
Enforcing Security
through
Execution Monitoring

Úlfar Erlingsson
Microsoft Research, Silicon Valley

Summer School on Software Security
University of Oregon, June 2004

Security Summer School
U. Oregon, June 2004

2

Outline
1. Execution Monitoring Fundamentals

Programs and properties from traces
Security Policy as Security Automata
Introduction to Inlined Reference Monitors

2. Monitoring Machine Code Execution
Software Fault Isolation
Buffer Overflows and Mitigations

3. Advanced IRMs & future work
Low-level Actions and Event Synthesis
Static Analysis, Alternate Remedies, etc.

1. Execution Monitoring Fundamentals
Programs and properties from traces
Security Policy as Security Automata
Introduction to Inlined Reference Monitors

2. Monitoring Machine Code Execution
Software Fault Isolation
Buffer Overflows and Mitigations

3. Advanced IRMs & future work
Low-level Actions and Event Synthesis
Static Analysis, Alternate Remedies, etc.

Security Summer School
U. Oregon, June 2004

3

Execution Monitoring:
Observe program execution

Look at a program’s execution on a
given input as a sequence of runtime
events (e.g., the A, B, and C below)
Possibly do “something” on each event

A B C

Program P running…

Security Summer School
U. Oregon, June 2004

4

What is EM good for?

Debugging, tracing, breakpoints, etc.
Auditing and Logging
Software testing: memory leaks,
out-of-bounds array accesses,
race conditions, atomicity, etc.
Security (aka sandboxing, babysitting)
like buffer overflow prevention etc.
…

Security Summer School
U. Oregon, June 2004

5

In particular…

Security Summer School
U. Oregon, June 2004

6

Programs as Sets of
Execution Traces

View a program as defining an (infinite) set of
(possibly infinite) execution traces
All executions on all possible inputs + powercut

Set of all possible executions of program P

Security Summer School
U. Oregon, June 2004

7

Security Policies as Traces

Define security policies as a subset of
possible program execution traces
Security policy set defines a predicate S

Subset of executions of P that satisfy security policy S

Security Summer School
U. Oregon, June 2004

8

Enforcing Security Policies

Allows some traces that satisfy security policy
Enforcement mechanism M is a concrete
implementation that defines a subset of S

Executions of P that enforcement mechanism M says satisfies policy S

Security Summer School
U. Oregon, June 2004

9

Desirable Security Mechanisms

Don’t want enforcement to be vacuous (e.g.
defining the empty set or disallowing all)
Want enforcement to be exact (M == S)

Vacuous subset that mechanism M enforces for security policy S

Security Summer School
U. Oregon, June 2004

10

“Hard” to Enforce Policies

The design of M depends on policies,
e.g., subsets/prefixes maybe insufficient
Prefixes: “Pulling the plug” or halt

Liveness or “good things must happen”
• E.g., if A happens, then B must follow

Subsets: traces can be interdependent
Information flow: a subset may reduce
uncertainty, hence pass information

• E.g. trace of P “return 1” w/restricted input

Security Summer School
U. Oregon, June 2004

11

Execution Monitoring:
Focusing on one Execution Trace

Easy to do (just observe and constrain)
EM can often approximate desired policy
EM closely related to safety properties, so
policies compose nicely, etc.

A B C

Program P running…

Security Summer School
U. Oregon, June 2004

12

EM Security Policies [Schneider00]

Define acceptable/unacceptable execution
Execution Monitoring (EM) is one class
EM observes execution (and truncates it)

EM-enforceable part of safety properties

Safety property
access control
integrity
D-availability

Not Safety Property
information flow
liveness
availability

Security Summer School
U. Oregon, June 2004

13

Definitions

Security policy P: predicate on sets of executions

Target system S: set Σ of executions

S satisfies P: P(Σ) = true

Warning: For general security policy predicates

(Π ⊆ Σ and P(Σ)) implies P(Π)

does not hold !

Security Summer School
U. Oregon, June 2004

14

Uses the single (current) execution

Only “properties” are EM enforceable
Information flow is not a property [McLean94]

Information flow is not EM enforceable
(in an exact fashion)

())(:(σσ pP Π∈∀ :)Π

What can EM enforce?

Security Summer School
U. Oregon, June 2004

15

Properties

[Schneider00]:
“In Alpern and Schneider [1985] and the
literature on linear-time concurrent program
verification, a set of executions is called a
property if set membership is determined by
each element alone and not by other
members of the set. Using that terminology,
we conclude from (1) that a security policy
must be a property in order for that policy to
have an enforcement mechanism in EM.”

Security Summer School
U. Oregon, June 2004

16

EM means Punctuality

Must truncate execution as soon as
prefix violates policy:

where τ is a finite trace, σ a trace,
and the juxtaposition operator
extends one trace with another

())((στστ pp ¬:∀⇒)¬

Security Summer School
U. Oregon, June 2004

17

EM means Finite Time

Must detect violations after a finite time.

where the [..i] postfix operator
denotes a prefix of a given trace
that is i steps long

()])[..(:)(ipip σσ ¬∃⇒¬

Security Summer School
U. Oregon, June 2004

18

Any EM enforcement mechanism …

Analyzes the single (current) execution.

Must truncate execution as soon as prefix
violates policy:

Must detect violations after a finite time:

Enforceable policy implies safety property

Characteristics of EM

())((στστ pp ¬:∀⇒)¬

()])[..(:)(ipip σσ ¬∃⇒¬

())(:(σσ pP Π∈∀ :)Π

Security Summer School
U. Oregon, June 2004

19

Properties of EM Policies

Prefix closed
If trace σ is OK all prefixes of σ are

Subset closed
If S satisfies policy, then subset(S) does

EM security policies compose nicely
Composed policy is intersection of sets

Security Summer School
U. Oregon, June 2004

20

Safety and Liveness Redux
[Alpern Schneider 87]

Characterize safety and liveness

Properties defined as Buchi automata
1st-order predicates on transitions

Accepting & non-accepting states
• Accept infinite traces iff accept infinitely often

Reject if unable to make transition

Security Summer School
U. Oregon, June 2004

21

Example: Total Correctness

Security Summer School
U. Oregon, June 2004

22

Formalizing the Automata

A Buchi automaton m for a property of a
program π is a five-tuple :

Security Summer School
U. Oregon, June 2004

23

Formalizing the Infinite

Adding some notation for traces, so

then can extend δ to finite sequences by

Security Summer School
U. Oregon, June 2004

24

Formalizing Progress

To process a sequence s1s2… of input
symbols the automaton starts with its
current state set Q′ equal to Q0 and
reading the sequence one symbol at a
time changes its current state set Q′
to the set Q″ where

Security Summer School
U. Oregon, June 2004

25

Making the Transition

We can encode δ as transition predicates by:

If pij denotes the predicate for the transition
from automaton state qi to automaton state
qj, then the security automaton, upon
reading an input symbol s with current state
set Q′, changes it’s current state set to Q″

Security Summer School
U. Oregon, June 2004

26

Accepting and Rejecting

Rejecting is easy:

Reject if Q″ is ever becomes empty

Accepting is slightly harder:

For trace σ, INFm(σ) is set of automaton
states that appear infinitely often in Q″,

then accept if

Security Summer School
U. Oregon, June 2004

27

Final Results

Can exactly characterize all properties

Safety Properties
exactly automata w/all states accepting

Liveness Properties
exactly automata w/non-accepting state(s)

Properties
conjunction of safety & liveness automata

Security Summer School
U. Oregon, June 2004

28

Trace Questions

Why InfoFlow is not a property
Language-based intuition: We must prove
if program P returns “low” value X on inputs
S, then for all possibilities for the “high”
portion of S, we have that P still returns X

What do Buchi automata with no
accepting states define?

