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o Look at a program’s execution on a
given input as a sequence of runtime
events (e.g., the A, B, and C below)

o Possibly do “something” on each event

A /B /C
Program P running...
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o Debugging, tracing, breakpoints, etc.
o Auditing and Logging
o Software testing: memory leaks,

out-of-bounds array accesses,
race conditions, atomicity, etc.

o Security (aka sandboxing, babysitting)
like buffer overflow prevention etc.

o ...
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o View a program as defining an (infinite) set of
(possibly infinite) execution traces

o All executions on all possible inputs + powercut

Set of all possible executions of program P
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o Define security policies as a subset of
possible program execution traces

o Security policy set defines a predicate S

Subset of executions of P that satisfy security policy S
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o Allows some traces that satisfy security policy

o Enforcement mechanism M IS a concrete
Implementation that defines a subset of S

Executions of P that enforcement mechanism M says satisfies policy S
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o Don’t want enforcement to be vacuous (e.g.
defining the empty set or disallowing all)

o Want enforcement to be exact (M == S)

Vacuous subset that mechanism M enforces for security policy S
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o The design of M depends on policies,
e.g., subsets/prefixes maybe insufficient

o Prefixes: “Pulling the plug” or halt

Liveness or “good things must happen”
E.g., If A happens, then B must follow

o Subsets: traces can be interdependent

Information flow: a subset may reduce
uncertainty, hence pass information
E.g. trace of P “return 1” w/restricted input
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o Easy to do (Just observe and constrain)
o EM can often approximate desired policy
o EM closely related to safety properties, so

policies compose nicely, etc.

7 / .

Program P running...

Security Summer School
U. Oregon, June 2004




[Schneider00]

Define acceptable/unacceptable execution
Execution Monitoring (EM) is one class
EM observes execution (and truncates It)

EM-enforceable part of safety properties

Safety property Not Safety Property
o access control o Information flow

o Integrity o liveness

o D-avallability o availability
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Security policy P: predicate on sets of executions

Target system S set X of executions

S satisfies P: P(X) = true

For general security policy predicates
(McX and P(X)) implies P(I)
does not hold !
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Uses the single (current) execution

PII): (Voell: p(o))

Only “properties” are EM enforceable
Information flow Is not a property [McLean94]

Information flow is not EM enforceable
(in an exact fashion)
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[SchneiderO00]:
“In Alpern and Schneider [1985] and the
literature on linear-time concurrent program
verification, a set of executions is called a

property if set membership is determined by
each element alone and not by other
members of the set. Using that terminology,
we conclude from (1) that a security policy
must be a property in order for that policy to
have an enforcement mechanism in EM.”
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Must truncate execution as soon as
prefix violates policy:

—-p(r) = (Vo :=p(ro))

where 7 IS a finite trace, ¢ a trace,
and the juxtaposition operator
extends one trace with another
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Must detect violations after a finite time.

—p(o) = (3i:=p(o]..i]))

where the [..1] postfix operator
denotes a prefix of a given trace
that Is | steps long
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Any EM enforcement mechanism ...

o Analyzes the single (current) execution.
PAT): (Voell: p(o))

o Must truncate execution as soon as prefix

UCIEICERIOE (7)) = (Vo :=p(r o))

o Must detect violations after a finite time:

Enforceable policy implies safety property
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o Prefix closed
If trace o Is OK all prefixes of o are

o Subset closed
If S satisfies policy, then subset(S) does

o EM security policies compose nicely
Composed policy is intersection of sets
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[Alpern Schneider 87]

o Characterize safety and liveness

o Properties defined as Buchi automata
1st-order predicates on transitions

Accepting & non-accepting states
Accept infinite traces iff accept infinitely often

Reject if unable to make transition
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A Buchi autommaton [Eilenberg 74] m accepts the sequences of program states that are in
L(m), the property it specifies. Figure 2.1 is a Buchi automaton m,, that accepts (i) all infin-
ite sequences in which the first state satisfies a predicate -Pre and (ii) all infinite sequences
consisting of a state satisfying Pre, followed by a (possibly empty) sequence of states satisfy-
ing ~Done, followed by an infinite sequence of states satisfying Done A Post. Thus, m,. speci-
fies Total Correctness with precondition Pre and postcondition Post, where Dore holds if and
only if the program has terminated.

Figure 2.1. m,,
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A Buchi automaton m for a property of a
program m Is a five-tuple :

(S! -Qs QO, Q:;c, 5), where

S is the set of program states of ,

Q is the set of automaton states of m,

Q,CQ is the set of start states of m,

Q..CQ is the set of accepting states of m,

5 ¢(Q%S) ~ 29 is the transition function of m.
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Adding some notation for traces, so
sequence o = 558 ... ,

oli] = s

ol..i] S0 81+ 5

O'[i..] S;iSi+1

lo| = the length of o (@ if o is infinite).

then can extend o to finite sequences by

50, o) = {{q} if [o|=0
(q,O‘ | {q lq ES(Q, 0[0]) A q' €d” (q 0'[1 ])} ]_f0<|0'|<(-0
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To process a sequence S;S,... of input
symbols the automaton starts with Its
current state set Q" equal to Qg and
reading the sequence one symbol at a

time changes its current state set Q'
to the set Q” where
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We can encode 0 as transition predicates by:

