) [1]. The rela-

tive savings in the cost of residual coverage monitoring

over full monitoring would be correspondingly reduced

if Agrawal's technique were applied, and vice versa the

savings from Agrawal's technique would be less signif-

icant if applied to residual coverage obligations after a

few tests. Nonetheless it may be be useful to combine

the techniques, not so much to achieve further reduc-

tions in execution time overheads as to reduce space

overheads, which residual coverage monitoring is less

e�ective at reducing.

The object code instrumentation approach discussed in

Section 3 is related to a variety of tools for instru-

menting binary machine code [7, 21, 6, 15]. Among

tools suited for instrumenting Java byte codes, the most

closely related is Lee's Bytecode Instrumenting Tool

(BIT) [8, 9]), which was developed contemporaneously

but independently. BIT is more general than our tool,

providing a way to insert method calls in user class

�les. In principle, a tool like our residual test cover-

age monitor could be more simply constructed using a

tool like BIT, but several current limitations of BIT pre-

vent us from using it in that way. BIT allows the user

to specify the instrumentation statements, but it does

not provide the capability of removing monitoring code

automatically, nor does it maintain the links we require

between source code and bytecode locations. Moreover,

BIT does not (yet) properly adjust exception handling

code to account for instruction relocation.

Open Issues and Future Work

As stated earlier, our tactic in exploring residual test-

ing is to �rst establish that some useful information can

be gathered even when the tolerance for performance

degradation is small before moving on to gather richer

and potentially costlier information. We have so far in-

vestigated residual monitoring of only the simplest test

coverage criterion, albeit the one most used in practice.

Many of the more stringent test coverage criteria involve

sub-paths in program control ow, rather than individ-

6

ual points. The best known of these is data ow cover-

age testing, in which execution of particular \de�nition

use" pairs (what compiler writers know as \reaching

de�nitions") are monitored. The interested reader may

refer to [14] for de�nitions and an in-depth discussion

of data ow testing.

It is not clear whether the run-time performance im-

pact of residual test coverage monitoring can be made

insigni�cant for data ow coverage and other path-based

coverage criteria. In the worst case we might have code

like the following:

if (cond1)

x = ...; // 1

else

y = ...; // 2

if (cond2)

z = x; // 3

else

z = y; // 4

with the assumptions that

� the code occurs in a high frequency loop,

� in each of the two \if" statements, the \then"

branch is taken 50% of the time and the \else"

branch is taken 50% of time,

� when the \then" branch is taken in the �rst \if"

statement, the \else" branch is always taken in the

second, and when the \else" branch is taken in the

�rst \if" statement, the \then" branch is always

taken in the second.

We observe that the de�nition-use pairs (1,3) and (2,4)

are never executed, even though every point in the path

is executed 50% of the time. In this case, unless we

transform the code, we cannot avoid monitoring at a

point that is executing on 50% of the loop iterations. In

some cases (including the example above) such code can

be transformed to separate frequently and infrequently

executed paths, but such transformations are expensive

in space. Empirical evidence is needed to determine how

often such pathological cases occur in real programs.

Noti�cation that a user has executed code in a way that

was not adequately tested leaves to testers the task of

determining how to reproduce a behavior that they have

not previously encountered in testing. Even the limited

information provided by our current tool should be use-

ful in focusing e�ort on the presumably small number

of reported blocks rather than the whole population of

uncovered blocks, but it would be more useful to have

additional information such as input data, intermediate

data values, or parts of the execution path leading to

the newly exercised code. In case testers cannot easily

reproduce the behavior, it would be possible to pro-

vide selected users with versions of the application that

are specially instrumented to provide more information

about the particular behaviors of interest.

Security and con�dentiality concerns may be more di�-

cult to overcome than the performance issues that would

result from providing additional information to develop-

ers. As noted earlier, seemingly innocuous information

communicated from the users' environment to develop-

ers is a potential covert channel which could be used by

an unscrupulous developer to obtain con�dential infor-

mation. Increasing the amount of information commu-

nicated exacerbates potential security and con�dential-

ity concerns. Even a user who is willing to trust that

developers are not encoding con�dential information in

coverage records may balk at providing input data from

actual executions.

6 CONCLUSIONS

We have argued for monitoring of deployed software,

particularly in beta testing, that goes beyond correct-

ness checks to provide validation of the models used dur-

ing quality assurance. In particular, we have described

how monitoring of the \residue" of test coverage criteria

could be used to validate the thoroughness of testing in

the development environment.

A prototype system that implements residual test cov-

erage monitoring has been presented. The system mon-

itors a simple (but widely used) test coverage criterion,

statement coverage. By selectively reinstrumenting a

program under test to monitor only the coverage obli-

gations that remain unmet, it can dramatically reduce

the cost of continued monitoring of programs that have

been through development test. Performance measure-

ments made with this tool suggest that the performance

impact of residual test coverage monitoring may be low

enough to be acceptable in at least some kinds of actual

use, such as the beta test phase. We view the simplicity

of the approach as a particular virtue.