The empty set of traces, no matter how
many states there are, or what the transition
predicates say

Security Summer School
U. Oregon, June 2004

29

Back to the Future

OK…

done with Safety & Liveness

Already saw EM ⊂ safety properties

Security Summer School
U. Oregon, June 2004

30

Why EM ≠ Safety Properties

EM can only use bounded memory
Can’t buy unbounded machines (yet)
Safety properties can use infinite state

EM must be able to control the system
May not be the case (turn flames off)
In particular, EM can’t stop time

• Can’t do “gets service every X seconds”
• *Can* do “gets service every Y steps”

Security Summer School
U. Oregon, June 2004

31

What EM can & can’t do

EM *can* do access control
Whether DAC, MAC, MLS, …

EM can’t do information flow
InfoFlow is not a property [McLean94]

• Depends on other traces
• Can’t have sets correlate High/Low

EM can’t do Liveness/Availability
But *can* do D-availability

Security Summer School
U. Oregon, June 2004

32

EM Policies that Work

Integrity: “More valuable data never
overwritten by less valuable data”

Works, as just a simple comparison on writes

D-Availability: “Y must follow X within D steps”
Works, but failure truncates without any Y

Foo and Bar happen as a pair, in order:
Doesn’t work, because EM can’t preclude
prefixes with only a Foo and no Bar
A property: intersection of safety and liveness

Security Summer School
U. Oregon, June 2004

33

Better than EM:
Security via Static Analysis

Static analysis can make statements
about all program execution traces:

B always follows A in all traces
Return value independent of input

But hard to prove program properties…
One way: Type-safe languages

Write program in a way that facilitates
proving certain properties about it

Security Summer School
U. Oregon, June 2004

34

Can we do it dynamically?

Execution monitoring does it at runtime
Easy to do “proofs”

Check sorted array after sort routine
But need good runtime failure model

Can’t “un-launch” the missile
But might stop the train

Security forms a special category
Usually OK to halt (turn attack into DoS)
Shows safety-critical ≠ security ?

Security Summer School
U. Oregon, June 2004

35

Outline
1. Execution Monitoring Fundamentals

Programs and properties from traces
Security Policy as Security Automata
Introduction to Inlined Reference Monitors

2. Monitoring Machine Code Execution
Software Fault Isolation
Buffer Overflows and Mitigations

3. Advanced IRMs & future work
Low-level Actions and Event Synthesis
Static Analysis, Alternate Remedies, etc.

Security Summer School
U. Oregon, June 2004

36

Specifying Security Policies

One way is as Security Automata
Formalism expresses the right properties

SA ≡ safety properties ⊃ EM-enforceable
Simple to specify, interpret, and compile
Good for analysis, emulation, testing

No division by zero

¬ (op = “div”
arg2 = 0)∧

read¬ send¬

read

No network send after file read

Security Summer School
U. Oregon, June 2004

37

Security Automata:
The Hidden Truth

Security Automata are just regular
Buchi Automata w/all states accepting

So we already know them !

PS: Because all states are accepting, we can use
standard “Dragon book” techniques to make
Security Automata deterministic… sweet!

Security Summer School
U. Oregon, June 2004

38

Simple Access Control

Works for both discretionary and
mandatory simple access control

KOop∈

Security Summer School
U. Oregon, June 2004

39

Why not just Single State?

Easy to construct vacuous single-state
security automata that push all the work
into the predicate
Good reasons to use more SA states

SA states can maintain security-relevant
data outside the monitored program

SA states can encode program history
SA states can help “synthesize” higher-
level security-relevant program events

Security Summer School
U. Oregon, June 2004

40

More Interesting…
[Brewer Nash 89]

Security Summer School
U. Oregon, June 2004

41

First, some Assumptions…

Let’s assume a

Security Summer School
U. Oregon, June 2004

42

One Big Security Automaton

Security Summer School
U. Oregon, June 2004

43

One SA per Category

Scales much better (linear in size)
Can we tie SAs to program abstractions?

Security Summer School
U. Oregon, June 2004

44

Of course, can do it in One

Relies heavily on existing program
Program maintains state
Program implements two predictes

Perhaps realistic…
At least for traditional OS access control

Security Summer School
U. Oregon, June 2004

45

Outline
1. Execution Monitoring Fundamentals

Programs and properties from traces
Security Policy as Security Automata
Introduction to Inlined Reference Monitors

2. Monitoring Machine Code Execution
Software Fault Isolation
Buffer Overflows and Mitigations

3. Advanced IRMs & future work
Low-level Actions and Event Synthesis
Static Analysis, Alternate Remedies, etc.

Security Summer School
U. Oregon, June 2004

46

Reference Monitors [Anderson72]

Execution monitor that forwards events
to security-policy-specific validity checks
Implementing RMs

Capture all policy-relevant events

Protect RM from subversion

Program

RM
Kernel

RM
Program

Kernel

Program

Kernel

RM

Kernel supported Interpreter Modified application

Security Summer School
U. Oregon, June 2004

47

Validity Checks

Triggered by RM on each event
Encodes the security policy
Perform arbitrary computation to
decide whether to allow event or halt

Can have side effects? (Not if EM)
Can change program flow? (Not if EM)

(PS: RM+Validity checks sometimes
called the Security Kernel)

Security Summer School
U. Oregon, June 2004

48

IDEA: Use 3rd type of RM implementations
Use Security Automata to specify security policy
Policy specifies both RM and Validity Checks
Permanently embed security into application

Inlined Reference Monitors
[Erlingsson Schneider 99]

IRM
Rewriter

Original Application

Secured
ApplicationPolicy

IRM
Rewriter

Original Application

Secured
ApplicationPolicyPSLang

PoET

Security Summer School
U. Oregon, June 2004

49

IRMs have access to program abstractions
Capture all potentially security-relevant events
Rewriter works on machine language programs

Issues: How to capture all relevant events
Prevent application subverting inserted RM
Preserve application behavior

Implement RMs by
program modification

IRM Implementation

IRM
Rewriter

Original Application

Secured
ApplicationPolicy

IRM
Rewriter

Original Application

Secured
ApplicationPolicy

Security Summer School
U. Oregon, June 2004

50

IRM Enforcement Advantages

Can enforce policies on application abstractions
E.g., Restrict MSWord macros and documents