If p; denotes the predicate for the transition
from automaton state ¢, to automaton state
o then the security automaton, upon

reading an input symbol Swith current state
set ', changes it's current state set to Q”

Q" = {qj ¢ € Q' Ns = Di; 13
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o Rejecting Is easy:
Reject iIf Q” is ever becomes empty

o Accepting is slightly harder:

For trace o, INF (o) Is set of automaton
states that appear infinitely often in Q”,

then accept if [A/SMCIIaIPEI 7R
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Can exactly characterize all properties

o Safety Properties
exactly automata w/all states accepting

o Liveness Properties
exactly automata w/non-accepting state(s)

o Properties
conjunction of safety & liveness automata
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o Why InfoFlow Is not a property

Language-based intuition: We must prove
If program P returns “low” value X on inputs
S, then for all possibilities for the “high”

portion of S, we have that P still returns X

o What do Buchi automata with no
accepting states define?

The empty set of traces, no matter how
many states there are, or what the transition
predicates say
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OK...

done with Safety & Liveness

Already saw EM c safety properties
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o EM can only use bounded memory
Can’t buy unbounded machines (yet)
Safety properties can use infinite state

o EM must be able to control the system

May not be the case (turn flames off)

In particular, EM can’t stop time
Can’t do “gets service every X seconds”
*Can* do “gets service every Y steps”
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o EM *can* do access control
Whether DAC, MAC, MLS, ...

o EM can’t do information flow

InfoFlow IS not a property [McLean94]
Depends on other traces
Can’t have sets correlate High/Low

o EM can’t do Liveness/Availability
But *can* do D-avallabllity
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o Integrity: “More valuable data never
overwritten by less valuable data”

Works, as just a simple comparison on writes

o D-Availability: “Y must follow X within D steps
Works, but failure truncates without any Y

o Foo and Bar happen as a pair, in order:

*Doesn’t work*, because EM can’t preclude
prefixes with only a Foo and no Bar

A property: intersection of safety and liveness
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o Static analysis can make statements
about all program execution traces:

B always follows A in all traces

Return value independent of input
o But hard to prove program properties...

o One way: Type-safe languages

Write program in a way that facilitates
proving certain properties about it
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o Execution monitoring does it at runtime

o Easy to do “proofs”
Check sorted array after sort routine

o But need good runtime failure model

Can’t “un-launch” the missile
But might stop the train

o Security forms a special category
Usually OK to halt (turn attack into DoS)
Shows safety-critical # security ?
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No division by zero No network send after file read

One way Is as Security Automata

o Formalism expresses the right properties
SA = safety properties > EM-enforceable

o Simple to specify, interpret, and compile

o Good for analysis, emulation, testing
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Security Automata are just regular
Buchi Automata w/all states accepting

So we already know them !

PS: Because all states are accepting, we can use
standard “Dragon book” techniques to make
Security Automata deterministic... sweet!
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o Works for both discretionary and
mandatory simple access control
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o Easy to construct vacuous single-state
security automata that push all the work
Into the predicate

o Good reasons to use more SA states

SA states can maintain security-relevant
data outside the monitored program

SA states can encode program history

SA states can help “synthesize” higher-
level security-relevant program events
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[Brewer Nash 89]

STATE {
Assume Categories maps each company to a category.

Let usedCategories be an empty set.
Let seenCompanies be an empty set.
J
EVENT Any application-level operation
CONDITION The operation involves an access to a company
UPDATE {
Let company be the company being accessed.
Let category be company’s category in Categories.
If category € usedCategories and company ¢ seenCompanies {
REJECT the operation.
I Else {
Add category to usedCategories.
Add company to seenCompanies.
ALLOW the operation.

Example 2.4: The Chinese Wall security policy.
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Let's assume a

Chinese Wall security policy with a fixed number of companies and categories.
In particular, the security policy is assumed to have three company categories,
named A, B, and €, with three companies in each category. Within a category
X, companies are named X, through X3. (E.g., companies in category A are Ay,

Ay, and Az.) The only way a user can access data concerning a company X is

assumed to be through invoking the command read(X;), which may, e.g., display

ety

b

information about company X; on the user’s screen. Further, users are assumed
to be perpetually subject to the security policy—i.e., each user has a copy of the

security state, and that security state is never reset.
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states(N, k) =
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o Scales much better (linear in size)
o Can we tie SAs to program abstractions?
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freshCategory(X)

seen Before(X)

o Relies heavily on existing program
Program maintains state
Program implements two predictes

o Perhaps realistic...
At least for traditional OS access control
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[Anderson72]

o Execution monitor that forwards events
to security-policy-specific validity checks
o Implementing RMs

Capture all policy-relevant events
Protect RM from subversion

Kernel supported Interpreter Modified application

Program
Progran CRu

V1 v 1 V1
___ Kernel Kernel

Kernel
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o Triggered by RM on each event
o Encodes the security policy
o Perform arbitrary computation to

decide whethe
Can have sid
Can change

r to allow event or halt
e effects? (Not if EM)
program flow? (Not if EM)

o (PS: RM+Valic

ity checks sometimes

called the Security Kernel)
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[Erlingsson Schneider 99]

raing | —>

-
POET —»"\ﬁ/

IDEA: Use 3" type of RM implementations
Use Security Automata to specify security policy
Policy specifies both RM and Validity Checks
Permanently embed security into application
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: ' Secured
Application

