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Introduction
� Security often involves processes which can communicate.

� One wants to know if a particular communication is secure,

perhaps in the sense that some data is kept private to certain

individuals, and cannot be revealed to an environment.

� To do this, it can be useful to have a way of comparing

processes, and describing when they are equivalent.

� These lectures describe a general theory of equivalence,

illustrate applications of the theory within functional

programming, and briefly survey some papers on security.
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Overview Part I
� We review ordered sets. An order, or “comparison”, can

be used to generate equivalences.

� We discuss inductively, and coinductively defined sets.

Such sets arise naturally when defining, and reasoning

about, programs and processes.

� We define proof principles for such sets.

� We use the principle of coinduction to validate

equivalences, and discuss when this is possible.
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What’s Next?
� We want to be able to show that program and process

expressions are equivalent in some sense.

� To do this, we first try to order expressions in a sensible

way.

� Thus we recall the notion of order and the (possibly

derived) notion of equivalence relation.

� These can often be defined as fixed points.
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Elementary Order Theory
� Consider � � �� � and its properties.

� A binary relation R on a set P is a preorder if it is

reflexive and transitive; and

� if also symmetric, then R is an equivalence relation;

� if also x R y � y R x� � x� y, anti-symmetry, then R is a

partial order.

� A preordered/partially ordered set or preset/poset is a

pair � P� R � where P is a set and R is a preorder/partial order

on P.
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� If S � P then we write � S for the greatest lower bound of S;

dually we write � S for the least upper bound of S, that is

l � S �� ��� x 	 S 
 � l � x 
 S � u �� ��� x 	 S 
 � x � u 


� Key example: Powerset � P � X 
� � 
 of all subsets of X . In P �� 
 ,

for example,

� � n �� n � 5 ��� � � n � � n � 5 �� � 1��� � � � 5 �

� P is called a complete lattice if joins of all subsets S exist or

(equivalently) the meets of all subsets exist. P � X 
 is a complete

lattice as all unions exist.
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Fixed Points
� Endofunction Φ:P � P between presets is monotone just in

case it preserves the order: x � y� � Φ � x 
 � Φ � y 
 .

� If P
def� P � � 1� 2� 3 � 
 and Φ � S 
 def� S � � 2 � , then

Φ is monotone Φ � � 2 � 
� � 2 � � 1 � � Φ � � 1 � 


� If x 	 P then we call x

� a fixed point for Φ if Φ � x 
� x;

� a pre-fixed point of Φ if Φ � x 
 � x; and

� a post-fixed point of Φ if x � Φ � x 
 .
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If P is a complete lattice (eg powerset), and Φ:P � P is monotone:
� the least pre-fixed point exists:

µΦ def� � x 	 P� Φ � x 
 � x �

� �� �

NB! greatest lower bound

� the greatest post-fixed point exists:

νΦ def� � x 	 P� x � Φ � x 
 �

� �� �

NB! least upper bound

Note: µΦ and νΦ are both fixed points. Exercise: use the

definitions.



Foundations of Security Summer School, Eugene, Oregon, June 2003 9

What’s Next?
� Rules “connect” two pieces of data, a hypothesis and

conclusion: eg ��� � 1 � � � z � z� 2 � over � .

� The smallest set of data such that if any hypothesis is a

datum, then the conclusion is also a datum, is a pervasive

notion in computing. Such sets are said to be inductively

defined; eg µ� 1 � 2 � 4 � 8 � 16 ��� � � .

� The greatest set of data such that if any datum is the

conclusion of a rule, then the hypothesis is also a datum, is

also pervasive. Such sets are said to be coinductively

defined; eg ν� 0 � 1 � 2 � 4 � 8 � 16 ��� � � .
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(Co)Inductively Defined Sets

� If P
def� P �� 1 � 2 � 3 � � and Φ � S �

def� S � � 2 � , then

µΦ� � 2 � νΦ� � 1 � 2 � 3 �

� Given Φ:P � X ��� P � X � monotone,

� the subset of X inductively defined by Φ is µΦ ;

� the subset of X coinductively defined by Φ is νΦ .
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Rule Notation
� A set of rules R on X is any subset

R � P � X ��� X

� We can write finitary rules like this

� a base rule R� ��� � c �
R

c

� and an inductive rule R� � H � c �� �� h1 ��� � � � hk � � c �

h1 h2 � � � hk
R

c
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� The name of R is the function ΦR:P � X 
 � P � X 
 given by

setting

ΦR � S 
 def� � x 	 X� �

S�

x

	 R � S� � S �

Informally: x 	 ΦR � S 
 if x concludes a rule with hypotheses in S.

Exercise: Check monotone, and that any Φ arises as some ΦR.

� Given X , and R on X ,

� the subset of X inductively defined by R is µΦR ;

� the subset of X coinductively defined by R is νΦR .
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Examples of (Co)Inductively Defined Sets

Consider R � P � � � � � given by 0 and z
z � 1 . Then

ΦR � S � � � n � � � n� 0 � ��� z � � z
n� z � 1 � � z � � S � �

� � n � � � n� 0 � ��� z � S � � n� z � 1 � �

� � 0 � � � z � 1 � z � S �

Thus µΦR� � is least such that ΦR � S � � S, and νΦR� � is

greatest such that S � ΦR � S � , as if m � � then

m� � m � 1 � � 1 � � z � 1 � z � � � � ΦR � � �
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Fix R � A� A. Consider R � P � A � � A given by

a�

a

def� a R a�

Then

ΦR � S � � � a � A � ��� a� � � a �

a � � a� � � S � �

� � a � A � ��� a� � S � � a R a� � �

Thus µΦR� � and

νΦR� � a � ��� ai � A � � a R a0 R a1 R � � � � �

as S � ΦR � S � � � ��� a � S � � ��� a� � S � � a R a� � � .
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What’s Next?
� It is useful to have some notation to deal with the

“forward” and “back” tracking of rules.