Each application can have a distinct policy
Enforcement overhead determined by policy
Mechanism customized to the policy

Mechanism is simple and efficient and travels
Rewrites machine code
Kernel is unaware of security enforcement
No enforcement overhead from context switches

Security Summer School
U. Oregon, June 2004

51

Efficient IRM Enforcement
Evaluate SA policy at every point in program

Often no need to check at a machine instruction
“No div zero”: Only check before “div” instructions

Simplify SA by partial evaluation
Insert security policy checking code before every instruction

Use static knowledge of insertion point to simplify the check

Application

Secure
application

Specialize

AS ′′

AS ′

SA

Security
automaton

Insert

SA

SA

IRM Rewriter
Compile

Security Summer School
U. Oregon, June 2004

52

Example IRM Rewriting

Policy: Push exactly
once before returning 0 1

ret)push(∨¬ push¬

push

Insert security
automata

Evaluate
transitions

Simplify
automata

Compile
automata

ret

mul r1,r0,r0

push r1

ret

mul r1,r0,r0

push r1

ret

mul r1,r0,r0

push r1

ret

mul r1,r0,r0

if state==0
then ABORT

0 1

¬ (push ∨ ret) ¬ push

push

0 1

¬ (push ∨ ret) ¬ push

push

0 1
true

0 1
false

0 1
true

true

1

push r1

if state==0
then state:=1
else ABORT

false false

false true

0 1

¬ (push ∨ ret) ¬push

push
0 1

true true

false
0,1

true

Security Summer School
U. Oregon, June 2004

53

Outline
1. Execution Monitoring Fundamentals

Programs and properties from traces
Security Policy as Security Automata
Introduction to Inlined Reference Monitors

2. Monitoring Machine Code Execution
Software Fault Isolation
Buffer Overflows and Mitigations

3. Advanced IRMs & future work
Low-level Actions and Event Synthesis
Static Analysis, Alternate Remedies, etc.

Security Summer School
U. Oregon, June 2004

54

Traditional hardware protection

Hardware execution monitor that
forwards events to validity checks

Easily captures all events
Easily protected from subversion

Validity checks use page tables etc.

Program (+OS)

RM
Hardware

Hardware supported

Security Summer School
U. Oregon, June 2004

55

Memory Protection Policy

MMU hardware is RM for memory accesses
Access subject to validity checks on page tables

void main()
{

char* badPtr = (char*)0xF00FBAAD;
*badPtr = (char)"crash the program";

}

Security Summer School
U. Oregon, June 2004

56

Hardware Privilege Policy

Hardware instruction decoder disallows
certain operations in non-privileged mode

void main()
{

__asm cli;/* try to disable interrupts */
/* this crashes the program */

}

Security Summer School
U. Oregon, June 2004

57

Outline
1. Execution Monitoring Fundamentals

Programs and properties from traces
Security Policy as Security Automata
Introduction to Inlined Reference Monitors

2. Monitoring Machine Code Execution
Software Fault Isolation
Buffer Overflows and Mitigations

3. Advanced IRMs & future work
Low-level Actions and Event Synthesis
Static Analysis, Alternate Remedies, etc.

Security Summer School
U. Oregon, June 2004

58

Enforcing Hardware Policies in
Software (aka SFI)
[Wahbe Lucco Anderson Graham 93]

Hardware policies can be enforced using
any interpreter-based RM.
Idea: Use a regular interpreter

For each instruction perform checks in
software—SFI: software fault isolation
Make the interpreter very efficient

Benefits
Don’t need to rely on MMU hardware
More flexibility in policy (validity checks)

Security Summer School
U. Oregon, June 2004

59

SFI using Security Automata
SA receives as input the currently executed
instruction and current program state

Need to synthesize “instruction” event
Restrict memory access & control-flow

readMemOp() ∧
canRead(sourceAddr)

∨

retOp() ∧
validRetPt(topOfStack)

writeMemOp() ∧
canWrite(targetAddr)

...

∨

callOp() ∧
validCallPt()

jumpOp() ∧
validJumpPt()

Security Summer School
U. Oregon, June 2004

60

SASI Prototypes

SASI: Security Automata SFI Implementation
Inputs: SAL security policy and target application
Output: Application modified according to policy

Expand TCB by at least SAL and rewriter
SAL ≈ 4.2K lines; rewriter ≈ 1K lines

x86
SASI

SA

011
010
101

011
011
111

JVML
SASI

SA

x86 SASI JVML SASI

Security Summer School
U. Oregon, June 2004

61

pushl %ebx
leal dirty(,%eax,4),%ebx
andl offsetMask, %ebx
orl writeSegment, %ebx
movl %edx, (%ebx)
popl %ebx

pushl %ebx
leal dirty(,%eax,4), %ebx
andl segmentMask, %ebx
cmpl writeSegment, %ebx
jne .FAIL
popl %ebx
movl %edx, dirty(,%eax,4)

MiSFIT [Small97] SASI x86 SFI

movl %edx, dirty(, %eax, 4)

Example SFI’d code

Security Summer School
U. Oregon, June 2004

62

Efficient SFI: Inlined Checks

Very efficient interpreter:
RM: Identify all relevant instructions in code
Validity checks: Insert into code at instructions

Do what checks the hardware would do
Address checks on memory access
HALT on illegal instructions (should run?)

Ensure validity checks cannot be subverted
Control flow checks disallow circumvention
Deal with self-mod code, signals, etc…
On x86: find set of runtime instructions

Get inductive proof of enforcement

Security Summer School
U. Oregon, June 2004

63

Preventing Circumvention

A proof outline…

Security Summer School
U. Oregon, June 2004

64

x86 SASI: Implementing SFI

x86 SASI: Modified gcc assembly

Must protect RM inserted by x86 SASI
Can use x86 SASI to enforce SFI
Use SFI guarantees to protect RM

Good performance vs. SFI tool MiSFIT

Hotlist
LFS simulate
MD5

Benchmark
2.38
1.58
1.33

MiSFIT
3.64
1.65
1.36

x86 SASI SFI

Execution-time slowdown relative to SFI-free code

Security Summer School
U. Oregon, June 2004

65

Outline
1. Execution Monitoring Fundamentals

Programs and properties from traces
Security Policy as Security Automata
Introduction to Inlined Reference Monitors

2. Monitoring Machine Code Execution
Software Fault Isolation
Buffer Overflows and Mitigations

3. Advanced IRMs & future work
Low-level Actions and Event Synthesis
Static Analysis, Alternate Remedies, etc.

Security Summer School
U. Oregon, June 2004

66

What is a buffer overrun?

