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Execution Monitoring: 
Observe program execution

Look at a program’s execution on a 
given input as a sequence of runtime 
events (e.g., the A, B, and C below)
Possibly do “something” on each event

A B C

Program P running…
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What is EM good for?

Debugging, tracing, breakpoints, etc.
Auditing and Logging
Software testing: memory leaks, 
out-of-bounds array accesses, 
race conditions, atomicity, etc.
Security (aka sandboxing, babysitting) 
like buffer overflow prevention etc.
…
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In particular…
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Programs as Sets of 
Execution Traces

View a program as defining an (infinite) set of 
(possibly infinite) execution traces
All executions on all possible inputs + powercut

Set of all possible executions of program P
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Security Policies as Traces

Define security policies as a subset of 
possible program execution traces
Security policy set defines a predicate S

Subset of executions of P that satisfy security policy S
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Enforcing Security Policies

Allows some traces that satisfy security policy
Enforcement mechanism M is a concrete 
implementation that defines a subset of S

Executions of P that enforcement mechanism M says satisfies policy S
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Desirable Security Mechanisms

Don’t want enforcement to be vacuous (e.g. 
defining the empty set or disallowing all)
Want enforcement to be exact (M == S)

Vacuous subset that mechanism M enforces for security policy S
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“Hard” to Enforce Policies

The design of M depends on policies, 
e.g., subsets/prefixes maybe insufficient 
Prefixes: “Pulling the plug” or halt 

Liveness or “good things must happen”
• E.g., if A happens, then B must follow

Subsets: traces can be interdependent 
Information flow: a subset may reduce 
uncertainty, hence pass information

• E.g. trace of P “return 1” w/restricted input
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Execution Monitoring: 
Focusing on one Execution Trace

Easy to do (just observe and constrain)
EM can often approximate desired policy
EM closely related to safety properties, so 
policies compose nicely, etc.

A B C

Program P running…
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EM Security Policies [Schneider00]

Define acceptable/unacceptable execution
Execution Monitoring (EM) is one class
EM observes execution (and truncates it)

EM-enforceable part of safety properties

Safety property
access control
integrity
D-availability

Not Safety Property
information flow
liveness
availability
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Definitions

Security policy P:  predicate on sets of executions

Target system S:  set Σ of executions

S satisfies P:        P(Σ) = true

Warning: For general security policy predicates

( Π ⊆ Σ and  P(Σ) )    implies   P(Π)

does not hold !
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Uses the single (current) execution

Only “properties” are EM enforceable
Information flow is not a property [McLean94]

Information flow is not EM enforceable 
(in an exact fashion)

( ))(:( σσ pP  Π∈∀ :)Π

What can EM enforce?
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Properties

[Schneider00]:
“In Alpern and Schneider [1985] and the 
literature on linear-time concurrent program 
verification, a set of executions is called a 
property if set membership is determined by 
each element alone and not by other 
members of the set. Using that terminology, 
we conclude from (1) that a security policy 
must be a property in order for that policy to 
have an enforcement mechanism in EM.”
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EM means Punctuality

Must truncate execution as soon as 
prefix violates policy:

where τ is a finite trace, σ a trace,
and the juxtaposition operator
extends one trace with another

( ))(( στστ pp ¬:∀⇒)¬
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EM means Finite Time

Must detect violations after a finite time.

where the [..i] postfix operator
denotes a prefix of a given trace
that is i steps long

( )])[..(:)( ipip σσ ¬∃⇒¬
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Any EM enforcement mechanism …

Analyzes the single (current) execution.

Must truncate execution as soon as prefix 
violates policy:

Must detect violations after a finite time:

Enforceable policy implies safety property

Characteristics of EM

( ))(( στστ pp ¬:∀⇒)¬

( )])[..(:)( ipip σσ ¬∃⇒¬

( ))(:( σσ pP Π∈∀ :)Π
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Properties of EM Policies

Prefix closed
If trace σ is OK all prefixes of σ are

Subset closed
If S satisfies policy, then subset(S) does

EM security policies compose nicely
Composed policy is intersection of sets
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Safety and Liveness Redux
[Alpern Schneider 87]

Characterize safety and liveness

Properties defined as Buchi automata
1st-order predicates on transitions

Accepting & non-accepting states
• Accept infinite traces iff accept infinitely often

Reject if unable to make transition
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Example: Total Correctness
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Formalizing the Automata

A Buchi automaton m for a property of  a 
program π is a five-tuple : 
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Formalizing the Infinite

Adding some notation for traces, so

then can extend δ to finite sequences by
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Formalizing Progress

To process a sequence s1s2… of input 
symbols the automaton starts with its 
current state set Q′ equal to Q0 and 
reading the sequence one symbol at a 
time changes its current state set Q′
to the set Q″ where
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Making the Transition

We can encode δ as transition predicates by:

If pij denotes the predicate for the transition 
from automaton state qi to automaton state 
qj, then the security automaton, upon 
reading an input symbol s with current state 
set Q′, changes it’s current state set to Q″
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Accepting and Rejecting

Rejecting is easy:

Reject if Q″ is ever becomes empty

Accepting is slightly harder:

For trace σ, INFm(σ) is set of automaton 
states that appear infinitely often in Q″,

then accept if
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Final Results

Can exactly characterize all properties

Safety Properties
exactly automata w/all states accepting

Liveness Properties
exactly automata w/non-accepting state(s)

Properties
conjunction of safety & liveness automata
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Trace Questions

Why InfoFlow is not a property
Language-based intuition: We must prove 
if program P returns “low” value X on inputs 
S, then for all possibilities for the “high”
portion of S, we have that P still returns X

What do Buchi automata with no 
accepting states define?