� Closed sets are ones in which we can always track data

forwards through rules.

� Dense sets are ones in which we can always track data

backwards through rules.

� Recall the Principle of Mathematical Induction . . .

� (co)inductive sets have useful reasoning principles

which we outline.
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Closed and Dense Sets
� A subset S � X is closed under a set of rules R if it is a pre-fixed

point of ΦR, that is

� x 	 X� �

S�

x

	 R � S� � S � def� ΦR � S 
 � S

� S is closed under rule H
c 	 R if

H � S� � c 	 S ��� 


� Note S is closed under R just in case it is closed under each

rule in R. Exercise!

� For each h 	 H, the assumption h 	 S is called an inductive

hypothesis.
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� A subset S � X is dense under a set of rules R if it is a

post-fixed point of ΦR. This means

S � ΦR � S �

def� � x � X � �

S�

x

� R � S� � S �

� The dense sets for the (previous) rules over � are

Sp
def� � p � p � 1 � p � 2 ��� � � �

Sn
def� � n � n � 1 � n � 2 ��� � � �

Sn � 0
def� Sn � � 0 �

S0
def� � 0 �

where p � 1 and n� � 1. (Exercise: closed sets?)
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Principle of Induction

Suppose that I � X is inductively defined, and that S � I.

Then

S� I � �

�
�

�
�

�
�

Φ � S � � S

�

S closed

�

or

ΦR � S � � S

�

S closed under R

�

This follows immediately from the definitions. I is the least

prefixed point, that is, least closed set, so I � S.
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Principle of Induction – Restated

Suppose that I � X is inductively defined by Φ or R, and that

φ � i � is a predicate on i � I. Then

��� i � � i � I� � φ � i � � � � ���

H
c

� R � � � � h � Hφ � h � �� � φ � c �� �� �

closed under each rule

H � S� � c � S

�

We may write statements such as “i � I� � φ � i � can be proved

by induction over i � I”.
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Principle of Coinduction

Suppose that C � X is coinductively defined by Φ or R. Then

x � C � �

�
�

�
�

�
�

��� S � � x � S � S � Φ � S � � �

S dense

�

or

��� S � � x � S � S � ΦR � S � � �

S dense under R

�

This follows immediately from the definitions. C is the

greatest postfixed point, that is, greatest dense set, so S � C.
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What’s Next?
� Apparently, we have some “reasoning principles”.

� We show that coinduction gives rise to a “method” for

showing that two processes are, in some sense,

“equivalent”.

� In particular, we will discuss under what circumstances

a coinductive definition gives rise to an equivalence or

even equality.

� We give a small example: We define a model of lazy

streams and show that two expressions are in fact equal.
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Coinductive Preorders and Equivalence Relations
� Recall: x � C � X � � ��� S � X � � x � S � S � Φ � S �� �� �

dense

� where

C
def� νΦ for monotone Φ:P � X � � P � X � .

� Suppose X
def� Exp� Exp is a set of pairs of program or

process expressions. We consider the instance

� x � x� � � � � Exp� Exp

� � ��� B � Exp� Exp � � � x � x� � � B � B � Φ � B � �
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� Question: When is �

def� νΦ an equivalence relation? In

such a case, we call a dense set B a bisimulation, and,

rephrasing,

x � x� � � x B x� � B is a bisimulation� �� �

B � Φ � B �

� Question: When is �
def� νΦ a preorder? In such a case,

we call a dense set S a simulation, and

x � x� � � x S x� � S is a simulation� �� �

S � Φ � S �
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� Let Eq be the equality relation on Exp. Then �

def� νΦ is a

preorder just in case for each R � R� � Exp� Exp

� Φ � Eq �� Eq

� Φ � R ��� Φ � R� � � Φ � R� R� �

Such Φ are called pre-extensional.

� And �

def� νΦ is an equivalence relation just in case Φ is

pre-extensional, and

� Φ � R � op � Φ � Rop �

Such Φ are called extensional. If (additionally) � is actually

Eq, then Φ is called fully-extensional.
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A Model of Streams
� Let L be the “greatest” set such that L �� 1 � � � L . . . that is, the

final coalgebra νΨ for the set endofunctor Ψ � ξ 
� 1 � � � ξ.