00 00 00 00

00 00 00 00

2A 00 00 00int x = 42;
char zip[6];
strcpy(zip, userinput);
printf("x = %i\n", x);

The ability to arbitrarily corrupt memory
Overflows lead to arbitrary code
Underflows lead to denial of service
Problem is usually isolated to C and C++

Security Summer School
U. Oregon, June 2004

67

Anatomy of the stack

x86 stacks grow
downward
A buffer overrun on the
stack can always rewrite
the:

Return address
Frame pointer

EH frame

Previous functionPrevious function’’ss
stack framestack frame

Return addressReturn address

EH frameEH frame

Callee saveCallee save
registersregisters

GarbageGarbage

Local variables andLocal variables and
locally declaredlocally declared
buffersbuffers

Frame pointerFrame pointer

Function argumentsFunction arguments

Security Summer School
U. Oregon, June 2004

68

Stack smashing

#define BUFLEN 4

void vulnerable(void) {
wchar_t buf[BUFLEN];
int val;

val = MultiByteToWideChar(
CP_ACP, 0, "1234567",
-1, buf, sizeof(buf));

printf("%d\n", val);
}

Previous functionPrevious function’’ss
stack framestack frame

Return addressReturn address

valval

bufbuf

CookieCookie

GarbageGarbage

GarbageGarbage
with invalid cookiewith invalid cookie

Attack CodeAttack Code

Hijacked EIPHijacked EIP

Security Summer School
U. Oregon, June 2004

69

Types of exploits

Stack smashing
Register hijacking
Local pointer subterfuge
V-Table hijacking
C++ EH clobbering
SEH clobbering
Multistage attacks
Parameter pointer subterfuge

Previous functionPrevious function’’ss
stack framestack frame

Return addressReturn address

EH frameEH frame

Callee saveCallee save
registersregisters

GarbageGarbage

Local variables andLocal variables and
locally declaredlocally declared
buffersbuffers

Frame pointerFrame pointer

Function argumentsFunction arguments

Security Summer School
U. Oregon, June 2004

70

Unsafe APIs

Many historical APIs of the C standard
library are bad
strcpy does not know the array size
strncpy cannot validate the array size

Many more unsafe APIs exist

Static analysis tools are helpful
Impossible to guarantee a safe API
Challenge [Jones Kelly 97]

[Ruwase Lam 04]

Security Summer School
U. Oregon, June 2004

71

Stack layout in VC++ .NET

Function prolog: Previous functionPrevious function’’ss
stack framestack frame

Return addressReturn address

EH frameEH frame

Callee saveCallee save
registersregisters

GarbageGarbage

Local variables andLocal variables and
locally declaredlocally declared
buffersbuffers

Frame pointerFrame pointer

Function argumentsFunction arguments

CookieCookie

sub esp,24h

mov eax,dword ptr

[___security_cookie (408040h)]

xor eax,dword ptr [esp+24h]

mov dword ptr [esp+20h],eax

mov ecx,dword ptr [esp+20h]

xor ecx,dword ptr [esp+24h]

add esp,24h

jmp __security_check_cookie (4010B2h)

Function epilog:

Security Summer School
U. Oregon, June 2004

72

Stack layout in VC++ 2003

Function prolog: Previous functionPrevious function’’ss
stack framestack frame

Return addressReturn address

EH frameEH frame

Callee saveCallee save
registersregisters

GarbageGarbage

Frame pointerFrame pointer

Function argumentsFunction arguments

CookieCookie

sub esp,24h

mov eax,dword ptr

[___security_cookie (408040h)]

mov dword ptr [esp+20h],eax

mov ecx,dword ptr [esp+20h]

add esp,24h

jmp __security_check_cookie (4010B2h)

Function epilog: Locally declaredLocally declared
buffersbuffers

Local variablesLocal variables

Security Summer School
U. Oregon, June 2004

73

What is this cookie?
[Cowan et al 98]

Generated by the function
__security_init_cookie

Original stored in the variable
__security_cookie

Cookie is random (at least 20 bits)
Cookie is per image and generated at
load time
Cookie is the size of a pointer

Security Summer School
U. Oregon, June 2004

74

Performance impact

“The perf hit hasn’t shown up for us. There was no
test hit associated with the change. The only cost
we’ve had associated with this is getting ourselves
to build with /GS.

– IIS6 Developer

Expect less than a 2% degradation
Most application did not notice anything
With both VC7 and VC7.1 improvements in
optimization make up for these security checks
Each security check is nine instructions

Security Summer School
U. Oregon, June 2004

75

bufbuf

GarbageGarbage

V-Table hijacking

class Vulnerable {
public:
int value;
Vulnerable() {value=0;}
virtual ~Vulnerable()
{value=-1;}

};

void vulnerable(char* str) {
Vulnerable vuln;
char buf[20];
strcpy(buf, str);

}

Previous functionPrevious function’’ss
stack framestack frame

&&strstr

CookieCookie

&Vulnerable V&Vulnerable V--TableTable

Return AddressReturn Address

vulnvuln
GarbageGarbage

Attack CodeAttack Code

&Hijacked V&Hijacked V--TableTable

Hijacked VHijacked V--TableTable

Security Summer School
U. Oregon, June 2004

76

Pointer subterfuge

void vulnerable(
char* buf, int cb)

{
char name[8];
void (*func)() = foo;

memcpy(name, buf, cb);
(func)();

} namename

GarbageGarbage

Previous functionPrevious function’’ss
stack framestack frame

cbcb

Return addressReturn address

CookieCookie

&&bufbuf

&&foofoo

GarbageGarbage

Attack CodeAttack Code

&Attack Code&Attack Code

Security Summer School
U. Oregon, June 2004

77

GarbageGarbage

CookieCookie

&&pchpch

bufbuf

EH clobbering

int vulnerable(char* str) {
char buf[8];
char* pch = str;
strcpy(buf, str);
return *pch == '\0';

}

int main(
int argc, char* argv[]) {
__try {
vulnerable(argv[1]);

} __except(2) { return 1; }
return 0;

}

Return addressReturn address

Previous functionPrevious function’’ss
stack framestack frame

&&argvargv

Return addressReturn address

SEH frameSEH frame

argcargc

&&strstr

GarbageGarbage

GarbageGarbage

0xBFFFFFFF0xBFFFFFFF

Hijacked EH frameHijacked EH frame

Attack CodeAttack Code

Security Summer School
U. Oregon, June 2004

78

Exploits possible despite /GS

Parameter pointer subterfuge
Two stage attacks
Local objects with buffers
Heap attacks
…
…
…

Security Summer School
U. Oregon, June 2004

79

Class of x86 injection attacks

Attacker controls victim behavior by
getting x86 machine code of their choice
to execute in victim’s environment
Subverts execution trace

Different x86 machine instructions
execute

Not the only attack: e.g., scripts

Security Summer School
U. Oregon, June 2004

80

NX: x86 Code Lockdown

Distinguish between code and data
Harvard architecture?

