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Plan

2

• Introduction to access control
• Some logical approaches (algorithms, 

verification, logical languages and theories)
• A logic with “says” for distributed systems
• SDSI
• Binder
• A bit on PCC and related ideas
• A bit on XrML



The access control model
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• Elements:
– Objects or resources
– Requests
– Sources for requests, called principals
– A reference monitor to decide on requests

Reference
monitor

ObjectDo
operationPrincipal

GuardRequestSource Resource



Authentication vs. access control
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• Access control (authorization): 
– Is principal A trusted on statement S?
– If A requests S, is S granted? 

• Authentication:
– Who says S?



An access control matrix 
[Lampson, 1971]
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objects

principals

file1 file2 file3 file4

user1 rwx rw r x

user2 r r x

user3 r r x



Implementing access control
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Two strategies (often combined): 
ACLs and capabilities.

• ACL: a column of an access control matrix,
attached to an object.

• Capability: (basically) a pair of an object and an 
operation, for a given principal.
It means that the principal may perform the 
operation on the object.



The principle of complete mediation

7

• Every access to every object is checked.

• This principle can be enforced in several ways:
– The OS intercepts some of the subject's requests.

The hardware catches others. (E.g., as in Unix.)
– A software wrapper / interpreter intercepts some of 

the subject's requests. (E.g., as in the JVM.)



More on ACLs
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• An ACL says which subjects can access a 
particular object.

• It is a column of an access control matrix, 
typically maintained “near” the object that it 
protects.

• ACLs can be compact.
• ACLs can be easy to review.
• They can have negative entries (and then 

evaluation may be order-depedendent).
• Revoking a subject can be painful.



More on capabilities
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• An alternative is to associate capabilities with 
subjects.

• These capabilities form a row of an access 
control matrix for the subject.

• Capabilities are easy to pass around 
(so they enable delegation).

• They can be hard to revoke.



Implementing capabilities
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• A capability identifies an operation on an object. 
• It means that the holder can perform the 

operation on the object.
• Subjects should not be allowed to forge 

capabilities.
• This leads to implementations of capabilities:

– stored in a protected address space,
– with special tags with hardware support,
– as references in a typed language,
– with a secret,
– with cryptography, e.g., certificates.



ACLs and capabilities
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• ACLs and capabilities are dual.
• Both can yield practical implementations of 

access matrices.
• In actual systems, they are often combined.



Conjunctions
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• Sometimes a request should be granted only if 
it is made jointly by several principals.

• A conjunction may or may not be made explicit 
in the access policy.



Groups and roles
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• Principals can be organized into groups.
• Principals can play roles.
• These groups and roles may be used as a level 

of indirection in access control.
– E.g., any member of a group G may access a file f.



Groups and roles (cont.)
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• Suppose that any member of a group G may 
access a file f owned by A.
– G may be maintained by someone other A.
– The group may change over time, without immediate 

knowledge of A.
– The ACL for f should be short and clear.
– Proofs of memberships resemble (are?) capabilities.
– Access to f might be partly anonymous.
– Still, A may require a proof of identity at each f 

access, for auditing.



More on objects and operations
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• Objects and operations may also be put in 
groups, e.g., 
– all company files,
– all read operations on an object.

• Sometimes operations should be bundled, e.g.,
– read a patient's record,
– write a log record.



Design choices
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• Principals, objects, and operations should have 
the “right” granularity and be at the right level of 
abstraction
– for ease of understanding,
– to avoid giving away too much privilege.



Programs

17

• Programs may be principals too.
But then:
• we need to deal with call chains,

– e.g., applet on browser on OS,
• we still need to connect programs to other 

principals
– who write them or edit them,
– who provide them,
– who install them,
– who call them.



Installing programs
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• Programs should be set up so that they get 
appropriate rights when they run.

• Programs should be adequately protected from 
editing.



Running programs
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• What are the run-time rights of a program?
– those of the caller,
– those of the program owner, or
– some combination, or
– something else, e.g, because of intrinsic properties.
E.g., the program that moves incoming mail to a user's 

inbox may need to combine system rights and user 
rights.

• Some answers: setuid, program identities, 
code access security (with stack inspection, 
with history-based access control, …), 
proof-carrying code, …



Protection and confinement
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• At run-time, programs should be protected and 
confined, that is, limited to communicate over 
proper interfaces.