The empty set of traces, no matter how 
many states there are, or what the transition 
predicates say
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Back to the Future

OK…

done with Safety & Liveness

Already saw EM ⊂ safety properties
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Why EM ≠ Safety Properties

EM can only use bounded memory
Can’t buy unbounded machines (yet)
Safety properties can use infinite state

EM must be able to control the system
May not be the case (turn flames off)
In particular, EM can’t stop time

• Can’t do “gets service every X seconds”
• *Can* do “gets service every Y steps”
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What EM can & can’t do

EM *can* do access control
Whether DAC, MAC, MLS, …

EM can’t do information flow
InfoFlow is not a property [McLean94] 

• Depends on other traces
• Can’t have sets correlate High/Low

EM can’t do Liveness/Availability
But *can* do D-availability
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EM Policies that Work

Integrity: “More valuable data never 
overwritten by less valuable data”

Works, as just a simple comparison on writes

D-Availability: “Y must follow X within D steps”
Works, but failure truncates without any Y

Foo and Bar happen as a pair, in order:
*Doesn’t work*, because EM can’t preclude 
prefixes with only a Foo and no Bar
A property: intersection of safety and liveness
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Better than EM:
Security via Static Analysis

Static analysis can make statements 
about all program execution traces:

B always follows A in all traces
Return value independent of input

But hard to prove program properties…
One way: Type-safe languages 

Write program in a way that facilitates 
proving certain properties about it
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Can we do it dynamically?

Execution monitoring does it at runtime
Easy to do “proofs”

Check sorted array after sort routine
But need good runtime failure model

Can’t “un-launch” the missile
But might stop the train

Security forms a special category
Usually OK to halt (turn attack into DoS)
Shows safety-critical ≠ security ?
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Specifying Security Policies

One way is as Security Automata
Formalism expresses the right properties

SA  ≡ safety properties  ⊃ EM-enforceable
Simple to specify, interpret, and compile
Good for analysis, emulation, testing

No division by zero

¬ (op = “div”
arg2 = 0)∧

read¬ send¬

read

No network send after file read
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Security Automata:
The Hidden Truth

Security Automata are just regular 
Buchi Automata w/all states accepting

So we already know them !

PS: Because all states are accepting, we can use 
standard “Dragon book” techniques to make 
Security Automata deterministic… sweet!
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Simple Access Control

Works for both discretionary and 
mandatory simple access control 

KOop∈
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Why not just Single State?

Easy to construct vacuous single-state 
security automata that push all the work 
into the predicate
Good reasons to use more SA states

SA states can maintain security-relevant 
data outside the monitored program

SA states can encode program history
SA states can help “synthesize” higher-
level security-relevant program events
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More Interesting…
[Brewer Nash 89]
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First, some Assumptions…

Let’s assume a
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One Big Security Automaton



Security Summer School
U. Oregon, June 2004

43

One SA per Category

Scales much better (linear in size)
Can we tie SAs to program abstractions?
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Of course, can do it in One

Relies heavily on existing program
Program maintains state
Program implements two predictes

Perhaps realistic…
At least for traditional OS access control



Security Summer School
U. Oregon, June 2004

45

Outline
1. Execution Monitoring Fundamentals

Programs and properties from traces
Security Policy as Security Automata
Introduction to Inlined Reference Monitors

2. Monitoring Machine Code Execution
Software Fault Isolation
Buffer Overflows and Mitigations

3. Advanced IRMs & future work
Low-level Actions and Event Synthesis
Static Analysis, Alternate Remedies, etc.



Security Summer School
U. Oregon, June 2004

46

Reference Monitors [Anderson72]

Execution monitor that forwards events 
to security-policy-specific validity checks
Implementing RMs

Capture all policy-relevant events

Protect RM from subversion

Program

RM
Kernel

RM
Program

Kernel

Program

Kernel

RM

Kernel supported Interpreter Modified application



Security Summer School
U. Oregon, June 2004

47

Validity Checks

Triggered by RM on each event
Encodes the security policy
Perform arbitrary computation to 
decide whether to allow event or halt

Can have side effects?  (Not if EM)
Can change program flow? (Not if EM)

(PS: RM+Validity checks sometimes 
called the Security Kernel)
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IDEA: Use 3rd type of RM implementations
Use Security Automata to specify security policy
Policy specifies both RM and Validity Checks
Permanently embed security into application

Inlined Reference Monitors
[Erlingsson Schneider 99]

IRM
Rewriter

Original Application

Secured
ApplicationPolicy

IRM
Rewriter

Original Application

Secured
ApplicationPolicyPSLang

PoET
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IRMs have access to program abstractions
Capture all potentially security-relevant events
Rewriter works on machine language programs

Issues: How to capture all relevant events
Prevent application subverting inserted RM
Preserve application behavior

Implement RMs by 
program modification

IRM Implementation

IRM
Rewriter

Original Application

Secured
ApplicationPolicy

IRM
Rewriter

Original Application

Secured
ApplicationPolicy
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IRM Enforcement Advantages 

Can enforce policies on application abstractions
E.g., Restrict MSWord macros and documents