Original Application IRM <

Implement RMs by

~

program modification % __, | Rewriter 7 <

o IRMs have access to program abstractions
Capture all potentially security-relevant events
Rewriter works on machine language programs

o Issues: How to capture all relevant events
Prevent application subverting inserted RM
Preserve application behavior
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o Can enforce policies on application abstractions
E.g., Restrict MSWord macros and documents

o Each application can have a distinct policy
Enforcement overhead determined by policy
Mechanism customized to the policy

o Mechanism is simple and efficient and travels
Rewrites machine code
Kernel is unaware of security enforcement
No enforcement overhead from context switches
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o Evaluate SA policy at every point in program

o Often no need to check at a machine instruction
“No div zero”: Only check before “div” instructions
o Simplify SA by partial evaluation

Insert security policy checking code before every instruction
Use static knowledge of insertion point to simplify the check

Security IRM Rewriter Secure

automaton application

P Insert Specialize Compile

Application & SA
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Policy: Push exactly ﬁ(p“‘d“”e‘)@gp“m
once before returning push
Insert security  Evaluate Simplify Compile
automata transitions automata automata

= (push v ret)é-l push true @9true rue
% push 9@ false ,‘®

mul rl,r0,r0 mul rl,r0,r0 mul rl,r0,r0 mul rl,r0,r0
if state==

< (push v retcgy push false @9fal se .
{i: ?E: then state:=1
push true ﬁj'mm <> else ABORT

push rl push rl push rl push rl

-ﬁmdww?gymﬂ1 false (mem (Syme if state==0
%W Jou chen ABORT

ret ret ret
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o Hardware execution monitor that
forwards events to validity checks

Easi
Easi

y captures all events
y protected from subversion

Valid

Hardware supported

Program (+0OS)

|t
T T

Hardware
54

Ity checks use page tables etc.
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o MMU hardware is RM for memory accesses
o Access subject to validity checks on page tables

void main ()

{

char* badPtr = (char*)0xFOOFBAAD;
*badPtr = (char)"crash the program";

}

memcrash.exe - Application Error
The inskruckion at "Ox00411a2d" referenced memory at "0xf00fFbaad”. The memory could not be “writken”,

Click on QK ko terminate the program
Click on CAMCEL ko debug the program

Cancel
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o Hardware instruction decoder disallows
certain operations in non-privileged mode

void main ()

{

__asm cli;/* try to disable interrupts */
/* this crashes the program */

memcrash.exe - Application Error

@ The exception Privileged inskruckion,

Click on O to terminate the program
Click on CAMCEL to debug the program

Cancel
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[Wahbe Lucco Anderson Graham 93]

o Hardware policies can be enforced using
any interpreter-based RM.

o ldea: Use a regular interpreter
For each instruction perform checks in

software—SFI: software fault isolation
Make the interpreter very efficient

o Benefits
Don’t need to rely on MMU hardware
More flexibility in policy (validity checks)
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o SA receives as input the currently executed
Instruction and current program state

o Need to synthesize “instruction” event
Restrict memory access & control-flow

retOp() A
vali dRetPt(topOfStack)

callOp() /\ readMemOp() A
validCall Pt() canRead(sourceAddr)

erteM emOp() A
JumpOp() A C canerte(targetAddr)
validJumpPt()
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X806 SASI JVML SASI

o SASI: Security Automata SFI Implementation
Inputs: SAL security policy and target application
Output: Application modified according to policy

o Expand TCB by at least SAL and rewriter
SAL = 4.2K lines; rewriter = 1K lines
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pushl %ebx

leal dirty(,%eax,4),%ebx
andl offsetMask, %ebx
orl writeSegment, %ebx
movl %edx, (%ebx)

popl %ebx

MISFIT [Smallo7]

%ebx

dirty(,%eax,4), %ebx
segmentMask, %ebx
writeSegment, %ebx
.FAIL

%ebx

SASI x86 SFI
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Very efficient interpreter:
RM: Identify all relevant instructions in code
Validity checks: Insert into code at instructions

Do what checks the hardware would do

Address checks on memory access
HALT on illegal instructions (should run?)

Ensure validity checks cannot be subverted
Control flow checks disallow circumvention
Deal with self-mod code, signals, etc...
On x86: find set of runtime instructions

Get inductive proof of enforcement

Security Summer School
U. Oregon, June 2004




A proof outline... _ 1
An informal proof that the

transformation suffices proceeds by contradiction, along the following lines.
Only branch, call, return, and write instructions can subvert the security
automaton simulation. Let ¢ be the first instruction that accomplishes the
subversion. Before each branch, call, return, and write instruction, code
to check that instruction’s operand is added by x86 SASI for the policy in
Figure 5. Thus, such checking code must immediately precede instruction
i. Since, by assumption, i is

the checking code that precedes i will prevent instruction i from executing.