• This is often the job of the computing platform 
(OS + hardware).
– It can implement address spaces so that programs in 

separate spaces cannot interact directly 
(e.g., cannot smash or snoop on one another).

• A language and its run-time system can provide 
finer control over communication.
– (Remember the implementations of capabilities?)



Common dangers
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• Access control can be insufficient or irrelevant
– when it is implemented incorrectly,
– when the underlying operations are implemented 

incorrectly,
– when dangerous code is privileged,
– when it is circumvented.



Circumventing access control
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• Sometimes the reference monitor does not 
protect all important objects and operations, 
or does not protect them all the time.
– Race conditions.
– Data recovery from disks.
– Hostile platforms (e.g., for DRM systems).
– Users that give out sensitive information.
– …



Issues
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• Access control is pervasive
– applications
– virtual machines
– operating systems
– firewalls
– doors
– …

• Access control seems difficult to get right.
• Distributed systems make it harder.



General theories and systems
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• Over the years, there have been many theories 
and systems for access control.
– Logics
– Languages
– Infrastructures (e.g., PKIs)
– Architectures

• They often aim to explain, organize, and unify 
access control.

• They may be intellectually pleasing.
• They may actually help.



Algorithmic analysis 
[starting with Harrison, Ruzzo, and Ullman, 1976]

25

• A system has finite sets of rights and 
commands. 

• A configuration is an access control matrix.
• A command is of the form “if conditions hold, 

perform operations” (with some parameters).
– The conditions are predicates on the matrix.
– The operations add or delete rights, principals, and 

objects.
– E.g.:



Algorithmic analysis (cont.)
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• Safety means that untrusted subjects cannot 
access a resource in any reachable state.

• Safety is undecidable (in general).



Algorithmic analysis (cont.)
[in particular, Li, Winsborough, and Mitchell, 2003]
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• Not all interesting problems are undecidable!
• Consider the containment problem:

In every reachable state, does every principal 
that has one property (e.g., has access to a 
resource) also have another property (e.g., 
being an employee)?

For different classes of systems, this problem is 
decidable (in coNP or coNEXP).



Formal verification
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A formally verified security kernel is widely 
considered to offer the most promising basis for 
the construction of truly secure computer 
systems at least in the short term. A number of 
kernelized systems have been constructed  and 
various models of security have been 
formulated to serve as the basis for their 
verification.
Despite the enthusiasm for this approach there 
remain certain difficulties and problems in its 
application […]

(Rushby, 1981)



A logic from matrices
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• An access control matrix may be represented 
with a ternary predicate symbol may-access.

• The setting may be a fairly standard, classical 
predicate calculus.

• We may then write formulas such as:

may-access(Alice, Foo.txt, Rd)

and rules such as:

may-access(p, o, Wr) ⇒ may-access(p, o, Rd)



A logic from matrices: questions
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• Does this really help?
– In describing policies?
– In analyzing policies?

• We may need many more constructs and 
axioms for representing security policies. 
For example:
– may-jointly-access(p,q,o,r)
– owns(p,o)
– …
(When are we done?)



Some references

31

• “A Unified Framework for Enforcing Multiple 
Access Control Policies” by Jajodia, Samarati, 
Subrahmanian, and Bertino (1997)

• “A Logical Language for Expressing 
Authorizations” by Jajodia, Samarati, and 
Subrahmanian (1997)

• “A Logical Framework for Reasoning about 
Access Control Models” by Bertino, Catania, 
Ferrari, and Perlasca (2003)

(See my paper “Logic in Access Control” 
for additional references.)