Each application can have a distinct policy
Enforcement overhead determined by policy
Mechanism customized to the policy

Mechanism is simple and efficient and travels
Rewrites machine code
Kernel is unaware of security enforcement
No enforcement overhead from context switches
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Efficient IRM Enforcement
Evaluate SA policy at every point in program 

Often no need to check at a machine instruction
“No div zero”: Only check before “div” instructions

Simplify SA by partial evaluation
Insert security policy checking code before every instruction

Use static knowledge of insertion point to simplify the check

Application

Secure
application

Specialize

AS ′′

AS ′

SA

Security
automaton

Insert

SA

SA

IRM Rewriter
Compile



Security Summer School
U. Oregon, June 2004

52

Example IRM Rewriting

Policy: Push exactly 
once before returning 0 1

ret)push( ∨¬ push¬

push

Insert security
automata

Evaluate
transitions

Simplify
automata

Compile
automata

ret

mul r1,r0,r0

push r1

ret

mul r1,r0,r0

push r1

ret

mul r1,r0,r0

push r1

ret

mul r1,r0,r0

if state==0 
then ABORT

0 1

¬ (push ∨ ret) ¬ push

push

0 1

¬ (push ∨ ret) ¬ push

push

0 1
true

0 1
false

0 1
true

true

1

push r1

if state==0 
then state:=1
else ABORT

false false

false true

0 1

¬ (push ∨ ret) ¬push

push
0 1

true true

false
0,1

true
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Traditional hardware protection

Hardware execution monitor that 
forwards events to validity checks

Easily captures all events
Easily protected from subversion

Validity checks use page tables etc.

Program (+OS)

RM
Hardware

Hardware supported
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Memory Protection Policy

MMU hardware is RM for memory accesses
Access subject to validity checks on page tables

void main()
{

char* badPtr = (char*)0xF00FBAAD;
*badPtr = (char)"crash the program";

}
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Hardware Privilege Policy

Hardware instruction decoder disallows 
certain operations in non-privileged mode

void main()
{

__asm cli;/* try to disable interrupts */
/* this crashes the program  */

}
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Enforcing Hardware Policies in 
Software (aka SFI)
[Wahbe Lucco Anderson Graham 93]

Hardware policies can be enforced using  
any interpreter-based RM.
Idea: Use a regular interpreter 

For each instruction perform checks in 
software—SFI: software fault isolation
Make the interpreter very efficient

Benefits
Don’t need to rely on MMU hardware
More flexibility in policy (validity checks)
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SFI using Security Automata
SA receives as input the currently executed 
instruction and current program state

Need to synthesize “instruction” event
Restrict memory access & control-flow

readMemOp() ∧
canRead(sourceAddr)

∨

retOp() ∧
validRetPt(topOfStack)

writeMemOp() ∧
canWrite(targetAddr)

...

∨

callOp() ∧
validCallPt()

jumpOp() ∧
validJumpPt()
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SASI Prototypes

SASI: Security Automata SFI Implementation
Inputs: SAL security policy and target application
Output: Application modified according to policy

Expand TCB by at least SAL and rewriter
SAL ≈ 4.2K lines; rewriter ≈ 1K lines

x86 
SASI

SA

011
010
101

011
011
111

JVML 
SASI

SA

x86 SASI JVML SASI
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pushl %ebx   
leal  dirty(,%eax,4),%ebx 
andl  offsetMask, %ebx 
orl   writeSegment, %ebx 
movl  %edx, (%ebx) 
popl  %ebx

pushl  %ebx 
leal   dirty(,%eax,4), %ebx 
andl   segmentMask, %ebx 
cmpl   writeSegment, %ebx 
jne .FAIL
popl %ebx
movl   %edx, dirty(,%eax,4)

MiSFIT [Small97] SASI x86 SFI

movl  %edx, dirty(, %eax, 4)

Example SFI’d code
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Efficient SFI: Inlined Checks

Very efficient interpreter: 
RM: Identify all relevant instructions in code
Validity checks: Insert into code at instructions 

Do what checks the hardware would do
Address checks on memory access
HALT on illegal instructions (should run?)

Ensure validity checks cannot be subverted
Control flow checks disallow circumvention
Deal with self-mod code, signals, etc…
On x86: find set of runtime instructions

Get inductive proof of enforcement
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Preventing Circumvention

A proof outline…
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x86 SASI: Implementing SFI

x86 SASI: Modified gcc assembly

Must protect RM inserted by x86 SASI
Can use x86 SASI to enforce SFI
Use SFI guarantees to protect RM

Good performance vs. SFI tool MiSFIT

Hotlist
LFS simulate
MD5

Benchmark
2.38
1.58
1.33

MiSFIT
3.64
1.65
1.36

x86 SASI SFI

Execution-time slowdown relative to SFI-free code
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What is a buffer overrun?