The assumption that i is able to execute and subvert the security automaton
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o x86 SASI: Modified gecec assembly

o Must protect RM inserted by x86 SASI
Can use x86 SASI| to enforce SFI

Use SFKI guarantees to protect RM
o Good performance vs. SFI tool MISFIT

Benchmark MISFIT x86 SASI SFI

Hotlist 2.38 3.64
LFS simulate 1.58 1.65
\Y1D}S) 1.33 1.36

Execution-time slowdown relative to SFI-free code
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o The ability to arbitrarily corrupt memory
o Overflows lead to arbitrary code
o Underflows lead to denial of service

o Problem is usually isolated to C and C++

int x = 42;

char zipl[6];

strepy (zip, userinput) ;
printf("x = %i\n", x);
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Previous function’s
stack frame

Function arguments
Return address
Frame pointer

EH frame

Local variables and
locally declared
buffers

Callee save
registers

Garbage

67

o x86 stacks grow
downward

o A buffer overrun on the

stack can always rewrite
the:

Return address

Frame pointer

EH frame

Microsoft
Research
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#define BUFLEN 4

void vulnerable(void) {
wchar t buf [BUFLEN] ;

int val;

val = MultiByteToWideChar (
CP_ACP, 0, "1234567",
-1, buf, sizeof (buf));

printf ("%d\n", wval);

Cizlfyzle)
Wiltel 1avellel ece)le

Garbage
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o Stack smashing
o Register hijacking
o Local pointer subterfuge

o V-Table hijacking

o C++ EH clobbering

o SEH clobbering

o Multistage attacks

o Parameter pointer subterfuge

69 l'-..f"nseft' rd‘

Previous function’s
stack frame

Function arguments
Return address
Frame pointer

EH frame

Local variables and
locally declared
buffers

Callee save
registers

Garbage
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o Many historical APIs of the C standard
library are bad

strcpy does not know the array size
strncpy cannot validate the array size

Many more unsafe APIs exist

o Static analysis tools are helpful

o lmpassivie to guarantee a safe AP

Challenge [Jones Kelly 97]
[Ruwase Lam 04]
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Previous function’s

Function prolog: STl TR

b ,24h i
su esp Function arguments

mov eax,dword ptr
[ security cookie (408040h) ]

Return address

Frame pointer
Xor eax,dword ptr [esp+24h]

mov dword ptr [esp+20h], eax Cookie

EH frame

Local variables and
locally declared

Function epilog:
mov ecx,dword ptr [esp+20h] buffers

Xor ecx,dword ptr [esp+24h] Callee save
add esp, 24h registers
Jjmp __security check cookie (4010B2h) Garbage
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Function prolog:
sub esp, 24h

mov eax,dword ptr
[ security cookie (408040h)]

mov dword ptr [esp+20h], eax

Function epilog:

mov ecx,dword ptr [esp+20h]
add esp, 24h
jmp security check cookie (4010B2h)

Microsoft
Research

Previous function’s
stack frame

Function arguments
Return address
Frame pointer
Cookie

EH frame

Locally declared
puifiers

Local variables

Callee save
registers

Garbage
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[Cowan et al 98]

o Generated by the function
__security init cookie

o Original stored in the variable
___security cookie

o Cookie is random (at least 20 bits)

o Cookie Is per image and generated at
load time

o Cookie Is the size of a pointer
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o Expect less than a 2% degradation
o Most application did not notice anything

o With both VC7 and VC7.1 improvements in
optimization make up for these security checks

o Each security check is nine instructions

“The perf hit hasn’t shown up for us. There was no
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class Vulnerable {
public:
int value;
Vulnerable() {value=0;}
virtual ~Vulnerable()

};

{value=-1;}

void vulnerable(char* str) {
Vulnerable wvuln;
char buf[20]; Garbage

strcpy (buf, str);

}
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void vulnerable (
char* buf, int cb)

char name[8];
void (*func) () = foo;

memcpy (name, buf, cb);
(func) () ;

Garbage
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int vulnerable (char* str) {
char buf[8];
char* pch =
strcpy (buf,
return *pch

int main (
int argc, char* argv[]) {
_try {
vulnerable (argvI[1l]) ;
}  except(2) { return 1; }
return 0;

Garbage
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o Parameter pointer subterfuge
o Two stage attacks
o Local objects with buffers

o Heap attacks
o ...

@ S
@ S
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o Attacker controls victim behavior by
getting x86 machine code of their choice
to execute In victim’s environment

o Subverts execution trace

Different x86 machine instructions
execute
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o Distinguish between code and data
Harvard architecture?

o Prevent data from being executed as
X86 machine code

o Slight modification to hardware RM
validity checks
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o Piece of cake with SFI (albeit slow)

o Hardware support on many CPUs
|A-64 (more realistically on amd64)

o Breaks lots of software:

Most Win32 GUI apps, CLR (and JITS)

o Can synthesize on |A-32 chips
Mark all data pages non-touchable
On trap, temporarily mark read/write, touch
with MOV (which loads D-TLB), revert the
page back to being untouchable
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o Don’t introduce new code (at first)
o Script existing code!