Access control in distributed systems
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• Many characteristics of distributed systems 
make access control harder: 
– size
– faultiness

e.g., revocation messages may get lost
– heterogeneity

e.g., of communication channels
of protection mechanisms

– autonomy and lack of central administration
and therefore of central trust

– …



An approach
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• A notation for representing principals and their 
statements, and perhaps more:
– objects and operations,
– trust,
– channels,
– …

• Derivation rules



Some early ideas
(Excerpts of a message from Roger Needham, August 1987)
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• Notations
P$|= S Principals in the set P$ are 

the guarantors for S
C ||- S Channel C actually asserts S
C -> P Channel C authenticates Principal P

• Postulates
C ||- S, C -> P
-------------------
P |= S



A calculus for access control
[Abadi, Burrows, Lampson, and Plotkin, 1993]
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• A simple notation for assertions 
– A says S
– A speaks for B

• With logical rules
– ⊢ A says (S ⇒ T) ⇒ (A says S) ⇒ (A says T)
– If ⊢ S then ⊢ A says S.
– ⊢ A speaks for B ⇒ (A says S) ⇒ (B says S)
– ⊢ A speaks for A
– ⊢ (A speaks for B ∧ B speaks for C) ⇒ A speaks for C



An example
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• Let good-to-delete-file1 be a proposition.
Let B controls S stand for    

(B says S) ⇒ S
• Assume that 

– B controls (A speaks for B)
– B controls good-to-delete-file1
– B says (A speaks for B)
– A says good-to-delete-file1

• We can derive:
– B says good-to-delete-file1
– good-to-delete-file1



Another example
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• Let good-to-delete-file2 be a proposition too.
• Assume that 

– B controls (A speaks for B)
– B controls good-to-delete-file1
– B says (A speaks for B)
– A says (good-to-delete-file1 ∧ good-to-delete-file2)

• We can derive:
– B says good-to-delete-file1
– good-to-delete-file1



Says
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export

import

context 1
statement

context 2
context 1 says

statement

Certificate
statement

(signed: context 1 )

export

import

context 1
statement

context 2
context 1 says

statement

Channel 
statement

(from: context 1 )

Says represents 
communication 
across contexts.

Says abstracts from 
the details of 
authentication.



Choosing axioms
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• Standard modal logic?
– (As above.)

• Less?
– Treat says “syntactically”, with no special rules

(Halpern and van der Meyden, 2001)
• More?

– ⊢ S ⇒ (A says S)
(Lampson, 198?; Appel and Felten, 1999)
but then ⊢ (A says S) ∧ ¬ S ⇒ (A says false)



Semantics
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• Following standard semantics of modal logics, a 
principal may be mapped to a binary relation on 
possible worlds.
A says S holds at world w 

iff
S holds at world w’ 
for every w’ such that w A w’

• This is formally viable, also for richer logics.
• It does not give any insight on the nature of 

authority and duty, but it is sometimes useful.



Proof strategies
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• Style of proofs:
– Hilbert systems
– Tableaux 

(Massacci, 1997)
– …

• Proof distribution:
– Proofs done at reference monitors
– Partial proofs provided by clients

(Wobber et al., 1994; Appel and Felten, 1999)
– With certificates pulled or pushed



Compound principals
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• Compound principals represent a richer class of 
sources for requests:
– A ∧ B               Alice and Bob 

(cosigning a document)
– A for B             ws17.uxyz.edu for Alice

(connecting to the web server)
– A quoting B     server.uxyz.edu quoting Alice

(sending a file to the printer)
– A as R             Alice as Reviewer

(opening submissions)
• A ∧ B speaks for A, etc.



Groups
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• We may represent each group by a principal. 
Then, when A is a member of G, we may write 
that A speaks for G.

• In practice, it is harder to know when A is not a 
member of G.



Running programs
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• Programs need not be fully trusted, not even 
the operating system.

• Programs can be put into groups.
• Formally, programs can be treated much like 

roles, and even as roles.



An example
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• The cast:
– CA, the certification authority, with public key KCA

– WS, a workstation, with public key KWS

– OS, an operating system, with no key
– (WS as OS), the resulting node, with ephemeral 

public key Kn

– bwl, a user, with public key Kbwl

– Kdel, an ephemeral public key for the node for bwl
– C, a secure channel to a file server
– TrustedNode and SysAdm, two groups



An example (cont.)
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• KCA says (KWS speaks for WS)
• KWS says (Kn speaks for (WS as OS))
• KCA says (Kbwl speaks for bwl)
• Kbwl says (Kdel speaks for ((WS as OS) for bwl))
• Kn says (Kdel speaks for ((WS as OS) for bwl))
• Kdel says (C speaks for ((WS as OS) for bwl))
• C says good-to-delete-file1
• And we may deduce:

((WS as OS) for bwl) says good-to-delete-file1



An example (cont.)
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• KCA says ((WS as OS) speaks for TrustedNode)
• KCA says (bwl speaks for SysAdm)
• Then we may deduce: 

TrustedNode for SysAdm
says good-to-delete-file1

• The ACL for file1 may say:
TrustedNode for SysAdm

controls good-to-delete-file1
• Then we conclude: good-to-delete-file1



Applications (1): Security in an 
operating system [Wobber et al., 1994]
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Workstation
hardware WS

Taos node

Accounting

Server
hardware

bsd 4.3

NFS Server

network
channel

C | pr

WS as Taos for bwl
Kn–1

Kws–1

pr
WS as Taos as
Accounting for bwl

C

bwl

file foo

SRC-node as Accounting for bwl
may read

Kbwl
-1

WS as Taos

Kbwl ⇒ bwl Kws ⇒ WS

WS as Taos ⇒ SRC-node



Applications (2): An account of security in 
JVMs [Wallach and Felten, 1998]
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Applications (3): A Web access control 
system [Bauer, Schneider, and Felten, 2002]
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Other languages and systems
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• PolicyMaker and KeyNote [Blaze et al.]

• SDSI [Lampson and Rivest]

• SPKI [Ellison et al.]

• D1LP and RT [Li et al.]

• SD3 [Jim]

• Binder [DeTreville]

• XrML 2.0
• …

• Several of the most recent are based on ideas and 
techniques from logic programming.



SDSI (a Simple Distributed Systems 
Security Infrastructure)
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• SDSI includes support for hierarchical public-
key certification (in the style of X.509).
– There can be a tree of authorities for associating 

principals with their public keys.
• It also supports local name spaces.

– Each principal can bind local names at wish.
• Local name spaces can be linked.

– A local name space may bind bwl to Ron’s Butler.
• SDSI allows definitions of groups and ACLs.
• SDSI was merged into SPKI, a Simple Public-

Key Infrastructure.



The meaning(s) of bindings
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• In SDSI, “principals are public keys”.
• So, what is the meaning of bindings?

lawyer ↦ K means that: 
lawyer is K
or that

K speaks for lawyer
(or some other asymmetric relation)

bwl ↦ Ron’s Butler means that:
bwl is Ron’s Butler
or that

Ron’s Butler speaks for bwl ??



The meaning(s) of bindings (cont.)
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• Only asymmetric meanings are viable.
• In fact, “speaks for” (or something similar) was 

intended by the authors.
• There are further delicate points and 

ambiguities, e.g., early vs. late binding.



An algorithm for name resolution
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Ref2(o, p) = if p is a global identifier f
then return f
else if p is a local name n

and n ↦ q in assumptions(o)
then return Ref2(o, q)
else if p is a compound name q’s r
then return Ref2(Ref2(o, q), r)
else fail



Some axioms [Abadi, 1998]
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• Reflexivity p ↦ p
• Transitivity p ↦ q ⇒ (q ↦ r  ⇒ p ↦ r)
• Left-mono p ↦ q  ⇒ (p’s r ↦ q’s r)
• Globality p’s g ↦ g if g is a global name
• Associativity (p’s q)’s r ↦ p’s (q’s r)

p’s (q’s r) ↦ (p’s q)’s r
• Linking p says (n ↦ r) ⇒ (p’s n ↦ p’s r)
• Speaking-for p ↦ q  ⇒ (q says S  ⇒ p says S)
+ standard propositional logic 
+ standard modal logic for says



Some semantics
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(Again, borrow from modal logics.)



Some results and further work
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• The algorithm can be simulated in the logic:
given a set of assumptions E, if Ref2(o, p) = g 
then E ⇒ (o’s p ↦ g) is provable.

• This logic is strictly stronger than the algorithm
(in several ways).

• SDSI and SPKI have rough corners anyway.
• There has been substantial subsequent work on 

logical accounts of SDSI and related systems.
– With special logics 

(e.g., Halpern and van der Meyden, 2001).
– With first-order logic 

(Li and Mitchell, 2003).



