Lectures on
Proof-Carrying Code

Peter Lee

Carnegie Mellon University

Lecture 1 (of 3)
June 21-22, 2003
University of Oregon

2004 Summer School on Software Security

According to CERT, buffer
overflow attacks are the #1
exploit for network security
attacks.

http://www.cert.org/summaries/

Page 1

B

‘»‘-.il i

I

=
e

i
;GJJ

“After a crew member mistakenly entered a zero into
the data field of an application, the computer system
proceeded to divide another quantity by that zero. The
operation caused a buffer overflow, in which data
leaked from a temporary storage space in memory,
and the error eventually brought down the ship's
propulsion system. The result: the USS Yorktown was
dead in the water for more than two hours.”

buffer
overflow!

Automotive analogy

“If the automobile had followed
the same development as the
computer, a Rolls-Royce would
today cost $100, get a million
miles per gallon, and ...

Cars in the Real World

Problems at Mercedes:

e Forced to buy back 2000 copies of the latest
E-Class sedan, due to problems with
computing and telecommunications systems

¢]J.D.Power initial quality rankings have
g(r)%%ped to 15th (even below Chevrolet!) in

. board member Jurgen Hubbert says this is directly
related to the effort to be a “technology leader”

n't believe what’s under the hood
-t

- the

Page 2

'ANCI
§ SURTON

Automotive analogy

“If the automobile had followed
the same development as the
computer, a Rolls-Royce would
today cost $100, get a million
miles per gallon, and explode
once a year killing everyone
inside."

- Robert Cringely

b

Observations

Many failures are due to simple
problems “in the details”

Code reuse is necessary but perilous
Updateable/mobile code is essential

Performance matters a lot

About these lectures

The main topic is proof-carrying
code, an example of certified code

It won't be possible to go through
all aspects in complete detail

But I hope to provide background
to make it easier to get started
with research

The Code Safety Problem

Please install
and execute
this.

- " 3

Page 3

Opportunities

Progress depends fundamentally
on our ability to reason about
programs.

The opportunities are great.

Who will provide the technology
for systems that work?

The Code Safety Problem

“"Applets, Not Craplets”
- Luca Cardelli, 1996

“If you have ‘process’
without ‘inspiration,” all you
end up with is well-
documented crap.”

— Dr. John C. Sommerer,
CTO, Johns Hopkins
Advanced Physics Lab

Approach 1
Trust the code producer

Code
Trust is based on

personal authority, not

program properties

Scaling problems?

Trusted Host Trusted 3rd Party

Approach 3
Java

Code

Limited in
expressive power

Expensive
and/or big

Trusted Host

Code Safety

Code
Is this safe to execute?
Trusted Host
Approach 2
Baby-sit the program
Code

Expensive

E.g., Software Fault Isolation [Wahbe &
Lucco], Inline Reference Monitors [Schneider]

Trusted Host

Approach 4
Formal verification

Flexible and
powerful.

But really really
really hard and
must be correct.

Trusted Host

Page 4

A key idea: Checkable certificates A key idea: Checkable certificates

Code

Code

Certifying

Proof <= prover

Trusted Host

Proof-Carrying Code

[Necula & Lee, OSDI'96]

&

T e e

Uﬂfﬂ Five Frequently Asked
E SERR Questions
ﬁ %ﬁﬁﬂﬁf

ST ?&é :fﬁ%ﬂ

)

Question 1 Formal proofs

Write “x is a proof of predicate P”
as x:P.

How are the proofs represented
and checked?

What do proofs look like?

Page 5

Example inference rule

If we have a proof x of P and a proof
y of Q, then x and y together
constitute a proof of P A Q.
FrEa:P e a:Q
Mre (z,y) :PAQ

Or, in ASCII:
®Given x:P, y:Q then (x,y) :P*Q.

Types and proofs

So, for example:

fn (x:P*Q) => (snd(x), fst(x))

: P*Q — Q*P
This is an ML program!

Also, typechecking provides a
"smart”D blackboard!

“"Proofs as Programs”

“"Propositions as Types”

More inference rules

Assume we have a proof x of P. If we
can then obtain a proof b of Q, then
we have a proof of P = Q.

e Given [x:P] b:Q then
fn (x:P) =>b : P -5 Q.
More rules:
® Given x:P*Q then fst (x):P

® Given y:P*Q then snd(y):Q

Curry-Howard Isomorphism

In a logical framework language,
predicates can be represented as
types and proofs as programs (i.e.,
expression terms).

Furthermore, under certain
conditions typechecking is
sufficient to ensure the validity
of the proofs.

LF

The Edinburgh Logical Framework
language, or LF, provides an
expressive language for proofs-as-
programs.

Furthermore, its use of dependent
types allows, among other things,
the axioms and rules of inference
to be specified as well

Page 6

Oracle strings

&

| %ﬂm]
£ e aie

#ﬁﬁlén

i

rlrrllerlielelelielerdleedl...

The Necula-Lee experiments

Reasonable in size (0-10%).

Code
/ Certifying

Proof <—
= Prover

Simple, No longer need to
small (<52KB), trust this component.
and fast.

Question 3

Aren’t the properties we're trying
to prove undecideable?

How on earth can we hope to
generate the proofs?

Page 7

Question 2

How well does this work in practice?

Crypto test suite results

H PCC HJava RIIT

How to generate the proofs?