4th Function Args
o Eg 4th Function Args

. ) garbage (4th func is end)
Victim’s arg 2

. 3rd Function Args
Victim’s arg 1 »

D e x ad 3rd Function Args
victim’s return addr 4th Function Address

2nd Function Args

(@) VlrtualA”OC eXeC page, 2nd Function Args

3rd Funct%on Address
then InterlockedExch, 1ot Fenetion meos
then memcpy, then e

garbage

jLJrT]r) t() Eill()(:’(j F)Eig}(} lst Function Address
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[PaX]

o X86 code injection attack must target the
last “good” machine instruction

What happens just before exploit starts ?

o It's control flow to an absolute address
Call [EAX], Jmp [EBX], Ret (implicit [ESP])
o Attacker must know where to go !!!
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Attacker examines victim’s address space
on his/her machine:

For a version of Windows
each address space is mostly

the same (Win32 & friends)

Also, apps always lay out
executables, stack, heap
In the same way

Attacker crafts exploit given
above; waits for a vulnerability

—O
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o Windows allows most things
to be relocated

o Cando it
Dynamically @ load

Statically @ install
o Problems:

Most EXE files cannot
be moved at all... etc.

o Example of Edit Automata

0
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o Learn the memory layout specifics of your
target for attack [purden 02]

Possible using format string attack etc.

May leak accidentally, e.g., via “nonce” In
a protocol or Windows error reporting

Epidemic can automatically craft code

o Use brute force [Unpublished, Dan Boneh's team 04]
Only 16 bits of shuffle on 32-bit machines
Easy to exhaust keyspace (automatically)
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o For students from (Northern) Europe

NordSec 2004 Workshop

4th - 5th November Helsinki, Finland

o If you have some papers/work/TRs
Submit it and show up
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1. Execution Monitoring Fundamentals
Programs and properties from traces
Security Policy as Security Automata
Introduction to Inlined Reference Monitors

2. Monitoring Machine Code Execution

Software Fault Isolation
Buffer Overflows and Mitigations

3. Advanced IRMs & future work

Low-level Actions and Event Synthesis
Static Analysis, Alternate Remedies, etc.
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Sample Vulnerability Discovery

[SolarDesigner01] [Slides, Halvar Flake 02]

Surprisingly easy to find vulnerability

Vulnerability types often translate
e Heap manager problem in glibc.so
e Heap problem in Windows 2000



Heap Structure Exploit Generalities
Win32 heap management model

Application Code

Customized/Ll\

Heap  |..... ibc Heap
implemerrl)tation "| Management | | NT Heap
: AP Memory
: API

User A H i

Mode Virtual Memory AP

Kernel Kernel-level Virtual Memory Manager
Mode Physical Memory




Heap Structure Exploits
Win2k Heap Manager (I)

LocalAlloc()

HeapAlloc() > | RtlAllocateHeap()

GlobalAlloc()

Kernel32.DLL NTDLL.DLL



RtlIAllocateHeap (1)

RtlAllocate
HeapSlowly()

Check Flags

and smaller than 1024

'

Allocate from

Lookaside Table

A 4

!

Return block...

New allocation
from the heap




RtlAllocateHeap (Il)

Large-Heap
Allocator

<

New allocation
from the heap

Smaller than
1024 Bytes

Size

Larger than
1024 Bytes

Small-Heap
Allocator




Heap Structure Exploits
Win2k Heap Manager (II)

After two allocations of 32 bytes each our heap memory
should look like this:

Block A
+0 control data Memory Block A
Block B
+32
control data|  eémory Block B
e Uninteresting memory




Heap Structure Exploits
Win2k Heap Manager (lll)

Now we assume that we can overflow the first buffer
so that we overwrite the Block B control data.

Block A

+0 control data ety ot

+32 Block B

controldatay  'Memory Block B

+ : :
o4 Uninteresting memory




Heap Structure Exploits
Win2k Heap Manager (V)

When Block B is being freed, an attacker has supplied the
entire control block for it. Here is the rough layout:

+0 Size of the previous
Block divided by 8

8 bit for
Flags

+4 | Field 4

If we analyze the disassembly of RtIHeapFree() in NTDLL,
we can see that our supplied block needs to have a few
properties in order to allow us to do anything euvil.



Heap Structure Exploits
Win2k Heap Manager (V)

Properties our block must have:

o Bit O of Flags must be set
o Bit 3 of Flags must be set

o Field 4 must be smaller than 0x40

o The first field (own size) must be larger than 0x80

The block ‘XXXX99XX’ meets all requirements.
We reach the following code now:



Heap Structure Exploits
Win2k Heap Manager (VI)

add esl, -24

ESI points here

+64

N\

...now here ...

!

Blosk A
control thata

Memory Block A

Block B

control data

Memory Block B

Uninteresting memory




Heap Structure Exploit
Win2k Heap Manager (VII)

mov  eax,[esi]
mov  esi, [esit4] «

+0 e Memory Blocleax
control data

+32 Block B
control data

Memory Block B

+ : :
Y Uninteresting memory




Heap Structure Exploits
Win2k Heap Manager (VIII)

mov [esi], eax , Arbitrary memory overwrite
Block A
+0 control data Memory Blocl eax.:
+32 SRS Memory Block B
control data

+ : :
Y Uninteresting memory




Heap Structure Exploits
Win2k Heap Manager (IX)

o If we can overwrite a complete control block (or at least 6
bytes of it) and have control over the data 24 bytes before
that, we can easily write any value to any memory location.

o It should be noted that other ways of exploiting exist for
smaller/different overruns — use your Disassembler and
your imagination.



Fiddling with Machine Code
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1. Execution Monitoring Fundamentals
Programs and properties from traces
Security Policy as Security Automata
Introduction to Inlined Reference Monitors

2. Monitoring Machine Code Execution
Software Fault Isolation
Buffer Overflows and Mitigations

3. Advanced IRMs & future work

Low-level Actions and Event Synthesis
Static Analysis, Alternate Remedies, etc.
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o Not tied to any one type of event
But must be able to accurately identify events

o Validity checks can maintain state etc.