Alternative axioms 
[Halpern and van der Meyden, 2001]
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• Reflexivity p ↦ p
• Transitivity p ↦ q ⇒ (q ↦ r  ⇒ p ↦ r)
• Left-mono p ↦ q  ⇒ (p’s r ↦ q’s r)
• Globality K’s g ↦ g if g is a global name

and K is a key
• (Two more globality axioms)
• Associativity (p’s q)’s r ↦ p’s (q’s r)

p’s (q’s r) ↦ (p’s q)’s r



Alternative axioms (cont.)
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• Linking K cert (n ↦ r) ⇒ (K’s n ↦ K’s r)
• Key distinctness ¬(K ↦ K1 ) for K and K1

distinct keys
• Non-emptiness (p ↦ K1)  ⇒ (p’s K ↦ K)
• (Three more non-emptiness axioms)
+ standard propositional logic
+ additional axioms if the set of keys is finite
but nothing more for cert!



Alternative axioms (cont.)
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• Closer fit with Ref2
• Closer fit with a semantics
• More complexity
• Different account of “saying”



Comments
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We remark that, in a sense, our task is much 
easier than Abadi’s, since we give the 
constructs in the logic a somewhat narrower 
reading than he does. Abadi tends to intertwine 
and occasionally identify issues of naming and 
issues of rights and delegation. (Such an 
identification is also implicitly made to some 
extent in designs such as PolicyMaker
[BFL96].) We believe that it is important to treat 
these issues separately.

(Halpern and van der Meyden)



Binder

63

• Binder is a relative of Prolog. 
• Like Datalog, it lacks function symbols.
• It also includes the special construct says.
• It does not include much else.



An example in Binder
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• Facts
– owns(Alice, Foo.txt).
– Alice says good(Bob).

• Rules 
– may_access(p, o) :- owns(q, o), blesses(q, p).
– blesses(Alice, p) :- Alice says good(p).

• Conclusions
– may_access(Bob, Foo.txt).



Binder’s proof rules
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• Binder includes a standard resolution rule.
• In addition, Binder includes a rule for importing 

formulas from a context F to a context D.
– The rule adds a “F says” in front of all atoms without 

a “says”.
– The rule applies only to clauses where the head 

atom does not have “says”.



Binder’s proof rules: example

66

• Suppose F has the rules
– may_access(p, o) :- owns(q, o), blesses(q, p).
– blesses(Alice, p) :- Alice says good(p).
– Alice says good(Bob).

• D may import the first two as:
– F says may_access(p, o) :-

F says owns(q, o), F says blesses(q, p).
– F says blesses(Alice, p) :- Alice says good(p).

• D may import good(Bob) directly from Alice.



Binder’s proof rules (cont.)
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• Suppose F has the rule
– blesses(Alice, p) :- Alice says good(p).

• D may import it as:
– F says blesses(Alice, p) :- Alice says good(p).

• D and F should agree on Alice’s identity.
• But the meaning of predicates may vary, and it 

typically will. 
For example, F may also have:
– blesses(Bob, p) :- Bob says excellent(p).



Another example 
[DeTreville]

68

import

importexport

export

certificate c1
“John Smith is a BCL
employee.” (signed:

BCL HR)

certificate c2

“John Smith is a
BigCo employee.”

(signed: BigCo HR)

certificate c4
“All BCL employees

are BigCo
employees.” (signed:

BigCo HR)

certificate c3

“I trust BCL HR to say
who is a BCL

employee.” (signed:
BigCo HR)

“John Smith is a
BCL employee.”

BCL HR

BigCo HR

“All BCL
employees are

BigCo
employees.”

“I trust BCL HR
to say who is a

BCL employee.”
“I trust BigCo HR

to say who is a
BigCo

employee.”

Service S



A logical analysis
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• Suppose that A has the rule:
p :- B says q, r

• C would import this as:
A says p :- B says q, A says r

• We may represent C’s view of A’s rule by:
A says ((B says q) ∧ r ⇒ p)

• We may represent C’s conclusion by:
(B says q) ∧ (A says r) ⇒ (A says p)

• How did we get here?



A logical analysis (cont.)
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• So  we assume:  
A says ((B says q) ∧ r ⇒ p)

and would like to derive:
(B says q) ∧ (A says r) ⇒ (A says p)

• Assume the standard modal axiom 
A says (S ⇒ T) ⇒ (A says S) ⇒ (A says T)

and the necessitation rule.
• We obtain:

A says ((B says q) ∧ r) ⇒ (A says p)
and then (only!):
(A says B says q) ∧ (A says r) ⇒ (A says p)



A logical analysis (cont.)
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• We can finish with the strong axiom:
S ⇒ (A says S)

• A weaker form suffices:
B says S ⇒ (A says B says S) 



Important properties of Binder
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• Binder programs can define and use new, 
application-specific predicates.

