Lectures on
Proof-Carrying Code

Peter Lee

Carnegie Mellon University

Lecture 2 (of 3)
June 21-22, 2003
University of Oregon

2004 Summer School on Software Security

Java Grande Suite
700
600
cec 500
400
300
200
100
0
@Q‘ & (\@Q@{& \Q@é %@é\ aé\ef’ P %Q«&

Back to our case study

Program AlsolInteresting
while read() '= 0
i:=0
while i < 100
use 1
i::=1i4+1

Page 1

Some loose ends

“Certified code is an old idea”

e see Butler Lampson’s 1974 paper:
An open operating system for a
single-user machine. Operating
Systems Proceedings of an
International Symposium, LNCS 16.

Java Grande Benchmark Suite

5000000
4500000
4000000

ops 3500000
3000000
2500000
2000000
1500000
1000000
500000

mPCC
B Java
mJIT

arith assign method

The language

= skip

| i := e

| if e then s else s
| while e do s
| s ; s

| use e

| acquire e

Defining a VCgen

To define a verification-condition
generator for our language, we
start by defining the language of
predicates

A ::=Db
| A E A
P T 1; E P annotations
| A)P b ::= true
| 8i.P | false
| e P : P | e, e
predicates | e=e

boolean expressions

Hoare triples

The VCgen'’s job is to compute, for
each statement S in the program, the
Hoare triple

°(P',e") S (P,e)

which means, roughly:

o If (P,e) holds prior to executing s,
and then s is executed and it
terminates, then (P’ ,e’) holds
afterwards

The VCgen (easy parts)

veg (skip, (P,e)) = (P,e)
veg(s;;s,, (P,e)) = veg(s;, veg(s,, (P,e)))
veg(x:=e’, (P,e)) = ([e’/x]1P, [e’/x]e)

veg(if b then s, else s,, (P,e)) =
(b? P,:P,, b? e;:e,)

where (P, e;)
and

= veg (s, (P,e))
(P,,e;) = veg(s,, (P,e))

vceg(use e’, (P,e)) = (P E e’,0,

e’ + (e, 0? e : 0)
veg (acquire e’

(P,e)) = (P E e',0, e-e’)

Page 2

Weakest preconditions

The VCgen we define is a simple
variant of Dijkstra’s weakest
precondition calculus

It makes use of generalized
predicates of the form: (P, e)

o (P,e) is true if P is true and at least e
units of the resource are currently
available

VCgen

Since we will usually have the
postcondition (true,0) for the last
statement in the program, we
can define a function

eveg(S, (Pi)) ¢ (P,i")
I.e., given a statement and its

postcondition, generate the
weakest precondition

Example 1
Prove: Pre) (true,-1)
(true £ 2,0 £ 30, 2+0-3)

Pre: (true,0)

acquirg 3
use 2

LS.
Post: (true,0)

| (frue E 2,0, 2+0)

(true, 0)

veg(use e’, (P,e)) = (P E e’,0, e + (e,0? e:0)

vcg (acquire e’, (P,e)) = (P E e’ 0, e-e’)

Example 2

vcg (acquire e’, (P,e)) =

- (frue E 10 E 20 E 3,0, 2+1+0-3)

acquire 3
(true £ 1,0 E 2 0, 2+1+0)

use 2
(true £ 1,0, 1+0)

use 1
(true, 0)

vcg(use e’, (P,e)) = (P E e’,0, e’ + (e, 0? e:0)

(P E e',0, e-e’)

Example 4

acquire 8
if (b)
then use 5
else use 4

use 4

(8.0, (b?9:8) - 8)
(b?true:true, b?9:8)
(5.0, 9)
(4.0, 8)
(4.0, 4

(true, 0)

where (P1,el)

veg(if b then sl else s2, (P,e)) =
(b? P1:P2, b? el:e2)

= veg(sl, (P,e))

and (P2,e2) = vcg(s2, (P,e))

Snipping up programs

A simple loop

Pre

Post

Broken into segments

Pre I I<—‘
* -

Post

Page 3

Example 3
(9.0, (b?9:8) - 9)
acquire 9
. (b?true:true, b?9:8)
if (b)
(5.0, 9)
then use 5
(4,0, 8)
else use 4
(4.0, 4
use 4
(true, 0)

veg(if b then sl else s2,
(b? P1:P2, b? el:e2)

where (P1l,el) = veg(sl, (P,e))

and (P2,e2) = vcg(s2, (P,e))

(P,e)) =

Loops

Loops cause an obvious problem
for the computation of weakest
preconditions

acquire n

i:=0

while (i<n) do {
use 1

i=1i+1

Loop invariants

We thus require that the programmer
or compiler insert invariants to cut
the loops

acquire n
i:=0

while (i<n) do {

use 1

o
=]
-

g
-

i=1i4+1

} with (i-n,
An annotated loop

n-i)

VCgen for loops

veg(while b do s with (A;,e;), (P,e)) =
(A, E 8i,,i,,...A;) b ? P’ E eye’,
: P E e;e,
e;)
where (P’ ,e’) = vcg(s, (A;,e;))

and i,,1i,,.. arethe variables modified in s

Our easy case

Program Static
acquire 10000
i:=0
while i < 10000
use 1
i:=1i+1
with (i-10000, 10000-i)

Typical loop invariant for “standard for loops”

Our interesting case

Program Interesting
N := read()
acquire N
i:=0
while i < N

use 1
i::=3i+1
with (i-N, N-i)

Page 4

Example 5

(.. \and n,0, n-n)
(O-n E 8i. .., n-0)