� So L is the (unique, up to bijection) set such that for any

function f :S � 1 � � � S, there is f with

S
f � 1 � � � S

L

f

� �� � 1 � � � L

id1 � id � � f

�

� Key point: L� � i � ω� i is the set of all finite and infinite lists

(tuples) of natural numbers, denoted: �	
 , n1 : �	
 , n1 : n2 : �	
 . . .
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� Informally: the isomorphism maps� 	 1 to �	
 	 � 0, and maps

� m� l 
 	 � � � i to m : l 	 � i � 1

� Given l 	 L and p � 1, write lp 	 � for the pth element

(projection) if it exists. For example,

� 2 : 5 : 7 : �	
 
 2� 5 � 5 : 7 : �	
 
 666 � 5 : 7 : �	
 
 3 both undefined

� Write lp� l�

p for Kleene equality; then

l� l� def� � l� l� � �	
 
�� ��� p 
 � lp� l�

p 


� In fact (Exercise: induction on m 	 � )

l� l� � � � l� l� � �	
 
� ��� m � 1 
 ��� 1 � p � m 
 � lp� l�

p 
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� Consider

Φ:P � L� L � �� P � L� L �

where

Φ � B �

def� � � l � l� � �
�

�
�

�
�

�

l� l� � � ��

�
��� h � t � t� � � l� h : t � l� � h : t� � t B t� � �

� In fact Φ can be constructed algorithmically from Ψ,

with a final coalgebra giving rise to a principle of

coinduction, but that is another story . . .
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� In fact Φ is fully-extensional, ie νΦ� EqL.
� Extensionality is routine (Exercise). For

fully-extensional, note EqL� Φ � EqL � , so EqL � Φ � EqL � ,

hence

EqL � νΦ

Note that νΦ � EqL if l B l� � � l� l� . The latter holds as

l B l� � � � l� l� � � �� � � ��� m � ��� 1 � p� m � � lp � l� p �

provable by induction on m � � .

� Thus l� l� provided we can find a bisimulation B with

l B l� , and moreover νΦ� EqL.
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� (Informally/curried) define � : � � � � � � L �� L by

� f � �� � � ��

� f � h : t � � � f h � : � � f t �

� f n � n : � � f � f n � �

� Then

� f � � f n �� � f � f n �

if there’s a bisimulation B relating the two operands . . .
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such as

B def� � � � f � � f n � � � f � f n � � � f : � � � � n � � �

� f � � f n � B � f � f n �

f n : � f � � f � f n � �

�
�

�
�

�
�

�

f n : � f � f � f n � �

�
�

�
�

�
�

�
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� (Informally/curried) define � :L� L �� L by

� l � �� � l � � �� � � ��

� � �� l � l � � h : � �� � � h : � ��

� � h : t � � h� : t� � � h : � � � h� : t� � t � � � h : h� : t � � h : � � t �

� l� � ��� � � l � �

� Then

� � � l � � � l �� l

if there’s a bisimulation B relating the two operands . . .
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such as

B def� � � � � � l � � � l � � l � � l � L �

� � � � h : h� : t � � � � � h : h� : t � � B h : h� : t
� � h : � t � � � � h : h� : t � �

�
�

h : h� : t

�
�

�

h : � � � � h : h� : t � � � � t �

�
�

h : h� : t

�
�

�

h : � � � � h� : t � � � � � h� : t � �

�
�

h : h� : t

�
�

�

Exercise: what about the other cases?
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Overview Part II
� We illustrate coinductive equivalences for a small

functional programming language.

� Many of the techniques and ideas which we meet all

arise in foundational work on security.

� The vehicle of a functional language is hopefully

familiar to you.

� We will define contextual equivalence and bisimilarity,

two kinds of equivalence.
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Overview Part II - Continued

� The former is intuitively appealing, but the latter is

easier to reason about (coinductively).

� Fortunately, they are the same thing (in this setting!).

� We will show this, and give some example applications.

� In more detail, we shall:
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Overview Part II - Continued
� Inductively define programs 4 � 3, � � ��� � � 5 : 4 : � �� � � and

� n � �� n� 1� � � � 1 � � � � n� � f � n � 1 � � .

� Inductively define program transitions P � P� such as

� 4 �	� 4� � 4 � 1 �� � 4 � 1 � 1 �� 1 � � 24.

� Coinductively define divergence P 
 , where this means

P � P1 � P2 � P3 � � � �

� Coinductively define notions of program equivalences

such as � � x� 1� 7 � � � � x� 7 � , and show them all equal.
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What’s Next?
� During the next few slides we specify a functional

language.

� We

� give types and expressions;

� a reduction relation (operational semantics); and

� discuss convergence to values (canonical forms) and

divergence of programs.
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Types and Expressions
� The types are (the syntax trees) given inductively by

γ ::� 	 � �� �� � 
 σ ::� γ� � σ �� σ � σ�

where � σ � is a list type, and σ � σ� is a function type.

� The expressions are syntax trees, defined from fixed sets Var of

variables x� y� z� v. . . , and Fid of function identifiers, � � � � � . . .

� If E is an expression in which xi possibly occurs, where

1 � i � n, then

E � E1� � � Ei� � � En � x1� � � xi� � � xn � � x � y 
 � y� 2 � x� y �� y � 2

is the expression where each Ei simultaneously replaces each xi.
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E ::� x variable
� c c � � � � integer or Boolean constant

� E1 op E2 operator on “integers”

� � �� σ (type indexed) empty list

� E1 : E2 cons for lists

� � � � E � � � � E � head and tail of list

� � � � � � � E � Boolean test for empty list

� � function identifier

� E1 E2 function application

� �� E1� � � � E2 � � � � E3 conditional
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A Type Assignment System
� We aim to define type assignments of the form

l :: �	 � � �� x ::	 � �� x � � � � l 
 ::	 � � x1 :: σ1� � � � � xn :: σn� �� �

Γ

� E :: σ

where an environment Γ is a finite partial function from

variables to types.