00 00 00 00

00 00 00 00

2A 00 00 00int x = 42;
char zip[6];
strcpy(zip, userinput);
printf("x = %i\n", x);

The ability to arbitrarily corrupt memory
Overflows lead to arbitrary code
Underflows lead to denial of service
Problem is usually isolated to C and C++
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Anatomy of the stack

x86 stacks grow 
downward
A buffer overrun on the 
stack can always rewrite 
the:

Return address
Frame pointer

EH frame

Previous functionPrevious function’’ss
stack framestack frame

Return addressReturn address

EH frameEH frame

Callee saveCallee save
registersregisters

GarbageGarbage

Local variables andLocal variables and
locally declaredlocally declared
buffersbuffers

Frame pointerFrame pointer

Function argumentsFunction arguments
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Stack smashing

#define BUFLEN 4

void vulnerable(void) {
wchar_t buf[BUFLEN];
int val;

val = MultiByteToWideChar(
CP_ACP, 0, "1234567", 
-1, buf, sizeof(buf));

printf("%d\n", val);
}

Previous functionPrevious function’’ss
stack framestack frame

Return addressReturn address

valval

bufbuf

CookieCookie

GarbageGarbage

GarbageGarbage
with invalid cookiewith invalid cookie

Attack CodeAttack Code

Hijacked EIPHijacked EIP
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Types of exploits

Stack smashing
Register hijacking
Local pointer subterfuge
V-Table hijacking
C++ EH clobbering
SEH clobbering
Multistage attacks
Parameter pointer subterfuge

Previous functionPrevious function’’ss
stack framestack frame

Return addressReturn address

EH frameEH frame

Callee saveCallee save
registersregisters

GarbageGarbage

Local variables andLocal variables and
locally declaredlocally declared
buffersbuffers

Frame pointerFrame pointer

Function argumentsFunction arguments
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Unsafe APIs

Many historical APIs of the C standard 
library are bad
strcpy does not know the array size
strncpy cannot validate the array size

Many more unsafe APIs exist

Static analysis tools are helpful
Impossible to guarantee a safe API
Challenge [Jones Kelly 97]

[Ruwase Lam 04]
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Stack layout in VC++ .NET

Function prolog: Previous functionPrevious function’’ss
stack framestack frame

Return addressReturn address

EH frameEH frame

Callee saveCallee save
registersregisters

GarbageGarbage

Local variables andLocal variables and
locally declaredlocally declared
buffersbuffers

Frame pointerFrame pointer

Function argumentsFunction arguments

CookieCookie

sub   esp,24h

mov eax,dword ptr

[___security_cookie (408040h)]

xor eax,dword ptr [esp+24h]

mov dword ptr [esp+20h],eax

mov ecx,dword ptr [esp+20h]

xor ecx,dword ptr [esp+24h]

add   esp,24h

jmp __security_check_cookie (4010B2h) 

Function epilog:
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Stack layout in VC++ 2003

Function prolog: Previous functionPrevious function’’ss
stack framestack frame

Return addressReturn address

EH frameEH frame

Callee saveCallee save
registersregisters

GarbageGarbage

Frame pointerFrame pointer

Function argumentsFunction arguments

CookieCookie

sub   esp,24h

mov eax,dword ptr

[___security_cookie (408040h)]

mov dword ptr [esp+20h],eax

mov ecx,dword ptr [esp+20h]

add   esp,24h

jmp __security_check_cookie (4010B2h) 

Function epilog: Locally declaredLocally declared
buffersbuffers

Local variablesLocal variables
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What is this cookie?
[Cowan et al 98]

Generated by the function 
__security_init_cookie

Original stored in the variable 
__security_cookie

Cookie is random (at least 20 bits)
Cookie is per image and generated at 
load time
Cookie is the size of a pointer
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Performance impact

“The perf hit hasn’t shown up for us. There was no 
test hit associated with the change. The only cost 
we’ve had associated with this is getting ourselves 
to build with /GS.

– IIS6 Developer

Expect less than a 2% degradation
Most application did not notice anything
With both VC7 and VC7.1 improvements in 
optimization make up for these security checks
Each security check is nine instructions
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bufbuf

GarbageGarbage

V-Table hijacking

class Vulnerable {
public:
int value;
Vulnerable() {value=0;}
virtual ~Vulnerable() 
{value=-1;}

};

void vulnerable(char* str) {
Vulnerable vuln;
char buf[20];
strcpy(buf, str);

}

Previous functionPrevious function’’ss
stack framestack frame

&&strstr

CookieCookie

&Vulnerable V&Vulnerable V--TableTable

Return AddressReturn Address

vulnvuln
GarbageGarbage

Attack CodeAttack Code

&Hijacked V&Hijacked V--TableTable

Hijacked VHijacked V--TableTable
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Pointer subterfuge

void vulnerable(
char* buf, int cb)

{
char name[8];
void (*func)() = foo;

memcpy(name, buf, cb);
(func)();

} namename

GarbageGarbage

Previous functionPrevious function’’ss
stack framestack frame

cbcb

Return addressReturn address

CookieCookie

&&bufbuf

&&foofoo

GarbageGarbage

Attack CodeAttack Code

&Attack Code&Attack Code
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GarbageGarbage

CookieCookie

&&pchpch

bufbuf

EH clobbering

int vulnerable(char* str) {
char buf[8];
char* pch = str;
strcpy(buf, str);
return *pch == '\0';

}

int main(
int argc, char* argv[]) {
__try {
vulnerable(argv[1]);

} __except(2) { return 1; }
return 0;

}

Return addressReturn address

Previous functionPrevious function’’ss
stack framestack frame

&&argvargv

Return addressReturn address

SEH frameSEH frame

argcargc

&&strstr

GarbageGarbage

GarbageGarbage

0xBFFFFFFF0xBFFFFFFF

Hijacked EH frameHijacked EH frame

Attack CodeAttack Code
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Exploits possible despite /GS

Parameter pointer subterfuge
Two stage attacks
Local objects with buffers
Heap attacks
…
…
…
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Class of x86 injection attacks

Attacker controls victim behavior by 
getting x86 machine code of their choice 
to execute in victim’s environment
Subverts execution trace

Different x86 machine instructions 
execute

Not the only attack: e.g., scripts
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NX: x86 Code Lockdown

Distinguish between code and data
Harvard architecture?