(i-n E 8i.i-n)
cond(i<n,i+1-n E n-i n-i,
n-i,n-i)

acquire n;

i = 0;

while (i<n) do { | N-1)
(i+1-n E 1,0, n-i)

use 1;
iel. (i+1
i=i+1; (i+1:n, n-(i+1)
(i-n, n-i)
} with (i-n,n-i);
(true, 0)

Our hopeless case

Program Dynamic
while read() != 0
acquire 1
use 1
with (true, 0)

Typical loop invariant for “Java-style checking”

Also interesting

Program AlsoInteresting
while read() != 0
acquire 100
i:=0
while i < 100
use 1
i::=1i+1
with (i-100, 100-i)

Annotating programs

How are these annotations to be
inserted?

e The programmer could do it

Or:

e A compiler could start with code
that has every use immediately
preceded by an acquire

e We then have a code-motion
optimization problem to solve

VC Explosion
a=b => (x=c => safe,(y,c) A
x<>c => safe.(x,y))

a<>b => (a=x => safe.(y,x) A
a<>x => safe.(a,y))

Exponential growth in size of
the VC is possible.

Proving the Predicates

VCGen’s Complexity

Some complications:

o If dealing with machine code, then
VCGen must parse machine code.

¢ Maintaining the assumptions and
current context in a memory-
efficient manner is not easy.

Note that Sun’s kVM does
verification in a single pass and
only 8KB RAM!

VC Explosion

(a=sb => P(x,b,c,x) A
a<>b => P(a,b,x,x))

A

(Va’,c¢’. P(a’,b,c’,x) =>

a’'=c’ => safe,(y,c’) A
a’<>c’ => safe (a’,y))

Growth can usually be
controlled by careful placement
of just the right “join-point”
invariants.

Proving predicates

Note that left-hand side of implications
is restricted to annotations

e vcg() respects this, as long as loop
invariants are restricted to annotations

A ::=Db

P ::=b | A E A

| 2P EP annotations
|a)P

| 8i.P b ::= true

| e P : P | false
predicates | e, e

| e = e

boolean expressions

Page 5

A simple prover

We can thus use a simple prover
with functionality

e prove(annotation,pred) ! bool

where prove(A,P) is true iff AP

ei.e., AP holds for all values of the
variables introduced by 8

Soundness

Soundness is stated in terms of a
formal operational semantics.

Essentially, it states that if

e Pre) vcg(program)

holds, then all use e statements
succeed

Logical frameworks

The Edinburgh Logical Framework (LF)
is a language for specifying logics.

Kinds K 1= Type | Nax: AK
Types A = a | AM | Nz:A1.As
Objects M ::= z | ¢ | MMy | Az : AM

LF is a lambda calculus with
dependent types, and a powerful
language for writing formal proof
systems.

Page 6

A simple prover

prove (A,b) = :sat (A E :b)
prove (A, P, E P,) = prove(A,P,) E prove(A,P,)
prove (A,b? P,:P,) = prove(A E b,P;) E

prove (A E :b,P,)
prove(A,A,) P) = prove(A E A, ,P)

prove (A,8i.P)

Logical Frameworks

LF

The Edinburgh Logical Framework
language, or LF, provides an
expressive language for proofs-
as-programs.

Furthermore, it use of dependent
types allows, among other things,
the axioms and rules of inference
to be specified as well

= prove (A, [a/i]P) (a fresh)

Pfenning’s EIf

Several researchers have developed logic
programming languages based on these
principles.

One of special interest, as it is based on LF,
is Pfenning’s EIf language and system.

tree g;:g' This small example
defines the abstract
< > : pred —> pred —> pred. | syntax of @ small
: pred -> pred -> pred.
=> : pred -> pred —-> pred. lang["lage of
all : (exp -> pred) —> pred.| predicates

Proof rules in ElIf

Dependent types allow us to
define the proof rules...

pf : pred -> type.
truei : pf true.
andi : {P:pred} {Q:pred} pf P -> pf Q —> pf (/\ P Q).

andel
ander

: {P:pred} {Q:pred} pf (/\ P Q) —> pf P.
: {P:pred} {Q:pred} pf (/\ P Q) -> pf Q.

impi
alli : {Pl:exp —> pred} ({X:exp} pf (Pl X)) —> pf (all P1).
e : exp —> pred

: {Pl:pred} {P2:pred} (pf P1 -> pf P2) —> pf (=> Pl P2).

LF as the internal language

Explanation

——

LF is the language of
the blue arrows

Elf example

So, for example:
VA, B.ANB=BAA
Can be written in EIf as

all([a:pred] all([b:pred]

=> (/\ a b) (/\ b a)))
true : pred.
false : pred.
/\ : pred -> pred —-> pred.
\/ : pred —> pred —> pred.
=> : pred —> pred —> pred.
all : (exp —> pred) —-> pred.

Proofs in EIf

...which in turns allows us to have
easy-to-validate proofs

. (impi (/\ a b) (/\ b a)
([ab:pf(/\ a b)]
(andi b a (ander a b ab)
(andel a b ab))))..)

all([a:exp] all([b:exp]
=> (/\ ab) (/\ ba))).

Code producer Host

Page 7

This store
instruction is
dangerous!

Code producer Host

. (impi (/\ a b) (/\ b a)
([ab:pf(/\ a b)]
(andi b a (ander a b ab)
(andel a b ab))))..)

Code producer Host

Page 8

A verification condition

I am convinced it is

safe to execute only if
all([a:exp] (all([b:exp]

(=> (/\ ab) (/\ b a)))

Code producer Host

Your proof
typechecks. T

believe you because
T believe in logic.

Code producer Host