� These are defined parametrically over a set of typed function

identifiers. An identifier type takes the form

σ1 � σ2 � σ3 � � � � � σa � σ

where a � 0 and σ is not a function type.
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� An identifier environment is a finite partial function from

identifiers to types, written

∆� � 1 :: ι1��� � � � � m :: ιm�

� Given any ∆, we can inductively define our type assignment

relation Γ� E :: σ by a set of rules.

� Write Expσ � Γ 
 for the set of expressions E with type σ in

environment Γ. Write Expσ for Expσ ��� 
 .

� A program expression P is an expression with no occurrences

of variables. Call P a program of type σ if P 	 Expσ. N.B. P, Q, R

range over Prog
def� � σExpσ.
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Γ � x 
� σ
:: VAR

Γ� x :: σ
:: CST

Γ� c :: γ

Γ� E1 ::	 � � Γ� E2 ::	 � �

:: OP op 	 � � � � � � ��� � � �

Γ� E1 op E2 :: γ

:: NIL

Γ� �	
 σ :: � σ �

Γ� E1 :: σ Γ� E2 :: � σ �

:: CONS

Γ� E1 : E2 :: � σ �

Γ� E :: � σ �

:: HD

Γ� � � � E 
 :: σ

Γ� E :: � σ �

:: TL

Γ� �
 � E 
 :: � σ �
Γ� E :: � σ �

:: ELIST

Γ� �
 	 � � � E 
 :: �� � 
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∆ � � �� ι
:: IDR

Γ � � :: ι

Γ � E1 :: σ2� σ1 Γ � E2 :: σ2
:: AP

Γ � E1 E2 :: σ1

Γ � E1 :: �� � � Γ � E2 :: σ Γ � E3 :: σ
:: COND

Γ � �� E1� � � � E2 � � � � E3 :: σ

We write P :: σ for� � P :: σ
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Function Declarations
� To define run-time execution, given some ∆, we first

declare the meanings of function identifiers.

� For example,

� xy � x � y � x � �� x� 1� � � � 1 � � � � x� � � x � 1 �

� In general, declare
� x1 x2� � � xa � D

�

for each identifier � :: σ1� σ2� σ3� � � � � σa� σ where

x1 :: σ1� � � xa :: σa � D
�

:: σ
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A Small Step Reduction Relation

� 23 � � x � y 
 � 2� 3 � x� y �� 2 � 3

� 5 ��

� 2 � 	� 2 � 1 � � � � 1 �
 � � 2� � � 2� 1 


� 	� f � � � � 1 �
 � � 2� � � 2� 1 


� 2� � � 2� 1 


� 2� 	� � 2� 1 
 � 1 � � � � 1 �
 � � 2� � � � 2� 1 
� 1 


(Reflexive, transitive closure) ��� 2 ��

�
 � 4 : � 2� 1 
 : �	
 
 � � 2� 1 
 : �	
 ��
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� The evaluation contexts are defined by

E ::� � � � op P � n op � ��� � � � � �	�
 � � � �	� 
 � � � � � � � P � �� � � � � � P1� 
 � P2

� and the reduction relation � � σ � Expσ� Expσ � by

P � P�

E � P � � E � P

�
�

n op m � n op m � � � P : P� 
 � P

�
 � P : P� 
 � P� � � � �	
 
 � � � � �	
 
 �
 � �	
 
 � �
 � �	
 


�
 	 � � � P : P� 
 � f �
 	 � � � �	
 
 � t

� P1� � � Pa � D � � P1� � � � � Pa � x1� � � � � xa �

	� t � � � � P1 �
 � � P2 � P1 	� f � � � � P1 �
 � � P2 � P2
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Convergence and Divergence
� Define

P � def� � � R 
 � P � R 
 P �� def� � � � R 
 � P � R 


� Note that � 23 �� 5 �� . The program converges.

� If � z� � � z � 2 
 then G0 � � � 0 � 2 
 � ω. The program

diverges.

� We define, for P� P� 	 Prog,

P �

def� � � P� 
 � P �� P� � � P� �� 
 


P �

def� ��� P� 
 � P �� P� � � � P� � 
 


� Reduction is deterministic. Exercise: Induction over � .
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Values
� In fact if P � , then ��� V � � P � � V � , where values V are

defined as programs in Prog such that

V ::� c � � �� � P : P� � � P1� � � Pl� �� �

l � a

� Idea: a value is a “fully reduced” program.

� Lists are lazy: reduce elements only if extracted by head

or tail.

� Only reduce “identifier applications” if identifier has all

its a arguments.



Foundations of Security Summer School, Eugene, Oregon, June 2003 48

� We can show that for P � Prog,

P is a value � � P �
�

� � � is trivial. � � by induction on type assignments:

Γ � E :: σ � � � � Γ� � � E �
� �� � E is a value �

� Then it is immediate that

P � � � ��� V � � P �� V �
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Divergence Coinductively

P �

P op Q �

Q �

P �� n
P op Q �

P �

� � � P 
 �

P �

�
 � P 
 �

P �

�
 	 � � � P 
 �

P �

PQ �

D � �
�

P� Q �
� x� x � �

P �� � P1� � � Pa� 1
PQ �

P �

	� P � � � � Q �
 � � Q�
�

Q �

P �� t

	� P � � � � Q �
 � � Q�
�

Q�
�

P �� f
	� P � � � � Q �
 � � Q�

�
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� The set � � Prog is coinductively defined by these rules.