For instance: ensure execution order of A, B, C

7 / :

Program P running...
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o Evaluate SA policy at every point in program

o Often no need to check at a machine instruction
“No div zero”: Only check before “div” instructions
o Simplify SA by partial evaluation

Insert security policy checking code before every instruction
Use static knowledge of insertion point to simplify the check

Security IRM Rewriter Secure

automaton application

P Insert Specialize Compile

Application & SA
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Policy: Push exactly ﬁ(p“‘d“”e‘)@gp“m
once before returning push
Insert security  Evaluate Simplify Compile
automata transitions automata automata

= (push v ret)é-l push true @9true rue
% push 9@ false ,‘®

mul rl,r0,r0 mul rl,r0,r0 mul rl,r0,r0 mul rl,r0,r0
if state==

< (push v retcgy push false @9fal se .
{i: ?E: then state:=1
push true ﬁj'mm <> else ABORT

push rl push rl push rl push rl

-ﬁmdww?gymﬂ1 false (mem (Syme if state==0
%W Jou chen ABORT

ret ret ret
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No sending on the
network after
CEGREVAIES

ldc 1
putstatic SASI.stateClass.state

invokevirtual java.io.FileInputStream.read()I

getstatic SASI.stateClass.state
ifeq SUCCEED

invokestatic SASI.stateClass.FAIL()V
SUCCEED:

invokevirtual java.net.SocketOutputStream.write(I)V
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Java IRM Implemention
o Rewrite JVML classes pstang | —>

o Use guarantees given
by the JVML verifier

o PSLang: Policy Specification Language
Exposes JVM abstractions: methods, classes, ...
o PoET: Policy Enforcement Toolkit
Captures JVM events: method calls, exceptions, ...

o Small addition to TCB: approx. 17.5K lines
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o Add Security State
Rich set of data structures available
State either global or tied to program objects
Not visible to original program

o Events trigger Security Updates
Updates: Computation on security state

Any event may trigger an update
Begin/end of methods, instructions, ...
Both load-time and run-time system events

Updates can invoke HALT primitive
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o Seperation of load- vs. run-time

Load-time synthesis of extended
semantics

o Designed for partial evaluation

Run-time-constant data structures
Side-effect-free functions

o Global and context-local state
Local tied to classes or object instances

o Complete, modular, and extendable
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o IRMs allow arbitrarily tight constraints

Pin down app behavior, implementation details,
even allowable input data

In the limit amounts to 2"d implementation

o Can enforce system-call security for any API
E.g., field access and calls to library methods
o Must know & trust all such library APIs

Implementation cannot betray this trust
Example: reading files via font-rendering

o Library policies are both reusable and important
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o Security Event Synthesis

Higher-level semantic information derived
from computation on lower-level events

E.qg., firewall stateful content inspection

o Most policies need additional semantics
“Push before Ret” and stack memory
“No-div-zero” and byte-aligned jumps
High-level API policy = constrain low-level

o Mechanism shouldn’t hard-code synthesis
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IMPORT LIBRARY Lock; IMPORT LIBRARY Map;
ADD SECURITY STATE { ADD SECURITY STATE {
int openWindows = 0; Object map = Map.create();
: )

Object lock = Lock.create() ;
} PROCEDURE Object getCategory(Object name) {

name=="IBM" ) {return "COMPUTERS";}
ON EVENT begin method ' name=="Apple" ) {return "COMPUTERS";}

{
WHEN Event.is ("Window.open()") ' name=="GM" ) {return "CARS";}
PERFORM SECURITY UPDATE ({ if ( name=="BMW" ) {

return "CARS";}

Lock.acquire (lock) ;
if ( openWindows == 10 ) { }
ON EVENT begin method
} WHEN Event.methodNamels ("accessCompany")
PERFORM SECURITY UPDATE {
Object C = State.get( "SmethodArgl" ) ;
Lock.release (lock) ; Object category = getCategory( C );
} Object o0ldC = Map.get( map, category );

ON EVENT begin method if ( 01dC == null ) {
Map.put ( map, category, C );

WHEN Event.is("Window.close()") } else {

PERFORM SECURITY UPDATE if( C 1= oldC ) {
Lock.acquire (lock) ;
openWindows = openWindows-1;
Lock.release (lock) ;

openWindows = openWindows+1;




Caller or callee instrumentation ?

o If callee: everybody pays price

Library callee used by multiple principals
must fork codebase or do a runtime check

o If caller: must do a lot of work
Especially for calling object methods
Synthesis required for derived classes etc.

o IRM specification writer can choose

Security Summer School
U. Oregon, June 2004




o Most IRM enforcement probably on libraries
Must know semantics to regulate use
Useful policies apply to more than one program

o Each API can be like a system-call interface

Includes objects, method calls and direct access
Library design affects potential policies
o High-level API policies might be subverted