• A statement in Binder can be read as a 
declarative English sentence.

• Queries in Binder are decidable (in PTime).

Questions:
– Should there be more built-in syntax and semantics?
– Can all reasonable policies be expressed? 

Can the simple ones be expressed simply enough?
– What about other algorithmic problems?



Data integration
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• A classic database problem is how to integrate 
multiple sources of data.
– The sources may be heterogeneous. 

Their contents and structure may be partly unknown.
– The data may be semi-structured (e.g., XML on 

the Web).



TSIMMIS and MSL 
[Garcia-Molina et al., mid 1990’s]
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• Wrappers translate between a common 
language and the native languages of sources.

• Mediators then give integrated views of data 
from multiple sources.

• The mediators may be written in the Mediator 
Specification Language (MSL).

<cs_person {<name N> <relation R> Rest1 Rest2}>@med :-
<person {<name N> <dept `CS'> <relation R> | Rest1}>@whois
AND decompose_name(N, LN, FN)
AND <R {<first_name FN> <last_name LN> | Rest2}>@cs



Similarities

75

• MSL is remarkably similar to Binder.
– They start from Datalog.
– They add sites (or contexts).
– X@s corresponds to s says X.
– In X@s, the site s may be a variable.

• More broadly, distributed access control is 
partly about data integration.
– Binder follows the “global as view” approach (GAV), 

in which each relation in the mediator schema is 
defined by a query over the data sources.

– The converse “local as view” approach (LAV) might 
not be as meaningful for access control.



Caveats
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• MSL and Binder are used in different 
environments and for different purposes.
– Work in databases seems to focus on a messy but 

benign and tolerant world, full of opportunities.
– Work in security deals with a hostile world and tries 

to do less.
• Security is primarily a property of systems, 

not of languages. 
Coincidences in languages go only so far.



Potential outcomes (speculation)
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• Language-design ideas
– Constructs beyond Datalog
– Semi-structured data

• More theory, algorithms, tools
• Closer relation to database machinery

Q(x)?Bob Authentication Mediator
may_Q(Bob,x)?

may_Q(p,x) :- s1 says Q(x),  
s2 says Ok(p,x)

S1

S2

S3



Proof-carrying code (PCC)
[Necula and Lee, 1996]

78

• Proof-carrying code is also based on logic.
• It is also essentially concerned with an 

authorization decision (running code):

Annotation

Code

VCGen
VC

Axiomatization (Safety policy)

Proof
reconstructor

and checker

Proof 
skeleton



Proof-carrying code (cont.)
[recent work with Necula and Whitehead]
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• How does PCC fit into the broader context of 
access control?

• How about hybrid policies and mechanisms?

Annotation

Code

VCGen
VC

Signed axiomatization (safety policy)

Proof
reconstructor
and checker

Signed
claims

Proof 
skeleton
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PCC
checker

Host OS

Game library

Strategy

JVM

Resource
check library

JVM
verifier

Resource 
signature check

Trusted PCC 
for memory 
safety

Developer

Trusted 
resource limit 
technology

Trusted JVML 
technology

Trusted 
library 

provider

Rendering

Proof

An example



Example rules in BLF (Binder + LF)

81



XrML
[ContentGuard]

82

• “The eXtensible rights Markup LanguageTM

(XrMLTM) is a general-purpose, XML-based 
specification grammar for expressing rights and 
conditions associated with digital content, 
services, or any digital resource.”

• It is fairly complex.
• It resembles a large subset of Binder in 

expressiveness [DeTreville].

• With some difficulty, it can be given a logical 
interpretation [Weismann and Halpern].



License basics
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A minimal XrML license 
(without an issuer)
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Conclusions and open issues

85

• Big stakes—apparently getting bigger
• A growing body of sophisticated techniques
• Some art, some science

• Elaborate machinery, but 
not always easy to explain or to apply reliably

• Substantial, credible efforts, but
without full proofs or good metrics of security
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