� We can show that for all P � Prog,

P 
 � � P �

� For example, if � x � � x, then � 0 � provided � 0 � D for

some dense set D. Can take D
def� � � 0 � !
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Where Now?
� We define formally contextual equivalence.

� Two programs are equivalent, if, when placed in any “larger”

program, the resulting programs both converge.

� It is difficult to establish such equivalences: how do you check

this for all larger programs?

� Problem is circumvented by defining bisimilarity, another

equivalence, which is more tractable . . . but

� which coincides with contextual equivalence.

� To show this, the trick is to show bisimilarity a congruence . . .
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Contextual Preorder
�

Γ� E R E� :σ def� � E� E� 
 	 R � � Γ

�

σ � Expσ � Γ 
 � Expσ � Γ 
 


� The contextual preorder

x1 :: σ1��� � � � xn :: σn� E � E� :: σ

means: for all “contexts” v :: σ� C :: τ, and programs Pi :: σi,

C � E �
�

P �
� x � � v � � � � C � E

�
�

�

P �
� x � � v � �

� Contextual equality Γ� E

�� E� :: σ is the symmetrization of

the contextual preorder, which is a preorder. If the environment

is empty, we write P

�� σ Q.
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Proving Contextual Equality
� We would expect 2 � 3

��
� � � 5. To show this, need to prove

convergence of 2 � 3 in all contexts implies convergence of

5 in all contexts.

� We would expect � P

�� σ D � �

P

�

v

�

when � x � D � .

� Exercise: Try proving these facts by induction over all

contexts.

� The quantification over all contexts makes establishing

these facts tricky.

� As Nat West Bank would say: there is a better way . . .
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Borrowing from Process Algebra
� In process algebra, two processes are equivalent if any

transition performed by one can be performed by the

other, and the resulting processes are also equivalent.

� We define a concept of “transition” for our functional

language.

� Key Idea: Transitions can indicate what can be observed

of programs P, once “fully evaluated”.

� Any program can perform a transition α if it first

converges (to V ) and V can perform α.
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� We will have

2 � 3 � 2 � 3 5 � � � 3 : 2 : � �� � P

5

�
�

V

��
�

�

5

�

�
5

�

�

5

�
2

� �
�

�

α

�
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A Transition Relation
� Actions α 	 Act are given by

α ::� c� �	
 � � �� �
 � �
 	 � �� @P

� and transition relationships

P
α� � ξ 	 Prog � Act � � Prog � ��� � 
 by

�
�

P
@Q� � �

�

PQ c
c� � �

�	
 ���� � � P : P� � �� � P P : P� ��� � P�

P : P� �� � 	 �� � f �	
 �� � 	 �� � t
P � P� P� α� � ξ

P
α� � ξ
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Results about Convergence and Transitions
� Recall that P � �� � � V 
 � P ��� V 
 . Then

�

P
α� � ξ � � P �

can be proved by rule induction over transitions; and

�

P � � � � � α 
 � � ξ 
 � � V 
 � P α� � ξ � P �� V
α� � ξ 


follows trivially (using also the single inductive rule).

� Each
α� � is a partial function, by induction on transitions.



Foundations of Security Summer School, Eugene, Oregon, June 2003 58

Similarity and Bisimilarity

We can define a coinductive notion of similarity,

�

def� νΦ � P �

σ

� Expσ� Expσ � �

Φ:P �

σ

� Expσ� Expσ � � �� P �

σ

� Expσ� Expσ � �

where

Φ � S �

def� � � P� Q � �
� P

α�� P� � � Q
α�� Q� � P� S Q�

�

P
α�� � � � Q

α�� �

�
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Bisimilarity is the set �

def� νΦ where

Φ � B �

def� � � P� Q � �
�� α� P� � Q� 
 � P α� � P� � � Q

α� � Q� � P� B Q� 


�

�� α� P� � Q� 
 � Q α� � Q� � � P
α� � P� � P� B Q� 


�

P
α� � � �� Q

α� � �

�

Exercise: show Φ is extensional, and hence that bisimilarity is

an equivalence relation (and similarity is a preorder).
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Open Similarity and Bisimilarity
� Suppose given R � � σ � Expσ� Expσ � .

� We write Γ � E R � E� :σ just in case
��� Pi � Expσi � ��� � E

�
�

P

�
� x

�

R E�
�

�

P

�
� x

�

:σ �

where the types σi are those appearing in Γ.

� Call these relationships the open extension of R .