Prevent data from being executed as 
x86 machine code

Slight modification to hardware RM 
validity checks
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Implementing NX

Piece of cake with SFI (albeit slow)
Hardware support on many CPUs

IA-64 (more realistically on amd64)

Breaks lots of software:
Most Win32 GUI apps, CLR (and JITs)

Can synthesize on IA-32 chips
Mark all data pages non-touchable
On trap, temporarily mark read/write, touch 
with MOV (which loads D-TLB), revert the 
page back to being untouchable 
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Circumventing NX
(aka jump-to-libc)

Don’t introduce new code (at first)
Script existing code!
E.g.

VirtualAlloc exec page,
then InterlockedExch,
then memcpy, then 
jump to alloc’d page

4th Function Args
4th Function Args
garbage (4th func is end)
3rd Function Args
3rd Function Args
4th Function Address
2nd Function Args
2nd Function Args
3rd Function Address
1st Function Args
1st Function Args
2nd Function Address
garbage
garbage
1st Function Address

Victim’s arg 2
Victim’s arg 1
Victim’s return addr
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Address-space Randomization
[PaX]

x86 code injection attack must target the 
last “good” machine instruction 

What happens just before exploit starts ?

It’s control flow to an absolute address
Call [EAX],  Jmp [EBX],  Ret (implicit [ESP])

Attacker must know where to go !!!
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What absolute addresses ?

Attacker examines victim’s address space 
on his/her machine:
For a version of Windows
each address space is mostly 
the same (Win32 & friends)
Also, apps always lay out 
executables, stack, heap
in the same way
Attacker crafts exploit given 
above; waits for a vulnerability 

0

2GB
Kernel

Heap
Stack

App

Win32
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Randomization / Rebasing

0

2GB
Kernel

Heap

Stack

App

Win32

Windows allows most things 
to be relocated
Can do it

Dynamically @ load
Statically @ install

Problems:
Most EXE files cannot
be moved at all… etc.

Example of Edit Automata
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Circumventing ASLR

Learn the memory layout specifics of your 
target for attack [Durden 02]

Possible using format string attack etc.
May leak accidentally, e.g., via “nonce” in 
a protocol or Windows error reporting

Epidemic can automatically craft code

Use brute force [Unpublished, Dan Boneh’s team 04]

Only 16 bits of shuffle on 32-bit machines
Easy to exhaust keyspace (automatically)
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A Quick Advertisement

For students from (Northern) Europe

NordSec 2004 Workshop
4th - 5th November     Helsinki, Finland

If you have some papers/work/TRs
Submit it and show up
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Outline
1. Execution Monitoring Fundamentals

Programs and properties from traces
Security Policy as Security Automata
Introduction to Inlined Reference Monitors

2. Monitoring Machine Code Execution
Software Fault Isolation
Buffer Overflows and Mitigations

3. Advanced IRMs & future work
Low-level Actions and Event Synthesis
Static Analysis, Alternate Remedies, etc.

1. Execution Monitoring Fundamentals
Programs and properties from traces
Security Policy as Security Automata
Introduction to Inlined Reference Monitors

2. Monitoring Machine Code Execution
Software Fault Isolation
Buffer Overflows and Mitigations

3. Advanced IRMs & future work
Low-level Actions and Event Synthesis
Static Analysis, Alternate Remedies, etc.
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Sample Vulnerability Discovery
[SolarDesigner01] [Slides, Halvar Flake 02]

Surprisingly easy to find vulnerability

Vulnerability types often translate
Heap manager problem in glibc.so
Heap problem in Windows 2000
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Win32 heap management model

Heap Structure Exploit Generalities

Physical Memory
Kernel-level Virtual Memory ManagerKernel

Mode

Virtual Memory API

NT Heap 
Memory 

API

Libc Heap
Management

API

Application Code

Customized
Heap 

implementation

User
Mode
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Win2k Heap Manager (I)

Heap Structure Exploits

LocalAlloc()

HeapAlloc()

GlobalAlloc()

RtlAllocateHeap()

Kernel32.DLL NTDLL.DLL
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RtlAllocateHeap (I)
RtlAllocate

HeapSlowly()

Allocate from 
Lookaside Table

Check Flags
and smaller than 1024

Return block…
New allocation 
from the heap
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RtlAllocateHeap (II)

New allocation 
from the heap

Size
check

Smaller than 
1024 Bytes

Larger than    
1024 BytesLarge-Heap

Allocator
Small-Heap

Allocator
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Win2k Heap Manager (II)

Heap Structure Exploits

After two allocations of 32 bytes each our heap memory
should look like this:

+0

+32

+64

Block A
control data

Block B
control data

Memory Block A

Memory Block B

Uninteresting memory
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Win2k Heap Manager (III)

Heap Structure Exploits

Now we assume that we can overflow the first buffer 
so that we overwrite the Block B control data.