Prevent data from being executed as
x86 machine code

Slight modification to hardware RM
validity checks

Security Summer School
U. Oregon, June 2004

81

Implementing NX

Piece of cake with SFI (albeit slow)
Hardware support on many CPUs

IA-64 (more realistically on amd64)

Breaks lots of software:
Most Win32 GUI apps, CLR (and JITs)

Can synthesize on IA-32 chips
Mark all data pages non-touchable
On trap, temporarily mark read/write, touch
with MOV (which loads D-TLB), revert the
page back to being untouchable

Security Summer School
U. Oregon, June 2004

82

Circumventing NX
(aka jump-to-libc)

Don’t introduce new code (at first)
Script existing code!
E.g.

VirtualAlloc exec page,
then InterlockedExch,
then memcpy, then
jump to alloc’d page

4th Function Args
4th Function Args
garbage (4th func is end)
3rd Function Args
3rd Function Args
4th Function Address
2nd Function Args
2nd Function Args
3rd Function Address
1st Function Args
1st Function Args
2nd Function Address
garbage
garbage
1st Function Address

Victim’s arg 2
Victim’s arg 1
Victim’s return addr

Security Summer School
U. Oregon, June 2004

83

Address-space Randomization
[PaX]

x86 code injection attack must target the
last “good” machine instruction

What happens just before exploit starts ?

It’s control flow to an absolute address
Call [EAX], Jmp [EBX], Ret (implicit [ESP])

Attacker must know where to go !!!

Security Summer School
U. Oregon, June 2004

84

What absolute addresses ?

Attacker examines victim’s address space
on his/her machine:
For a version of Windows
each address space is mostly
the same (Win32 & friends)
Also, apps always lay out
executables, stack, heap
in the same way
Attacker crafts exploit given
above; waits for a vulnerability

0

2GB
Kernel

Heap
Stack

App

Win32

Security Summer School
U. Oregon, June 2004

85

Randomization / Rebasing

0

2GB
Kernel

Heap

Stack

App

Win32

Windows allows most things
to be relocated
Can do it

Dynamically @ load
Statically @ install

Problems:
Most EXE files cannot
be moved at all… etc.

Example of Edit Automata

Security Summer School
U. Oregon, June 2004

86

Circumventing ASLR

Learn the memory layout specifics of your
target for attack [Durden 02]

Possible using format string attack etc.
May leak accidentally, e.g., via “nonce” in
a protocol or Windows error reporting

Epidemic can automatically craft code

Use brute force [Unpublished, Dan Boneh’s team 04]

Only 16 bits of shuffle on 32-bit machines
Easy to exhaust keyspace (automatically)

Security Summer School
U. Oregon, June 2004

87

A Quick Advertisement

For students from (Northern) Europe

NordSec 2004 Workshop
4th - 5th November Helsinki, Finland

If you have some papers/work/TRs
Submit it and show up

Security Summer School
U. Oregon, June 2004

88

Outline
1. Execution Monitoring Fundamentals

Programs and properties from traces
Security Policy as Security Automata
Introduction to Inlined Reference Monitors

2. Monitoring Machine Code Execution
Software Fault Isolation
Buffer Overflows and Mitigations

3. Advanced IRMs & future work
Low-level Actions and Event Synthesis
Static Analysis, Alternate Remedies, etc.

1. Execution Monitoring Fundamentals
Programs and properties from traces
Security Policy as Security Automata
Introduction to Inlined Reference Monitors

2. Monitoring Machine Code Execution
Software Fault Isolation
Buffer Overflows and Mitigations

3. Advanced IRMs & future work
Low-level Actions and Event Synthesis
Static Analysis, Alternate Remedies, etc.

Security Summer School
U. Oregon, June 2004

89

Sample Vulnerability Discovery
[SolarDesigner01] [Slides, Halvar Flake 02]

Surprisingly easy to find vulnerability

Vulnerability types often translate
Heap manager problem in glibc.so
Heap problem in Windows 2000

Security Summer School
U. Oregon, June 2004

90

Win32 heap management model

Heap Structure Exploit Generalities

Physical Memory
Kernel-level Virtual Memory ManagerKernel

Mode

Virtual Memory API

NT Heap
Memory

API

Libc Heap
Management

API

Application Code

Customized
Heap

implementation

User
Mode

Security Summer School
U. Oregon, June 2004

91

Win2k Heap Manager (I)

Heap Structure Exploits

LocalAlloc()

HeapAlloc()

GlobalAlloc()

RtlAllocateHeap()

Kernel32.DLL NTDLL.DLL

Security Summer School
U. Oregon, June 2004

92

RtlAllocateHeap (I)
RtlAllocate

HeapSlowly()

Allocate from
Lookaside Table

Check Flags
and smaller than 1024

Return block…
New allocation
from the heap

Security Summer School
U. Oregon, June 2004

93

RtlAllocateHeap (II)

New allocation
from the heap

Size
check

Smaller than
1024 Bytes

Larger than
1024 BytesLarge-Heap

Allocator
Small-Heap

Allocator

Security Summer School
U. Oregon, June 2004

94

Win2k Heap Manager (II)

Heap Structure Exploits

After two allocations of 32 bytes each our heap memory
should look like this:

+0

+32

+64

Block A
control data

Block B
control data

Memory Block A

Memory Block B

Uninteresting memory

Security Summer School
U. Oregon, June 2004

95

Win2k Heap Manager (III)

Heap Structure Exploits

Now we assume that we can overflow the first buffer
so that we overwrite the Block B control data.

+0

+32

+64

Block A
control data

Block B
control data

Memory Block A

Memory Block B

Uninteresting memory

Security Summer School
U. Oregon, June 2004

96

Win2k Heap Manager (IV)

Heap Structure Exploits

When Block B is being freed, an attacker has supplied the
entire control block for it. Here is the rough layout:

+0

+4

Size of the previous
Block divided by 8

8 bit for
Flags

Field_4

Size of this Block
divided by 8

If we analyze the disassembly of _RtlHeapFree() in NTDLL,
we can see that our supplied block needs to have a few
properties in order to allow us to do anything evil.

Security Summer School
U. Oregon, June 2004

97

Win2k Heap Manager (V)

Properties our block must have:

Bit 0 of Flags must be set
Bit 3 of Flags must be set
Field_4 must be smaller than 0x40
The first field (own size) must be larger than 0x80

The block ‘XXXX99XX’ meets all requirements.
We reach the following code now:

Heap Structure Exploits

Security Summer School
U. Oregon, June 2004

98

Win2k Heap Manager (VI)
add esi, -24

Heap Structure Exploits

+0

+32

+64

Block A
control data

Block B
control data

Memory Block A

Memory Block B

Uninteresting memory

ESI points here …now here …

Security Summer School
U. Oregon, June 2004

99

Win2k Heap Manager (VII)
mov eax,[esi]
mov esi, [esi+4]

Heap Structure Exploit

+0

+32

+64

Block A
control data

Block B
control data

Memory Block A

Memory Block B

Uninteresting memory

eax esi

Security Summer School
U. Oregon, June 2004

100

Win2k Heap Manager (VIII)

mov [esi], eax ; Arbitrary memory overwrite

Heap Structure Exploits

+0

+32

+64

Block A
control data

Block B
control data

Memory Block A

Memory Block B

Uninteresting memory

eax esi

Security Summer School
U. Oregon, June 2004

101

Win2k Heap Manager (IX)

If we can overwrite a complete control block (or at least 6
bytes of it) and have control over the data 24 bytes before
that, we can easily write any value to any memory location.