� We obtain open similarity and open bisimilarity, subsets

of Γ � σ � Expσ � Γ ��� Expσ � Γ � � .
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Relating Bisimilarity and Contextual Equivalence

A central theorem is: For all Γ, E, E� and σ,

Γ� E ��� E� :: σ � � Γ� E � E� :: σ

Γ� E � � E� :: σ � � Γ� E

�� E� :: σ

We can prove this by showing that

� � is a precongruence.� � follows easily from the definitions,

plus our Results about Convergence and Transitions

� � σ � � P� Q 
� P � σ Q � is a simulation. � � follows from the

definitions.
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An Example Equivalence

Two facts (proved later):

P � P� � � P � P� and P � P� � � C

�

P

�

v

�

� C

�

P�
�

v

�

Declare

� f l � �� � � � � � � l � � � � � � �� � � � � f � � � l � : � f ��� � � l � �

� f x � x : � f � f x �
Then

f :: σ� σ � x :: σ � � f � f x �
�� � f � � f x � ::

�

σ

�

� � f :: σ� σ � x :: σ � � f � f x � �
�

� f � � f x � ::

�

σ

�

� � � F :: σ� σ � P :: σ � F � F P � �
�

σ

�

� F � � F P �
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Define

Bdef�

σ

�

i � 0

� � � � F � F � F i P 
 
 
�

� F � �
 i � � F P 
 
 

� � Q� Q� 
� P :: σ� F :: σ � σ� Q � Q� �

Then

� � F � F � F i P 
 
 
 � F � F i P 
 : � � F � F � F � F i P 
 
 
 

� �� � F � F i P 


��� � � F � F � F i � 1 P 
 


� F � �
 i � � F P 
 
 �� F � � � �
 i � � F P 
 
 : � F � �
 i � 1 � � F P 
 

� �� � F � � � �
 i � � F P 
 


��� � � F � �
 i � 1 � � F P 
 


� � � �
 i � � F P 
 
 � F iP � FACTS � � � � � � �
 i � � F P 
 
 � � � F i P 
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Where Now?
� The “fact” that for any context C � Expτ � v :: σ �

P � P� � � C

�

P

�

v

�

� C

�

P�
�

v

�

is not easy to prove.

� The next few slides give a proof of this fact:

� Define a new relation;

� show the relation has the substitution property;

� prove intermediate lemmas relating new relation to

reductions and transitions;

� show new relation equals (open) [bi]similarity.
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[Pre]Congruences

Let R � � Γ

�

σ � Expσ � Γ 
 � Expσ � Γ 
 
 . Then R is called a precongruence

if

PCrf For any Γ� E :: σ we have Γ� E R E:σ.

PCtr For any Γ� E R E� :σ and Γ� E� R E� � :σ we have Γ� E R E� � :σ.

PCwk Weakening of contexts.

PCsb For any relationships Γ� E R E� :σ and Γ� x :: σ� T R T� :σ�

we have Γ� T � E � x � R T�
� E

�
� x � :σ� .

PCsy A congruence satisfies additionally

Γ� E R E� :σ� � Γ� E� R E:σ
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The Howe Relation

� To prove similarity a precongruence, we adopt Howe’s

method.

� We inductively define Γ� E � � E� :: σ, prove these form a

precongruence, and then show

Γ� E � � E� :: σ � � Γ� E �� E� :: σ
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Γ� x:σ� x � � E :: σ

Γ� x:σ� x � � E :: σ

Γ� c �� E :: γ

Γ� c � � E :: γ

Γ� E1 � � Ê1 ::	 � � Γ� E2 � � Ê2 ::	 � � Γ� Ê1 op Ê2 �� T :: γ

Γ� E1 op E2 � � T :: γ
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Γ� �	
 �� E :: γ

Γ� �	
 � � E :: γ

Γ� E1 � � Ê1 :: σ Γ� E2 � � Ê2 :: � σ � Γ� Ê1 : Ê2 �� T :: � σ �

Γ� E1 : E2 � � T :: � σ �

Γ� E � � Ê :: � σ � Γ� � Ê �� T :: σ

� where � 	 � � � � �
 � �
 	 � � � �

Γ� � E � � T :: � σ �
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Γ� � �� E :: ι

Γ� � � � E :: ι

Γ� E1 � � Ê1 :: σ � σ Γ� E2 � � Ê2 :: σ Γ� Ê1 Ê2 �� T :: σ

Γ� E1 E2 � � T :: σ

Γ� E1 � � Ê1 :: �� � 


Γ� E2 � � Ê2 :: σ

Γ� E3 � � Ê3 :: σ

Γ� 	� Ê1 � � � � Ê2 �
 � � Ê3 �� T :: σ�

Γ� 	� E1 � � � � E2 �
 � � E3 � � T :: σ�
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Some General Properties of Howe

Htr For all Γ � E �
� E� :: σ and Γ � E� �
� E� � :: σ we have

Γ � E �
� E� � :: σ.

Hrf For all Γ � E :: σ we have Γ � E �
� E :: σ.

Hoh For all Γ � E �
� E� :: σ we have Γ � E �
� E� :: σ.

Hsb For all Γ � x:σ � T �
� T� :: σ� and Γ � E �
� E� :: σ, we

have Γ � T

�

E

�

x

� �
� T�

�

E�
�

x
�

:: σ� .

Note Hoh follows from Htr and Hrf.
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Sketch Proofs

These results follow by induction over the boxed judgments.

Hsb requires

Γ� x:σ� T ��� T� :: σ� � Γ� E� :: σ� �

Γ� T � E

�
� x � �� T�
� E

�
� x � :: σ� †

(Exercise: use definition of open similarity).

Base induction step introducing variables: Suppose that

Γ � x:σ � x �
� T� :: σ� . Then by definition Γ � x:σ � x �
� T� :: σ� .

Hence by †

Γ � E� �
� T�

�

E�
�

x
�

:: σ�
and by Htr and Γ � E �

� E� :: σ we are done.
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Induction step for applications: Informally!