+0

+32

+64

Block A
control data

Block B
control data

Memory Block A

Memory Block B

Uninteresting memory
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Win2k Heap Manager (IV)

Heap Structure Exploits

When Block B is being freed, an attacker has supplied the
entire control block for it. Here is the rough layout: 

+0

+4

Size of the previous
Block divided by 8 

8 bit for
Flags

Field_4

Size of this Block
divided by 8

If we analyze the disassembly of _RtlHeapFree() in NTDLL,
we can see that our supplied block needs to have a few 
properties in order to allow us to do anything evil.
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Win2k Heap Manager (V)

Properties our block must have:

Bit 0 of Flags must be set
Bit 3 of Flags must be set
Field_4 must be smaller than 0x40
The first field (own size) must be larger than 0x80

The block ‘XXXX99XX’ meets all  requirements.
We reach the following code now:

Heap Structure Exploits
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Win2k Heap Manager (VI)
add esi, -24

Heap Structure Exploits

+0

+32

+64

Block A
control data

Block B
control data

Memory Block A

Memory Block B

Uninteresting memory

ESI points here …now here …
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Win2k Heap Manager (VII)
mov eax,[esi]
mov esi, [esi+4]

Heap Structure Exploit

+0

+32

+64

Block A
control data

Block B
control data

Memory Block A

Memory Block B

Uninteresting memory

eax esi
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Win2k Heap Manager (VIII)

mov [esi], eax ; Arbitrary memory overwrite

Heap Structure Exploits

+0

+32

+64

Block A
control data

Block B
control data

Memory Block A

Memory Block B

Uninteresting memory

eax esi
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Win2k Heap Manager (IX)

If we can overwrite a complete control block (or at least 6 
bytes of it) and have control over the data 24 bytes before 
that, we can easily write any value to any memory location.

It should be noted that other ways of exploiting exist for 
smaller/different overruns – use your Disassembler and 
your imagination.

Heap Structure Exploits
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Demo

Fiddling with Machine Code
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Outline
1. Execution Monitoring Fundamentals

Programs and properties from traces
Security Policy as Security Automata
Introduction to Inlined Reference Monitors

2. Monitoring Machine Code Execution
Software Fault Isolation
Buffer Overflows and Mitigations

3. Advanced IRMs & future work
Low-level Actions and Event Synthesis
Static Analysis, Alternate Remedies, etc.
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General Execution Monitoring

Not tied to any one type of event
But must be able to accurately identify events

Validity checks can maintain state etc.
For instance: ensure execution order of A, B, C

A B C

Program P running…
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Efficient IRM Enforcement
Evaluate SA policy at every point in program 

Often no need to check at a machine instruction
“No div zero”: Only check before “div” instructions

Simplify SA by partial evaluation
Insert security policy checking code before every instruction

Use static knowledge of insertion point to simplify the check

Application

Secure
application

Specialize

AS ′′

AS ′

SA

Security
automaton

Insert

SA

SA

IRM Rewriter
Compile
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Example IRM Rewriting

Policy: Push exactly 
once before returning 0 1

ret)push( ∨¬ push¬

push

Insert security
automata

Evaluate
transitions

Simplify
automata

Compile
automata

ret

mul r1,r0,r0

push r1

ret

mul r1,r0,r0

push r1

ret

mul r1,r0,r0

push r1

ret

mul r1,r0,r0

if state==0 
then ABORT

0 1

¬ (push ∨ ret) ¬ push

push

0 1

¬ (push ∨ ret) ¬ push

push

0 1
true

0 1
false

0 1
true

true

1

push r1

if state==0 
then state:=1
else ABORT

false false

false true

0 1

¬ (push ∨ ret) ¬push

push
0 1

true true

false
0,1

true
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Combining SFI and EM

...

ldc 1

putstatic SASI.stateClass.state

invokevirtual java.io.FileInputStream.read()I

... 

getstatic SASI.stateClass.state

ifeq SUCCEED

invokestatic SASI.stateClass.FAIL()V

SUCCEED:

invokevirtual java.net.SocketOutputStream.write(I)V

...

0 1

read¬ send¬

read

No sending on the 
network after 
reading any files
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Java IRM: PSLang & PoET

Java IRM Implemention
Rewrite JVML classes
Use guarantees given
by the JVML verifier

PSLang: Policy Specification Language
• Exposes JVM abstractions: methods, classes, ...

PoET: Policy Enforcement Toolkit
Captures JVM events: method calls, exceptions, ...

Small addition to TCB: approx. 17.5K lines

IRM
Rewriter

Original Application

Secured
ApplicationPolicy

IRM
Rewriter

Original Application

Secured
ApplicationPolicyPSLang

PoET



Security Summer School
U. Oregon, June 2004

109

Add Security State
Rich set of data structures available
State either global or tied to program objects
Not visible to original program

Events trigger Security Updates
Updates: Computation on security state
Any event may trigger an update 

• Begin/end of methods, instructions, ...
• Both load-time and run-time system events

Updates can invoke HALT primitive

Elements of IRM Specification
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Elements of PSLang

Seperation of load- vs. run-time
Load-time synthesis of extended 
semantics

Designed for partial evaluation
Run-time-constant data structures
Side-effect-free functions

Global and context-local state
Local tied to classes or object instances

Complete, modular, and extendable
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Writing IRM Security Policies

IRMs allow arbitrarily tight constraints
Pin down app behavior, implementation details, 
even allowable input data
In the limit amounts to 2nd implementation

Can enforce system-call security for any API
E.g., field access and calls to library methods