It should be noted that other ways of exploiting exist for
smaller/different overruns – use your Disassembler and
your imagination.

Heap Structure Exploits

Security Summer School
U. Oregon, June 2004

102

Demo

Fiddling with Machine Code

Security Summer School
U. Oregon, June 2004

103

Outline
1. Execution Monitoring Fundamentals

Programs and properties from traces
Security Policy as Security Automata
Introduction to Inlined Reference Monitors

2. Monitoring Machine Code Execution
Software Fault Isolation
Buffer Overflows and Mitigations

3. Advanced IRMs & future work
Low-level Actions and Event Synthesis
Static Analysis, Alternate Remedies, etc.

Security Summer School
U. Oregon, June 2004

104

General Execution Monitoring

Not tied to any one type of event
But must be able to accurately identify events

Validity checks can maintain state etc.
For instance: ensure execution order of A, B, C

A B C

Program P running…

Security Summer School
U. Oregon, June 2004

105

Efficient IRM Enforcement
Evaluate SA policy at every point in program

Often no need to check at a machine instruction
“No div zero”: Only check before “div” instructions

Simplify SA by partial evaluation
Insert security policy checking code before every instruction

Use static knowledge of insertion point to simplify the check

Application

Secure
application

Specialize

AS ′′

AS ′

SA

Security
automaton

Insert

SA

SA

IRM Rewriter
Compile

Security Summer School
U. Oregon, June 2004

106

Example IRM Rewriting

Policy: Push exactly
once before returning 0 1

ret)push(∨¬ push¬

push

Insert security
automata

Evaluate
transitions

Simplify
automata

Compile
automata

ret

mul r1,r0,r0

push r1

ret

mul r1,r0,r0

push r1

ret

mul r1,r0,r0

push r1

ret

mul r1,r0,r0

if state==0
then ABORT

0 1

¬ (push ∨ ret) ¬ push

push

0 1

¬ (push ∨ ret) ¬ push

push

0 1
true

0 1
false

0 1
true

true

1

push r1

if state==0
then state:=1
else ABORT

false false

false true

0 1

¬ (push ∨ ret) ¬push

push
0 1

true true

false
0,1

true

Security Summer School
U. Oregon, June 2004

107

Combining SFI and EM

...

ldc 1

putstatic SASI.stateClass.state

invokevirtual java.io.FileInputStream.read()I

...

getstatic SASI.stateClass.state

ifeq SUCCEED

invokestatic SASI.stateClass.FAIL()V

SUCCEED:

invokevirtual java.net.SocketOutputStream.write(I)V

...

0 1

read¬ send¬

read

No sending on the
network after
reading any files

Security Summer School
U. Oregon, June 2004

108

Java IRM: PSLang & PoET

Java IRM Implemention
Rewrite JVML classes
Use guarantees given
by the JVML verifier

PSLang: Policy Specification Language
• Exposes JVM abstractions: methods, classes, ...

PoET: Policy Enforcement Toolkit
Captures JVM events: method calls, exceptions, ...

Small addition to TCB: approx. 17.5K lines

IRM
Rewriter

Original Application

Secured
ApplicationPolicy

IRM
Rewriter

Original Application

Secured
ApplicationPolicyPSLang

PoET

Security Summer School
U. Oregon, June 2004

109

Add Security State
Rich set of data structures available
State either global or tied to program objects
Not visible to original program

Events trigger Security Updates
Updates: Computation on security state
Any event may trigger an update

• Begin/end of methods, instructions, ...
• Both load-time and run-time system events

Updates can invoke HALT primitive

Elements of IRM Specification

Security Summer School
U. Oregon, June 2004

110

Elements of PSLang

Seperation of load- vs. run-time
Load-time synthesis of extended
semantics

Designed for partial evaluation
Run-time-constant data structures
Side-effect-free functions

Global and context-local state
Local tied to classes or object instances

Complete, modular, and extendable

Security Summer School
U. Oregon, June 2004

111

Writing IRM Security Policies

IRMs allow arbitrarily tight constraints
Pin down app behavior, implementation details,
even allowable input data
In the limit amounts to 2nd implementation

Can enforce system-call security for any API
E.g., field access and calls to library methods

Must know & trust all such library APIs
Implementation cannot betray this trust

• Example: reading files via font-rendering

Library policies are both reusable and important

Security Summer School
U. Oregon, June 2004

112

Event Synthesis Required

Security Event Synthesis
Higher-level semantic information derived
from computation on lower-level events
E.g., firewall stateful content inspection

Most policies need additional semantics
“Push before Ret” and stack memory
“No-div-zero” and byte-aligned jumps

High-level API policy ⇒ constrain low-level

Mechanism shouldn’t hard-code synthesis

Security Summer School
U. Oregon, June 2004

113

Examples:
Limit open windows & Chinese Wall

IMPORT LIBRARY Lock;
ADD SECURITY STATE {

int openWindows = 0;
Object lock = Lock.create();

}

ON EVENT begin method
WHEN Event.is("Window.open()")
PERFORM SECURITY UPDATE {

Lock.acquire(lock);
if(openWindows == 10) {
FAIL["Too many windows"];

}
openWindows = openWindows+1;
Lock.release(lock);

}

ON EVENT begin method
WHEN Event.is("Window.close()")
PERFORM SECURITY UPDATE {

Lock.acquire(lock);
openWindows = openWindows-1;
Lock.release(lock);

}

IMPORT LIBRARY Map;
ADD SECURITY STATE {

Object map = Map.create();
}

PROCEDURE Object getCategory(Object name) {
if(name=="IBM") {return "COMPUTERS";}
if(name=="Apple") {return "COMPUTERS";}
if(name=="GM") {return "CARS";}
if(name=="BMW") {return "CARS";}
FAIL["Unsupported company ",name];

}

ON EVENT begin method
WHEN Event.methodNameIs("accessCompany")
PERFORM SECURITY UPDATE {

Object C = State.get("$methodArg1");
Object category = getCategory(C);
Object oldC = Map.get(map, category);
if(oldC == null) {

Map.put(map, category, C);
} else {

if(C != oldC) {
FAIL["Can't access company ", C];

}
}

}

Security Summer School
U. Oregon, June 2004

114

Example IRM Tradeoff

Caller or callee instrumentation ?
If callee: everybody pays price

Library callee used by multiple principals
must fork codebase or do a runtime check

If caller: must do a lot of work
Especially for calling object methods

Synthesis required for derived classes etc.