Only the performance aspect of residual test coverage

monitoring has been investigated so far. We have par-

tially side-stepped issues of privacy and security by con-

sidering monitoring in the beta test phase of software

deployment, but more sophisticated approaches to these

issues as well as the actual communication between

users and developers deserve attention. Additionally,

approaches to minimizing the performance impact of

residual path-oriented coverage monitoring remain to be

investigated; the prototype tool described here will be

useful in gathering empirical data to evaluate possible

approaches.

7

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their useful com-

ments.

This e�ort was sponsored by the Defense Advanced

Research Projects Agency and Rome Laboratory, Air

Force Materiel Command, USAF, under agreement

number F30602-97-2-0034. The U.S. Government is au-

thorized to reproduce and distribute reprints for Gov-

ernmental purposes notwithstanding any copyright an-

notation thereon. The views and conclusions contained

herein are those of the authors and should not be in-

terpreted as necessarily representing the o�cial policies

or endorsements, either expressed or implied, of the De-

fense Advanced Research Projects Agency, Rome Lab-

oratory, or the U.S. Government.

REFERENCES

[1] Hiralal Agrawal. Dominators, super blocks, and

program coverage. In Proceedings of the ACM Sym-

posium on Principles of Programming Languages

(POPL 94), pages 25{34, Portland, Oregon, Jan-

uary 1994.

[2] Thomas Ball and James Larus. E�cient path

pro�ling. In Proceedings MICRO-29. IEEE Press,

1996.

[3] Michael A. Cusumano and Richard W. Selby. Mi-

crosoft Secrets. The Free Press, 1995.

[4] Prem Devanbu and Stuart G. Stubblebine. Crypto-

graphic veri�cation of test coverage claims. In Pro-

ceedings of the Fifth ACM/SIGSOFT Conference

on Foundations of Software Engineering (FSE),

Zurich, Switzerland, 1997.

[5] Phyllis G. Frankl and Elaine J. Weyuker. An

applicable family of data ow testing crite-

ria. IEEE Transactions on Software Engineering,

14(10):1483{1498, October 1988.

[6] Je�rey K. Hollingsworth, Barton P. Miller,

Marcelo J.R. Gongalves, Oscar Naim, Zhichen Xu,

and Ling Zheng. MDL: A language and compiler for

dynamic program instrumentation. In Proceedings

of the International Conference on Parallel Archi-

tectures and Compilation Techniques (PACT '97),

San Francisco, California, November 1997.

[7] James R. Larus and Eric Schnarr. EEL: Machine-

independent executable editing. In Proceedings of

the Fifth ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (PLDI

'95), June 1995.

[8] H. Lee. Bit: A tool for instrumenting java byte-

codes. In Proc. USITS, 1997.

[9] H. Lee. Bit: Bytecode instrumenting tool. Master's

thesis, University of Colorado, 1997.

[10] T. Lindholm and F. Yellin. The Java Virtual Ma-

chine Speci�cation. Addison-Wesley, 1996.

[11] D. Luckham and F. von Henke. An overview of

Anna, a speci�cation language for Ada. IEEE Soft-

ware, 2(2):9{22, 1985.

[12] P. J. Maker. Gnu Nana: improving support for as-

sertions and logging in C and C++ (web page).

http://www.cs.ntu.edu.au/homepages/pjm/nana-

home/.

[13] Christina Pavlopoulou. Residual coverage moni-

toring of java programs. Master's thesis, Purdue

University, 1998.

[14] S. Rapps and E. J. Weyuker. Selecting software

test data using data ow information. IEEE Trans-

actions on Software Engineering, 11(4):367{375,

1985.

[15] Ted Romer, Geo� Voelker, Dennis Lee, Alec Wol-

man, WayneWong, Hank Levy, and Brian Bershad.

Instrumentation and optimization of Win32/Intel

executables using Etch. In Proceedings of the

USENIX Windows NT Workshop, pages 1{7, Au-

gust 1997.

[16] D. Rosenblum. Specifying concurrent systems with

TSL. IEEE Software, 8(3):52{61, 1991.

[17] D. Rosenblum. Towards a method of programming

with assertions. IEEE Transactions on Software

Engineering, 21(1):19{31, 1995.

[18] D. Rosenblum S. Sankar and D. Luckham. Concur-

rent runtime checking of annotated Ada programs.

In Proceedings of the 6th Conference on Foun-

dations of Software Technology and Theoretical

Computer Science, pages 10{35. Springer-Verlag-

Lecture Notes in Computer Science, 241, 1986.

[19] S. Sankar and R. Hayes. Specifying and testing

software components using ADL. Technical Report

SMLI TR-94-23, Sun Microsystems Laboratories,

Inc., April 1994.

[20] A. Aho R. Sethi and J. Ullman. Compilers: Princi-

ples Techniques and Tools. Addison-Wesley, 1986.

[21] Amitabh Srivastava and Alan Eustace. ATOM: A

system for building customized program analysis

tools. In Proceedings of the SIGPLAN '94 Confer-

ence on Programming Language Design and Imple-

mentation, pages 196{205, June 1994.

8