Must know & trust all such library APIs
Implementation cannot betray this trust

• Example: reading files via font-rendering 

Library policies are both reusable and important
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Event Synthesis Required

Security Event Synthesis
Higher-level semantic information derived 
from computation on lower-level events
E.g., firewall stateful content inspection

Most policies need additional semantics
“Push before Ret” and stack memory
“No-div-zero” and byte-aligned jumps

High-level API policy ⇒ constrain low-level

Mechanism shouldn’t hard-code synthesis
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Examples:
Limit open windows & Chinese Wall

IMPORT LIBRARY Lock;
ADD SECURITY STATE {

int openWindows = 0;
Object lock = Lock.create();

}

ON EVENT begin method
WHEN Event.is("Window.open()")
PERFORM SECURITY UPDATE {

Lock.acquire(lock);
if( openWindows == 10 ) {
FAIL[ "Too many windows" ];

}
openWindows = openWindows+1;
Lock.release(lock);

}

ON EVENT begin method
WHEN Event.is("Window.close()")
PERFORM SECURITY UPDATE {

Lock.acquire(lock);
openWindows = openWindows-1;
Lock.release(lock);

}

IMPORT LIBRARY Map;
ADD SECURITY STATE {

Object map = Map.create();
}

PROCEDURE Object getCategory(Object name) {
if( name=="IBM"   ) {return "COMPUTERS";}
if( name=="Apple" ) {return "COMPUTERS";}
if( name=="GM"    ) {return "CARS";}
if( name=="BMW"   ) {return "CARS";}
FAIL[ "Unsupported company ",name ];

}

ON EVENT begin method
WHEN Event.methodNameIs("accessCompany")
PERFORM SECURITY UPDATE {

Object C = State.get( "$methodArg1" );
Object category = getCategory( C );
Object oldC = Map.get( map, category );
if( oldC == null ) {

Map.put( map, category, C );
} else {

if( C != oldC ) {
FAIL[ "Can't access company ", C ];

}
}

}
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Example IRM Tradeoff

Caller or callee instrumentation ?
If callee: everybody pays price

Library callee used by multiple principals 
must fork codebase or do a runtime check

If caller: must do a lot of work
Especially for calling object methods

Synthesis required for derived classes etc.

IRM specification writer can choose
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Library policies

Most IRM enforcement probably on libraries 
Must know semantics to regulate use
Useful policies apply to more than one program

Each API can be like a system-call interface
Includes objects, method calls and direct access
Library design affects potential policies

High-level API policies might be subverted
Policies must either preclude lower-level access 
or synthesize that high-level operation occurred
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Racing issues

Must enforce security policies on multi-
threaded Java programs

Must serialize check/event pairs
cobegin{Crd;Rd || Csnd;Snd}
may run Csnd;Crd;Rd;Snd

Time of check to time of use
Hard with complex history-based policies
Can sometimes emulate OS copy-in
behavior

PSLang offers synchronization mechanisms



Security Summer School
U. Oregon, June 2004

117

IRMs in Retrospect

Writing good policies is hard
Extensive synthesis often required

App-level policies tied to app semantics
Makes most sense for library code

Environment agnostic
OS independent, can be added after-the-
fact, and will travel

IRMs can secure use of high-level APIs
With flexibility to make tradeoffs
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“Modern” Java/.NET Policies

Modern policies 
may use a lot of 
properties and 
historical data to 
make access 
control decisions
Java/MS’s CLR 
use the stack 
trace to implicitly 
constrain sets of 
permissions
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Java Stack Inspection

Two-second refresher course
Enforcement based on runtime call stack
Each stack frame is in a protection domain
Each protection domain has set of premissions
checkPermission: Stack has suitable permissions

doPrivileged: Amplification of available permissions

File access
permissions:

display:
...
load(`thesis.txt')
use plain font
show on screen
...

/home/ue/*

Protection domain:
Untrusted Applet

use plain font:
...

doPrivileged {
load(`Courier')

}
...

/fonts/*

Protection domain:
GUI Library

load(file F):
...
checkPermission(F,read)
access on disk(F)
...

<<ALL FILES>>

Protection domain:
File System
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How are the primitives actually used?

IRMs allow playing with the tradeoffs
Allows synthesis of security-relevant data...
...or access to any interface that exposes it

Can make an IRM as specific as wanted
...to a particular app, or a particular policy

Implementing Stack Inspection

Benchmark
2,476,731
1,456,970

19,580
35,997,662

1,002
0
0

101

5,333
1,067
6,509

205

(18,7)
(12,4)
(8,6)
(5,7)

71
0
0

201

Jigsaw
javac
tar
MPEG_Play

Method calls doPrivs checkPerms Thrds
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Method call
Push/pop protection 
domains on shadow call 
stack 

doPriv { S }
Push/pop doPriv token 
on shadow call stack, 
before/after S

checkPerm( P )
Scan shadow call 
backwards, check P for 
each domain, stop on 
doPriv or end

IRMSPS : The obvious first approach
• Maintain shadow call stack to consult in enforcement

Method call
Nothing

doPriv { S }
Get current call stack, 
push/pop its depth onto 
a seperate privStack

checkPerm( P )
Get current call stack, scan it 
backwards and check P for 
the domain for each frame, 
stop if reached the depth on 
the top of privStack or end

IRMLazy : Optimize for the most common case
• Pry out JVM’s call stack & compute enforcement data