IRM specification writer can choose

Security Summer School
U. Oregon, June 2004

115

Library policies

Most IRM enforcement probably on libraries
Must know semantics to regulate use
Useful policies apply to more than one program

Each API can be like a system-call interface
Includes objects, method calls and direct access
Library design affects potential policies

High-level API policies might be subverted
Policies must either preclude lower-level access
or synthesize that high-level operation occurred

Security Summer School
U. Oregon, June 2004

116

Racing issues

Must enforce security policies on multi-
threaded Java programs

Must serialize check/event pairs
cobegin{Crd;Rd || Csnd;Snd}
may run Csnd;Crd;Rd;Snd

Time of check to time of use
Hard with complex history-based policies
Can sometimes emulate OS copy-in
behavior

PSLang offers synchronization mechanisms

Security Summer School
U. Oregon, June 2004

117

IRMs in Retrospect

Writing good policies is hard
Extensive synthesis often required

App-level policies tied to app semantics
Makes most sense for library code

Environment agnostic
OS independent, can be added after-the-
fact, and will travel

IRMs can secure use of high-level APIs
With flexibility to make tradeoffs

Security Summer School
U. Oregon, June 2004

118

“Modern” Java/.NET Policies

Modern policies
may use a lot of
properties and
historical data to
make access
control decisions
Java/MS’s CLR
use the stack
trace to implicitly
constrain sets of
permissions

Security Summer School
U. Oregon, June 2004

119

Java Stack Inspection

Two-second refresher course
Enforcement based on runtime call stack
Each stack frame is in a protection domain
Each protection domain has set of premissions
checkPermission: Stack has suitable permissions

doPrivileged: Amplification of available permissions

File access
permissions:

display:
...
load(`thesis.txt')
use plain font
show on screen
...

/home/ue/*

Protection domain:
Untrusted Applet

use plain font:
...

doPrivileged {
load(`Courier')

}
...

/fonts/*

Protection domain:
GUI Library

load(file F):
...
checkPermission(F,read)
access on disk(F)
...

<<ALL FILES>>

Protection domain:
File System

Security Summer School
U. Oregon, June 2004

120

How are the primitives actually used?

IRMs allow playing with the tradeoffs
Allows synthesis of security-relevant data...
...or access to any interface that exposes it

Can make an IRM as specific as wanted
...to a particular app, or a particular policy

Implementing Stack Inspection

Benchmark
2,476,731
1,456,970

19,580
35,997,662

1,002
0
0

101

5,333
1,067
6,509

205

(18,7)
(12,4)
(8,6)
(5,7)

71
0
0

201

Jigsaw
javac
tar
MPEG_Play

Method calls doPrivs checkPerms Thrds

Security Summer School
U. Oregon, June 2004

121

Method call
Push/pop protection
domains on shadow call
stack

doPriv { S }
Push/pop doPriv token
on shadow call stack,
before/after S

checkPerm(P)
Scan shadow call
backwards, check P for
each domain, stop on
doPriv or end

IRMSPS : The obvious first approach
• Maintain shadow call stack to consult in enforcement

Method call
Nothing

doPriv { S }
Get current call stack,
push/pop its depth onto
a seperate privStack

checkPerm(P)
Get current call stack, scan it
backwards and check P for
the domain for each frame,
stop if reached the depth on
the top of privStack or end

IRMLazy : Optimize for the most common case
• Pry out JVM’s call stack & compute enforcement data

Stack Inspection IRMs
[Erlingsson Schneider 00]

Security Summer School
U. Oregon, June 2004

122

Nitty-gritty details

Security Summer School
U. Oregon, June 2004

123

IRM Performance

IRMSPS

IRMLazy

End-to-end IRMLazy performance
competitive with Sun’s JVM’s built-in
stack inspection

1,00µs 1.7µs 7.7µs 6.5µs
Method call doPriv checkPerm New Thread

0µs 23.4µs 22.4µs 29.8µs
Method call doPriv checkPerm New Thread

Security Summer School
U. Oregon, June 2004

124

Beyond EM

IRMs more than safety properties
Can include static analysis

• Load-time security updates already do this

On violation, truncation not only option
• E.g., throw exception as remedial action

However, harder to reason about
Composition problem even harder

Subject of current study

Security Summer School
U. Oregon, June 2004

125

Virtualize or Modify Execution

Allow execution monitors
that change execution
behavior without halting it
Richer but more difficult to reason about

example info-flow: always return 1

can change return value in this case
(more generally, can normalize all
external behavior)

Break out of “only security policies” box

Security Summer School
U. Oregon, June 2004

126

Example Problem

Policies undo the effect of each other
Composition may result in bad policy

Even so policy is *always* violated

Security Summer School
U. Oregon, June 2004

127

System Security Policies
Higher level operations (not just machine instructions)
Kernel provides RM and validity checks

void main()
{

OFSTRUCT ofs;
HFILE f = OpenFile("file.txt",&ofs,OF_PROMPT);

}

Security Summer School
U. Oregon, June 2004

128

File System Integrity Policy

Execution monitoring used to enforce
many properties by operating systems
Apart from security, integrity of data
structures etc.

Security Summer School
U. Oregon, June 2004

129

Buffer Overflow Policy

Security Summer School
U. Oregon, June 2004

130

Related work

Lots of related work, old and new:
Dates back to SDS 940, at Berkeley in ’69

Software Fault Isolation and Verifiable Code
Certification: JVML verifiers, PCC, TAL, etc.
Reference Monitor Literature is relevant

Application-specific security (e.g., Clark&Wilson)
History-based access control

Program modification: ATOM and AspectJ
Theory of Aspects [Walker Zdancewic Ligatti 03]

Also, Generic Software Wrappers, Naccio, etc.

Security Summer School
U. Oregon, June 2004

131

Type Encapsulation of State
[Walker 00]

Sophisticated type system
Certifies (a la PCC or TAL) that an
automaton policy is enforced
Types encodes passing of security state

Transformations and lemmas depend on
particulars of the specific security
automata(s) to be enforced

Simpler notion of automata
Not 1st-order predicates on transitions

Security Summer School
U. Oregon, June 2004

132

More Efficient Rewriting
[Colcombet Fradet 00]

Elaborate new theory and techniques
Transform code according to policy
Modified code propagates run-time
encoding of security state
State checked to block illegal actions
Static analysis reasons about state

When analysis impossible, runtime
check inserted (similar to cqual)

Security Summer School
U. Oregon, June 2004

133

Efficiency via Partial Evaluation
[Thiemann01, 04?]

Standard specialization techniques
All work on partial evaluation applies

Transform a monitoring interpreter into
a non-standard (security) compiler

Get the IRM rewriter for free

Nicely propagates check results etc.
Was exp.time with code duplication

Newer result: linear with no duplication

Security Summer School
U. Oregon, June 2004

134

More Enforceable Security
[Bauer Ligatti Walker 02, 04]

Formal definition automata with side effects

Uniformity and non-uniformity (Σ ⊂ A*)
Figure shows precise non-uniform

Insert equally powerful as Edit
Suppression strict subset
Truncation more restrictive

If “precise uniform” then all three
circles equal EM+truncation
On non-uniform systems
can do more than
truncation automata

Insert == Edit

Trunc

Suppress

?