Policies must either preclude lower-level access
or synthesize that high-level operation occurred
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o Must enforce security policies on multi-
threaded Java programs

o Must serialize check/event pairs
cobegin{Crd;Rd || Csnd;Snd}
may run Csnd;Crd;Rd;Snd

o Time of check to time of use
Hard with complex history-based policies

Can sometimes emulate OS copy-in
behavior

o PSLang offers synchronization mechanisms
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o Writing good policies is hard
Extensive synthesis often required

o App-level policies tied to app semantics
Makes most sense for library code

o Environment agnostic

OS independent, can be added after-the-
fact, and will travel

o IRMs can secure use of high-level APIs
With flexibility to make tradeoffs
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MET Framework
The appbzation altempled bo pedoin an operation ok

o Modern policies .
may use a lot of e

required pemission pleate contact your spstem

properties and
historical data to e st

Feagued fof the peimizzion of loe
make access ey

mecarlib, Verson=1.0.2411.0, Cullure=neulral, Public

control decisions
n[ler.-m I Continue |

1
Java/MS’s CLR
Spstenn Secuity, Secuntyl soept equest for the pemmizsion of i
u S e th e StaC k &t Spstemn. Secunty, Codadc urkyE ngine. CheckHelper|Pen

a Syslem Secunty Codadic uriyE ngine_Check[Permissior
t Sypstem. Secunty Codedc urkyE ngine_ Check[Codefcce

trace to Imp“CItly :151 em.Secunty. Codedc ermission. Demand()

at Systemindows. Foems. Int3ecunty. DemandFiel O[F del OPerrmi
I 2t Syslem Windows. Foems. FileDialog.get_FileM ameas(]
constrain sets of 2 TestCorp, ChentControls Mulil ploadChl selectDir_Click{Object =

2t Swstem Windows Forms Control. OnChck(E vertfags &)

permissions X
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Two-second refresher course

o Enforcement based on runtime call stack

o Each stack frame is in a protection domain

o Each protection domain has set of premissions
o

o

checkPermission: Stack has suitable permissions
doPrivileged: Amplification of available permissions

Protection domain: Protection domain: Protection domain:
Untrusted Applet GUI Library File System

File access
permissions: /home/ue/* /fontS/* <<ALL FILES>>

display: load(file F):

UEE [PLET eIl checkPermission(F,read)

access on disk(F)

load("thesis.txt")
use plain font

show on screen doPrivileged {

load("Courier")
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o How are the primitives actually used?

Benchmark Method calls doPrivs checkPerms Thrds
Jigsaw 2,476,731 1,002 5,333 (18,7) 71
javac 1,456,970 0 1,067 (12,4)
tar 19,580 0] 6,509 (8,6)
MPEG_Play 35,997,662 101 205 (5,7)

o IRMs allow playing with the tradeoffs
Allows synthesis of security-relevant data...
...0r access to any interface that exposes it

o Can make an IRM as specific as wanted
...to a particular app, or a particular policy
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[Erlingsson Schneider 00]

IRM,.: The obvious first approach
e Maintain shadow call stack to consult in enforcement

Push/pop protection Push/pop doPriv token Scan shadow call

domains on shadow call on shadow call stack, backwards, check P for

stack before/after S each domain, stop on
doPriv or end

IRM

. Optimize for the most common case
e Pry out JVM s call stack & compute enforcement data

IX-v4%

Nothing Get current call stack, Get current call stack, scan it
push/pop its depth onto backwards and check P for
a seperate privStack the domain for each frame,

stop if reached the depth on

the top of privStack or end




//

// on doPrivileged, push the doPriv token onto the domainStack
//
SIDE-EFFECT-FREE FUNCTION boolean doPrivilegedCall(Object instr) {
return Event.instructionIs("invokestatic")
&& JVML.strEq(Reflect.instrRefStr(instr),
JVML.strCat ("java/security/AccessController/doPrivileged",
"(Ljava/security/PrivilegedAction;)Ljava/lang/Object;"));

+
ON EVENT at start of instruction

WITH doPrivilegedCall(Event.instruction())

PERFORM SECURITY UPDATE {
Object thread = JVML.typeCast(System.currentThread(), "java/lang/Thread");
Object stack = State.instanceGetObject(thread, "java/lang/Thread/domainStack");
Stack.push( stack, doPrivToken );

+

ON EVENT at finally completed instruction

WITH doPrivilegedCall (Event.instruction())

PERFORM SECURITY UPDATE {
Object thread = JVML.typeCast(System.currentThread(), "java/lang/Thread");
Object stack = State.instanceGetObject(thread, "java/lang/Thread/domainStack");
Object discard = Stack.pop( stack );
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0 IRMgps

Method call doPriv
1,00us 1.7us

0 IRM_,,,

Method call doPriv
Ous 23.4us

checkPerm New Thread
7.7us 6.5us

checkPerm New Thread
22.4us 29.8us

o End-to-end IRM,,,, performance
competitive with Sun’s JVM’s built-in
stack inspection
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o IRMs more than safety properties

Can include static analysis
Load-time security updates already do this

On violation, truncation not only option

E.g., throw exception as remedial action
o However, harder to reason about
Composition problem even harder
o Subject of current study
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o Allow execution monitors
that change execution
behavior without halting it

o Richer but more difficult to reason about
example info-flow: always return 1

can change return value In this case
(more generally, can normalize all
external behavior)

o Break out of “only security policies” box
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o Policies undo the effect of each other

o Composition may result in bad policy
Even so policy Is *always* violated

To see this, consider two IRM security policies that both wish to prevent the
occurrence of F'(1,1) and F(—1,—1). Now, one of these policies might sandbox
F' operations by negating the first argument, and the other might sandbox F
by negating the second argument. Then, however, the composition of these two
security policies might turn F(1,1) into F(—1,—1), and vice versa, subverting the
intent of both policies.
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o Higher level operations (not just machine instructions)
o Kernel provides RM and validity checks

void main ()

{

OFSTRUCT ofs;
HFILE £ = OpenFile("file.txt",&ofs,OF_PROMPT);

memcrash.exe - File Mot Found
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o Execution monitoring used to enforce
many properties by operating systems

o Apart from security, integrity of data
structures etc.