Γ� v� T � � T� � Γ� E � � E� � � Γ� T � E � v � � � T�
� E

�
� v �

Γ� T1 � E � v � � � T̂1 � E

�
� v �

Γ� v� T1 � � T̂1

Γ� T2 � E � v � � � T̂2 � E
�

� v �
Γ� v� T2 � � T̂2

Γ� � T̂1 T̂2 
 � E

�
� v � �� � T1 T2 
 � E

�
� v �

Γ� v� T̂1 T̂2 �� T�

1 T�

2

Γ� v� T1 T2 � � T�

1 T�

2

Htr � � Γ� v� � T1 T2 
 � E � v � � � � T�

1 T�

2 
 � E

�
� v �
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Some Lemmas

TB If P � P� then P � P� . Exercise: Check � � EqExp is a

bisimulation. (Follows from Results about Convergence and

Transitions.)

ST If P � Q and P � P� then P� � Q. (Ditto!)

HT If P �
�

σ Q and P � P� then P� �
�

σ Q. Proof: induct over

transitions.

We illustrate informally one step in proof of HT, in case the

transition is � P1 � D � �

P1 �

x

�

.
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We have

� � σ � σ� F̂

� � �

σ � σ� F̂ P1 � �

σ P̂1 F̂ P̂1 � σ� Q

F P1 � �

σ� Q

and thus

� � F̂

D � � P1 � x � � �

� �� �

Hsb

D � � P̂1 � x � �� �� �

TB
� P̂1

@ P̂1

�

� ˆ� P̂1

@ P̂1

�

� Q
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Similarity and Howe Coincide

Γ � E �
� E� :: σ � � Γ � E �
� E� :: σ�

� � follows from Hoh.

� � follows by showing that P �
�

σ Q� � P � σ Q. This follows

(by coinduction) if we can show that

S def�

σ

� � P� Q � � P �
�

σ Q �

is a simulation. This follows from the lemmas, using

induction on transitions, and Howe properties.
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Consider

P � P� P� α�� ξ

P
α�� ξ

P� � � � � � � P �
�

σ Q

P�
�

�

�
�

σ Q HT

INDUCT

ξ

α

�
� � � � � � � ξ

α

�

ξ�

α

�

and ξ �
�

σ ξ� � ξ� ξ� � � , also by induction.
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Consider

P1 : P2

� ��� P1 and P1 : P2 �
�

�

σ

�

Q

By definition of Howe,
��� P̂i � Prog � � Pi �

�

σ P̂i � P̂1 : P̂2 �

�

σ

�

Q �

and then

P1 : P2 �
�

�

σ

�

P̂1 : P̂2 �

�

σ

�

Q Hsb: � Hrf: x : x� �

Similarity

P1

� �
�

�
�

�

σ

�

P̂1

� �
�

�

�

σ

�

Q�
� �

�

So P1 �
�

�

σ

�

Q� by Htr.
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Where Now?
� Note: A congruence is a relation preserved by

expression constructors (see previous slide) . . .

� We can complete the proof of the coincidence of

bisimilarity and contextual equivalence.

� Before doing so, we remark that bisimilarity is the

equivalence relation generated by the similarity

preorder (used in the proof).

� And finally we look at another equivalence.
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Bisimilarity is Generated from Similarity
� Bisimilarity is the equivalence relation generated from

similarity.

� This can be proved using the definitions. For example,

to show (left disjunct of)

P � P� � � � P � P� � P� � P �

let S def� � � P� P� � � Prog � P � P� � and verify it is a

simulation, hence contained in � .
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Open Similarity is a Precongruence &

Open Bisimilarity is a Congruence

Exercise: open bisimilarity is the equivalence relation generated by

open similarity. Thus, properties of open (bi)similarity:

SBrf Reflexive because (bi)similarity is reflexive.

SBtr Transitive because(bi)similarity is transitive.

SBwk Weakening is immediate from the definitions.

SBsb The substitution property holds for Howe, hence(!) for open

(bi)similarity.

SBsy And open bisimilarity must be symmetric!
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Open Similarity implies Contextual Preorder &

Open Bisimilarity implies Contextual Equivalence

We have

Γ � E �
� E� :: σ� � Γ � E� E� :: σ

Proof: Let Γ � E �
� E� :: σ, and suppose C

�

E

�
�

P

�
� x

� �

v

� � . Then

by SBsb we have

� � C

�

E

�
�

P

�
� x

� �

v
� �

� C

�

E�
�

�

P

�
� x

� �

v

�

:: σ

By Results on Convergence and Transitions, convergence

“corresponds” to transitions, and hence C

�

E�
�

�

P

�
� x

� �

v

� � .

Exercise: Think about result for open bisimilarity.
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Contextual Preorder implies Open Similarity &

Contextual Equivalence implies Open Bisimilarity

We can show that

P � σ Q� � P � σ Q

by showing that

S def�

σ
� � P� Q 
� P � σ Q �

is a simulation. An immediate consequence is

Γ� E �� E� :: σ � � Γ� E � E� :: σ

Exercise: Think about result for open bisimilarity.
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By TB and previous result,

P � P� � � P � σ P� � � P

�� σ P� †

Hence if P� σ Q and P
α�� ξ, then P �	� V

α�� ξ, so Q �	� V�

for some V� using the empty context. Thus by †,

V

�� σ P � P� σ Q � Q

�� σ V

and so V � σ V� . We then show that there is ξ�

V� α�� ξ� � � ξ� σ ξ� � ξ� ξ� � � �

by a case analysis on V (and Q
α�� ξ).
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Case V� P1 : P2. Consider context

K
def� �� � � � � � � v � � � � � 0 � � � � � � � � �� �

Use K to show any two contextually equivalent list

expressions must either both be empty, or both be

non-empty.