Security Summer School
U. Oregon, June 2004

135

Edit Automata
[Ligatti Bauer Walker 04]

Precise means you have to accept good
sequences in lockstep with their generation

so can’t use the “edit tricks” on a good trace

Effective means we can suppress actions and
then later insert their (atomic) effects into trace
Transparency accounts
for semantic equality
between input & output
Conservative mean
any good sequence suffices

Edit

Ins Trunc Supp

Security Summer School
U. Oregon, June 2004

136

Calculus for Composing SP
[Bauer Ligatti Walker 04]

Types and Effects for Non-interfering EM [BLW02]

Given a policy what are the actions
(what can it suppress and insert)
Make sure that the edit actions of two
concurrently executing monitors don’t affect
the inputs relevant to each other
Four combinators (two seq. two parallel)

seq. combinators can be affected by effects

Authors extend in later work to allow programmers
to develop their own combinators (Polymer)

Security Summer School
U. Oregon, June 2004

137

EM Computability Classes
[Hamlen Morrisett Schneider 04] [Viswanathan00]

Looks at detectors and complexity
Some detectors may reject “too early”

Relates computability and enforcement

Security Summer School
U. Oregon, June 2004

138

Limiting the Security Automata
[Fong04]

Constrain the capabilities of the
Execution Monitor (aka SA)
Restrict EM to track a shallow history
Sufficient for

Chinese Wall
Low-water-mark
One-out-of-k authorization

etc.

Security Summer School
U. Oregon, June 2004

139

Another Extension to EM

Introduce static analysis
can incorporate any deterministic finite-time
decision procedure, as a step in monitoring
mechanism

Use as one step of security automaton
can do static analysis before execution
(and get guarantees about all traces)
can do static analysis in the middle
(are all suffixes of current state good?)

• similar to partial evaluation of program
• useful, say for locks, check at acquire that will it be

released etc.

Security Summer School
U. Oregon, June 2004

140

More Lectures

More information on Enforceable
Security Policies, Software Fault
Isolation, Java Stack Inspection, and
Inlined Reference Monitors

http://www.cs.cornell.edu/html/cs513-
sp99/03.lectsmry.html

http://www.cs.cornell.edu/Courses/cs5
13/2000sp/02.outline.html

Security Summer School
U. Oregon, June 2004

141

Bibliography 1 of 4
[Alpern Schneider 87] Recognizing safety and liveness. Distributed

Computing 2, 3 (1987), 117--126. [TR 86-727]

[Anderson72] Computer security technology planning study. Technical
Report ESD-TR-73-51, U.S. Air Force Electronic Systems Division,
Deputy for Command and Management Systems, HQ Electronic
Systems Division (AFSC), October 1972.

[Bauer Ligatti Walker 02] More Enforceable Security Policies. In the
Workshop on Foundations of Computer Security (FCS 02).
Copenhagen, July 2002.

[Bauer Ligatti Walker 04] Types and Effects for Non-interfering
Program Monitors. International Symposium on Software Security.
Tokyo, November, 2002. Revised for printing in Software Security -
- Theory and Systems, LNCS 2609, Springer, pp 154--171.
December 2002.

[Brewer Nash 89] The Chinese Wall Security Policy. Proceedings of
1989 IEEE Symposium on Security and Privacy,1989: 206-214

Security Summer School
U. Oregon, June 2004

142

Bibliography 2 of 4
[Colcombet Fradet 00] Enforcing Trace Properties by Program Transformation,

Proc. of Principles of Programming Languages, POPL'00, ACM Press, pp.
54-66, Boston, January 2000.

[Cowan et al. 98] StackGuard: Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks. Crispin Cowan, Calton Pu, Dave Maier, Heather
Hinton, Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian
Zhang. Published in the proceedings of the 7th USENIX Security
Symposium, January 1998, San Antonio, TX.

[Durden 02] Bypassing PaX ASLR protection, Phrack, 2002-07-28
[Erlingsson Schneider 99] SASI enforcement of security policies: A retrospective.

Proceedings of the New Security Paradigms Workshop (Caledon Hills,
Ontario, Canada, September 1999), Association for Computing Machinery,
87--95.

[Erlingsson Schneider 00] IRM enforcement of Java stack inspection.
Proceedings 2000 IEEE Symposium on Security and Privacy (Oakland,
California, May 2000), 246--255. [TR 2000-1786]

[Fong04] Access Control By Tracking Shallow Execution History. Proceedings
2004 IEEE Symposium on Security and Privacy (Oakland, California, May
2004)

[Jones Kelly 97] Backwards-compatible bounds checking for arrays and pointers
in C programs. Proceedings of the International Workshop on Automatic
Debugging, pages 13–26, May 1997.

Security Summer School
U. Oregon, June 2004

143

Bibliography 3 of 4
[Hamlen Morrisett Schneider 04] Computability classes for

enforcement mechanisms. Submitted for publication. Also
available as Cornell Computer Science Department Technical
Report TR 2003-1908, August 2003.

[McLean94] A General Theory of Composition for Trace Sets Closed
Under Selective Interleaving Functions. Proceedings of 1994 IEEE
Symposium on Research in Security and Privacy, 1994. PostScript,
PDF

[Ligatti Bauer Walker 04] Edit Automata: Enforcement Mechanisms for
Run-time Security Policies. Submitted, December 2002; revised
June 2003 for the International Journal of Information Security

[PaX] http://pax.grsecurity.net/

[Ruwase Lam 04] A Practical Dynamic Buffer Overflow Detector.
Proceedings of the 11th Annual Network and Distributed System
Security Symposium, February 2004

Security Summer School
U. Oregon, June 2004

144

Bibliography 4 of 4
[Schneider00] Enforceable security policies. ACM Transactions on Information

and System Security 3, 1 (February 2000), 30--50. [TR 99-1759]

[Small97] MiSFIT: A Tool for Constructing Safe Extensible C++ Systems.
Proceedings of the Third Usenix Conference on Object-Oriented
Technologies, Portland, OR, June 1997.

[Thiemann01] Enforcing Security Properties by Type Specialization. In European
Symposium on Programming (ESOP'01), volume ? of Lecture Notes in
Computer Science, Genova, Italy, April 2001

[Wahbe Lucco Anderson Graham 93] Efficient Software-Based Fault Isolation.
Proceedings of the 14th ACM Symposium on Operating System Principles
(SOSP), December 1993.

[Walker 00] A Type System for Expressive Security Policies. In the Twenty-
Seventh ACM SIGPLAN Symposium on Principles of Programming
Languages. Boston, January 2000. A previous version of this paper
appeared in the FLOC'99 Workshop on Run-time Result Verification, Trento,
Italy, July 1999.

[Walker Zdancewic Ligatti 03] A Theory of Aspects. ACM SIGPLAN International
Conference on Functional Programming, August 2003