Stack Inspection IRMs
[Erlingsson Schneider 00]
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Nitty-gritty details
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IRM Performance

IRMSPS

IRMLazy

End-to-end IRMLazy performance 
competitive with Sun’s JVM’s built-in 
stack inspection

1,00µs 1.7µs 7.7µs 6.5µs
Method call doPriv checkPerm New Thread

0µs 23.4µs 22.4µs 29.8µs
Method call doPriv checkPerm New Thread
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Beyond EM

IRMs more than safety properties
Can include static analysis 

• Load-time security updates already do this

On violation, truncation not only option
• E.g., throw exception as remedial action

However, harder to reason about
Composition problem even harder

Subject of current study
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Virtualize or Modify Execution

Allow execution monitors
that change execution 
behavior without halting it
Richer but more difficult to reason about

example info-flow: always return 1

can change return value in this case 
(more generally, can normalize all 
external behavior)

Break out of “only security policies” box
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Example Problem

Policies undo the effect of each other
Composition may result in bad policy 

Even so policy is *always* violated
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System Security Policies
Higher level operations (not just machine instructions)
Kernel provides RM and validity checks

void main()
{

OFSTRUCT ofs;
HFILE f = OpenFile("file.txt",&ofs,OF_PROMPT);

}
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File System Integrity Policy

Execution monitoring used to enforce 
many properties by operating systems
Apart from security, integrity of data 
structures etc.
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Buffer Overflow Policy 
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Related work

Lots of related work, old and new:
Dates back to SDS 940, at Berkeley in ’69

Software Fault Isolation and Verifiable Code 
Certification: JVML verifiers, PCC, TAL, etc.
Reference Monitor Literature is relevant

Application-specific security (e.g., Clark&Wilson)
History-based access control

Program modification: ATOM  and AspectJ
Theory of Aspects [Walker Zdancewic Ligatti 03]

Also, Generic Software Wrappers, Naccio, etc.



Security Summer School
U. Oregon, June 2004

131

Type Encapsulation of State
[Walker 00]

Sophisticated type system
Certifies (a la PCC or TAL) that an 
automaton policy is enforced
Types encodes passing of security state

Transformations and lemmas depend on 
particulars of the specific security 
automata(s) to be enforced

Simpler notion of automata
Not 1st-order predicates on transitions



Security Summer School
U. Oregon, June 2004

132

More Efficient Rewriting
[Colcombet Fradet 00]

Elaborate new theory and techniques 
Transform code according to policy
Modified code propagates run-time 
encoding of security state
State checked to block illegal actions
Static analysis reasons about state

When analysis impossible, runtime 
check inserted (similar to cqual)
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Efficiency via Partial Evaluation 
[Thiemann01, 04?]

Standard specialization techniques
All work on partial evaluation applies

Transform a monitoring interpreter into 
a non-standard (security) compiler

Get the IRM rewriter for free

Nicely propagates check results etc.
Was exp.time with code duplication

Newer result: linear with no duplication
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More Enforceable Security
[Bauer Ligatti Walker 02, 04]

Formal definition automata with side effects

Uniformity and non-uniformity  (Σ ⊂ A*)
Figure shows precise non-uniform

Insert equally powerful as Edit
Suppression strict subset
Truncation more restrictive

If “precise uniform” then all three
circles equal EM+truncation
On non-uniform systems
can do more than
truncation automata

Insert == Edit

Trunc

Suppress

?
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Edit Automata
[Ligatti Bauer Walker 04]

Precise means you have to accept good 
sequences in lockstep with their generation

so can’t use the “edit tricks” on a good trace

Effective means we can suppress actions and 
then later insert their (atomic) effects into trace
Transparency accounts
for semantic equality
between input & output
Conservative mean
any good sequence suffices

Edit

Ins Trunc Supp
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Calculus for Composing SP
[Bauer Ligatti Walker 04]

Types and Effects for Non-interfering EM [BLW02]

Given a policy what are the actions 
(what can it suppress and insert)
Make sure that the edit actions of two 
concurrently executing monitors don’t affect
the inputs relevant to each other
Four combinators (two seq. two parallel)

seq. combinators can be affected by effects

Authors extend in later work to allow programmers 
to develop their own combinators (Polymer)
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EM Computability Classes
[Hamlen Morrisett Schneider 04] [Viswanathan00]

Looks at detectors and complexity
Some detectors may reject “too early”

Relates computability and enforcement
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Limiting the Security Automata
[Fong04]

Constrain the capabilities of the 
Execution Monitor (aka SA)
Restrict EM to track a shallow history 
Sufficient for

Chinese Wall
Low-water-mark 
One-out-of-k authorization

etc.
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Another Extension to EM

Introduce static analysis
can incorporate any deterministic finite-time 
decision procedure, as a step in monitoring 
mechanism

Use as one step of security automaton
can do static analysis before execution
(and get guarantees about all traces)
can do static analysis in the middle 
(are all suffixes of current state good?)

• similar to partial evaluation of program
• useful, say for locks, check at acquire that will it be 

released etc.



Security Summer School
U. Oregon, June 2004

140

More Lectures

More information on Enforceable 
Security Policies, Software Fault 
Isolation, Java Stack Inspection, and 
Inlined Reference Monitors

http://www.cs.cornell.edu/html/cs513-
sp99/03.lectsmry.html

http://www.cs.cornell.edu/Courses/cs5
13/2000sp/02.outline.html
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