Proving theorems about real
programs is indeed hard

e Most useful safety properties of
low-level programs are undecidable

e Theorem-proving systems are
unfamiliar to programmers and
hard to use even for experts

The role of
programming languages

Civilized programming languages can
provide “safety for free”

e Well-formed/well-typed = safe

Idea: Arrange for the compiler to
“explain” why the target code it
generates preserves the safety
properties of the source program

Certifying compilation

Certifying Certifying
Prover ~ Compiler

Object
code

Source
code

Proof

Looks and smells like a compiler.

% spjc foo.java bar.class baz.c -1jdkl.2.2

Question 4

Just what, exactly, are we
proving?

What are the limits?

And isn’t static checking inherently
less powerful than dynamic
checking?

Page 8

Certifying Compilers
[Necula & Lee, PLDI'98]

Intuition:

e Compiler “knows” why each translation
step is semantics-preserving

*So, have it generate a proof that safety
is preserved

This is the planned topic for
tomorrow’s lecture

Java

Java is a worthwhile subject of
research.

However, it contains many
outrageous and mostly
inexcusable design errors.

As researchers, we should not
forget that we have already done
much better, and must continue
to do better in the future.

Semantics

Define the states of the target
machine

*S = (10, p, pc)

program } \
i program
register. counter

state

and a transition function Step(S).

Define also the safe machine
states via the safety policy SP(S).

Semantics, cont’d

Then we have the following
predicate for safe execution:

Safe(S) = IIn:Nat. SP(Step”(S))
and proof-carrying code:

PCC = (S,:State, P:Safe(S,))

Reference Interpreters
cont’'d

The reference interpreter is never
actually implemented.

The point will be to prove that
execution of the code on the RI
never aborts, and thus execution
on the real hardware will be
identical to execution on the RI.

Question for you

Suppose we require the code to
terminate eventually. Is such a
safety property enforceable by an
RI?

Page 9

Reference Interpreters

A reference interpreter (RI) is a
standard interpreter extended
with instrumentation to check the
safety of each instruction before
it is executed, and abort
execution if anything unsafe is
about to happen.

In other words, an RI is capable
only of safe execution.

Question for you

Suppose that we require the code
to execute no more than N
instructions.

Is such a safety property
enforceable by an RI?

What can’t be enforced?

Informally:

Safety properties = Yes
¢ "No bad thing will happen”

Liveness properties = Not yet
¢ "A good thing will eventually happen”

Static vs dynamic checking

PCC provides a basis for static
enforcement of safety conditions

However, PCC is not just for

static checking

PCC can be used, for example, to
verify that necessary dynamic
checks are carried out properly

Question 5

Even if the proof is valid, how do
we know that it is a safety proof
of the given program?

Please install
and execute

this.

Code producer

OK, but let me
quickly look over the
instructions first.

Host

Code producer

Host

Code producer

This store
instruction is
dangerous!

Host

Code producer

Can you prove
that it is
always safe?

Host

Page 10

Yes! Here's the proof I
got from my certifying
Java compiler!

Can you prove
that it is
always safe?

Code producer Host

The safety policy

We need a method for

¢ identifying the dangerous instructions,
and

e generating logical predicates whose
validity implies that the instruction is
safe to execute

In practice, we will also need

* specifications (pre/post-conditions) for
each required entry point in the code, as
well as the trusted API.

Your proof checks
out. I believe you
because I believe

in logic.

Code producer Host

High-level architecture

——)
——)

Explanation

High-level architecture

VCgen

The job of identifying dangerous
instructions and generating
predicates for them is performed
via an old method:

e verification-condition generation

Page 11

A Case Study

A case study

As a case study, let us consider the
problem of verifying that programs do
not use more than a specified amount
of some resource.

s ::= skip
i:=e
if e then s else s

while e do s

Denotes the use of
n pieces of the
resource, where e

evaluates to n

Case study, cont’d

Under normal circumstances, one
would implement the statement:

euse €;

in such a way that every time it is
executed, a run-time check is
performed in order to determine
whether n pieces of the resource
are available (assuming e
evaluates to n).

Case study, cont’d

However, this stinks because
many times we should be able to
infer that there are definitely
available resources.

If somehow we know that
ifi\

there are >9 available here...
then use 4;

else use 5;
use 4;

...then certainly there is no
need to check any of these
uses!

An easy (well, probably) case

Program Static
i:=0
while i < 10000
use 1
i::=1i+1
We ought to be
able to prove

statically whether
the uses are safe

A hopeless case

Program Dynamic
while read() !'= 0
use 1

An interesting case

Program Interesting
N := read()
i:=0
while i < N
use 1
i:=1i+1
In principle, with just a single

dynamic check, static proof
ought to be possible

Also interesting

Program AlsoInteresting
while read() !'= 0
i:=0
while i < 100
use 1

A core principle of PCC

In the code,
e the implementation of a safety-
critical operation
should be separated from

e the implementation of its safety
checks

Separating use from check

So, what we would like
to do is to separate the
safety check from the

use. s ::= skip
i:=e
We do this by if e then s else s

introducing a new
construct, acquire s ;s
use e

acquire e

|
|
| while e do s
|
|
|

acquire requests n
amount of resource;
use no longer does
any checking

Separation permits optimization

The point of acquire is to allow the
programmer (or compiler) to hoist and
coalesce the checks

acquire 9; acquire n;

if .. i:=0;
then use 4; while (i++ < n) do {

else use 5;

use 4; use 1;

}

It will be up to PCC to verify that each use is
definitely safe to execute

High-level architecture

Code

~ Proof | mmmp

Page 13