P1 : P2 �
�

σ
�

V� � Q1 : Q2 From above

Hence

P1

� �
�

Q1
� �

�
and by †, and definition of�

�

σ

�

with C� def� C

�
� � � v � �

v

�

,

P1

�� σ � � � P1 : P2 � � σ � � � Q1 : Q2 �
�� σ Q1



Foundations of Security Summer School, Eugene, Oregon, June 2003 85

Another Equivalence

� � 0 : � � �

� n � n : � � n � 1 �

� n � n � 1

Then

�
��

�

� � �
�

� 0 � � � �
�

� � �
�

� 0

Define

Bdef� � � P � Q � � � � 0 � � � �

� � � 0 � 1 � � � � � 1

� �� �

i � 1

� � � � ��� � � � � � �� �� �
i� 1

� � � � �
� P � Q �
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� � 0 � 1 � � � � � 1

� �� �

i

� � 0 � 1 � � � � � 1

� �� �

i

: � � 0 � 1 � � � � � 1

� �� �

i � 1

�

� ��� 0 � 1 � � � � � 1

� �� �

i

���� � � 0 � 1 � � � � � 1

� �� �

i � 1

�

� � ��� � � � � � �� �� �

i� 1

� � � � � � � � � ��� � � � � � �� �� �

i� 1

� � � � � : � � ��� � � � � � �� �� �

i

� � � �

� ��� � � � � ��� � � � � � �� �� �

i� 1

� � � � �

���� � � ��� � � � � � �� �� �

i

� � � �
Exercise: Show heads bisimilar.
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[GA97] A calculus for cryptographic protocols: The spi calculus.

� Suppose � D � K is data encrypted with a key K (ciphertext).
� Suppose that � νc 
 P is any process P with private channel c.

� The process c

� � D � K �

outputs � D � K on c. Then . . .

c

� � D � K �

� c

� � D� � K �

� Paper describes the spi calculus . . .

� Secrecy properties are captured by process equivalences.

Restricted channels do not reveal data:

� νc 
 � c �

M

�� c � x 
� F � x 
 
 � � νc 
 � c �

M�
�� c � x 
� F � x 
 
 � � F � M 
 � F � M� 
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[GA98] A Bisimulation Method for Cryptographic Protocols
� Results based around the spi calculus.

� Refines “our notion” of bisimulation: matching actions

replaced by indistinguishable actions (privacy).

� Bisimulations relative to a set of names;

� and relations specifying that environments cannot

distinguish certain (encrypted) data.

� Gives examples of bisimulation equivalences.



Foundations of Security Summer School, Eugene, Oregon, June 2003 90

[GC00] Mobile Ambients
� Defines the ambient calculus . . .

� an ambient n � P � is a bounded “process”; security is

represented by the possibilities of crossing boundaries.

� Again, contextual equivalence is a key notion . . .

[GC03] Equational Properties of Mobile Ambients

� Reviews the ambient calculus.

� Develops a theory for reasoning about contextual

equivalence, and gives some examples.



Foundations of Security Summer School, Eugene, Oregon, June 2003 91

[RTJ01] The Coalgebraic Class Specification Language CCSL

� Introduces Coalgebraic Class Specification Language

(CCSL).

� Allows the user to “specify coalgebras” . . .

� and associated bisimulations.

� The specifications are compiled into PVS or Isabelle.

� CCSL has been used to verify security properties.

[Gim95] Coinductive Types in Coq: An Experiment with the

Alternating Bit Protocol

� Develops a proof of the Alternating Bit Protocol within Coq.
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[Cro99] Operational Semantics
� A basic introduction to Plotkin style operational semantics.

� Lot’s of detail, with an easy pace.

� Includes imperative languages.

[Cro98] Lectures on [Co]Induction and [Co]Algebras

� Basic operational semantics via (co)inductive definitions.

� Defines, with examples, algebras and coalgebras.

� Briefly outlines categorical induction and coinduction.
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[Gor95] Bisimilarity as a theory of functional programming

� Tutorial on labelled transition semantics:detailed.
� Similar in flavour to these lectures, but . . .

� covers theory to a greater depth.

� Many examples of equivalences via coinduction.

[Pit97] Operationally Based Theories of Program Equivalence

� Tutorial, with bisimilarity founded on “evaluation”.

� Two expressions are bisimilar if they evaluate to values, and

all “subexpressions” bisimilar.

� Explains “continuity” properties of �� � E by syntactic

methods.
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[CG95, CG99] Relating Operational and Denotational Semantics

for Input/Output Effects
� Original conference and journal versions of ideas outlined

here.

� Covers labelled transition semantics . . .

� for a functional language with imperative I/O.

� Also includes a denotational model and adequacy results.

[Cro01] Completeness of Bisimilarity for Contextual Equivalence

in Linear Theories

� Similar, for a linear language, with bisimilarity based on

evaluation.
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