Error Copying File

Q Cannot copy spstern: There haz been a shanng wialation.

The zource or destination file may be in uze.
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BoundiChecker - Program Emnor Detected Ei

Diyriaeres memony cvemun
Copying 29 bytes to a block allocslad in H:\vework\drjdniview. cpp (63)
Sharting cifzat 0, destinaton size; 24 bpdes
H&NDLE: D FD3CT0
aliocatng tiead [D: D104, cument theead 10 D104

th + @ i 3 @,
Suppeess.. Hal =2 | =

Debag Explan Submit

Function Fils

COniview:. OnDiraw() H:\wvoworkudndvdriview. cpp
Cvieewr: OnPami() VIEWCOIE, COD

Ot Dol 23] WENICONE. CPD

Cwind ‘windowProc|) WNCONE. P
BT albwfndProc]) WO CPp
&F e tProecll LW
L

{

char #lpstrHyString,;

char * LpCR;

int 1i;

ChnaDoce pDoc = GetDocument():
ASSERT_VALID(pDoc) :

IpstrMyString = (char =) malloc{24);
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o Lots of related work, old and new:
Dates back to SDS 940, at Berkeley in 69

o Software Fault Isolation and Verifiable Code
Certification: JVML verifiers, PCC, TAL, etc.

o Reference Monitor Literature is relevant
Application-specific security (e.g., Clark&Wilson)
History-based access control

o Program modification: ATOM and AspectJ
Theory of Aspects [Walker Zdancewic Ligatti 03]

o Also, Generic Software Wrappers, Naccio, etc.
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[Walker 00]

o Sophisticated type system

Certifies (a la PCC or TAL) that an
automaton policy Is enforced

Types encodes passing of security state

Transformations and lemmas depend on
particulars of the specific security
automata(s) to be enforced

o Simpler notion of automata
Not 1St-order predicates on transitions
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[Colcombet Fradet 00]

o Elaborate new theory and techniques
o Transform code according to policy
o Modified code propagates run-time

encoding of security state
o State checked to block illegal actions

o Static analysis reasons about state

When analysis impossible, runtime
check inserted (similar to cqual)
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[Thiemann01, 047]

o Standard specialization techniques
All work on partial evaluation applies

o Transform a monitoring interpreter into

a non-standard (security) compiler
Get the IRM rewriter for free
o Nicely propagates check results etc.
Was exp.time with code duplication
Newer result: linear with no duplication
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[Bauer Ligatti Walker 02, 04]

Formal definition automata with side effects
Uniformity and non-uniformity (X - A*)

Figure shows precise non-uniform
Insert equally powerful as Edit

Suppression strict subset Insert == Edit

Truncation more restrictive

If “precise uniform” then all three
circles equal EM+truncation

On non-uniform systems
can do more than
truncation automata
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[Ligatti Bauer Walker 04]

o Precise means you have to accept good
sequences in lockstep with their generation

so can’t use the “edit tricks” on a good trace
o Effective means we can suppress actions and

then later insert their (atomic) effects into trace

o Transparency accounts
for semantic equality
between input & output

o Conservative mean
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[Bauer Ligatti Walker 04]

Types and Effects for Non-interfering EM [BLW02]

o Given a policy what are the actions
(what can it suppress and insert)

o Make sure that the edit actions of two

concurrently executing monitors don’t affect
the inputs relevant to each other

Four combinators (two seq. two parallel)
seq. combinators can be affected by effects

Authors extend in later work to allow programmers
to develop their own combinators (Polymer)
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[Hamlen Morrisett Schneider 04] [ViswanathanQO]

CopE Pup (§3.3) — s
(EM1 - EM4) | enforceable

the secret file
policy (§3.3)

T Foay T
Proor (6§2.2)
EM-

M terminates within 100
enforceable

computational steps {§3.1)

the unsatisfiable

Static policy

o Looks at detectors and complexity
Some detectors may reject “too early”

o Relates computability and enforcement
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[FongO04]

o Constrain the capabillities of the
Execution Monitor (aka SA)

o Restrict EM to track a shallow history

o Sufficient for
Chinese Wall
Low-water-mark
One-out-of-k authorization
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o Introduce static analysis

can incorporate any deterministic finite-time
decision procedure, as a step in monitoring
mechanism

o Use as one step of security automaton

can do static analysis before execution
(and get guarantees about all traces)

can do static analysis in the middle
(are all suffixes of current state good?)
similar to partial evaluation of program

useful, say for locks, check at acquire that will it be
released etc.
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o More information on Enforceable
Security Policies, Software Fault
Isolation, Java Stack Inspection, and

Inlined Reference Monitors
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