
Access Control and Logic

Martίn Abadi
University of California, Santa Cruz

Plan

2

• Introduction to access control
• Some logical approaches (algorithms,

verification, logical languages and theories)
• A logic with “says” for distributed systems
• SDSI
• Binder
• A bit on PCC and related ideas
• A bit on XrML

The access control model

3

• Elements:
– Objects or resources
– Requests
– Sources for requests, called principals
– A reference monitor to decide on requests

Reference
monitor

ObjectDo
operationPrincipal

GuardRequestSource Resource

Authentication vs. access control

4

• Access control (authorization):
– Is principal A trusted on statement S?
– If A requests S, is S granted?

• Authentication:
– Who says S?

An access control matrix
[Lampson, 1971]

5

objects

principals

file1 file2 file3 file4

user1 rwx rw r x

user2 r r x

user3 r r x

Implementing access control

6

Two strategies (often combined):
ACLs and capabilities.

• ACL: a column of an access control matrix,
attached to an object.

• Capability: (basically) a pair of an object and an
operation, for a given principal.
It means that the principal may perform the
operation on the object.

The principle of complete mediation

7

• Every access to every object is checked.

• This principle can be enforced in several ways:
– The OS intercepts some of the subject's requests.

The hardware catches others. (E.g., as in Unix.)
– A software wrapper / interpreter intercepts some of

the subject's requests. (E.g., as in the JVM.)

More on ACLs

8

• An ACL says which subjects can access a
particular object.

• It is a column of an access control matrix,
typically maintained “near” the object that it
protects.

• ACLs can be compact.
• ACLs can be easy to review.
• They can have negative entries (and then

evaluation may be order-depedendent).
• Revoking a subject can be painful.

More on capabilities

9

• An alternative is to associate capabilities with
subjects.

• These capabilities form a row of an access
control matrix for the subject.

• Capabilities are easy to pass around
(so they enable delegation).

• They can be hard to revoke.

Implementing capabilities

10

• A capability identifies an operation on an object.
• It means that the holder can perform the

operation on the object.
• Subjects should not be allowed to forge

capabilities.
• This leads to implementations of capabilities:

– stored in a protected address space,
– with special tags with hardware support,
– as references in a typed language,
– with a secret,
– with cryptography, e.g., certificates.

ACLs and capabilities

11

• ACLs and capabilities are dual.
• Both can yield practical implementations of

access matrices.
• In actual systems, they are often combined.

Conjunctions

12

• Sometimes a request should be granted only if
it is made jointly by several principals.

• A conjunction may or may not be made explicit
in the access policy.

Groups and roles

13

• Principals can be organized into groups.
• Principals can play roles.
• These groups and roles may be used as a level

of indirection in access control.
– E.g., any member of a group G may access a file f.

Groups and roles (cont.)

14

• Suppose that any member of a group G may
access a file f owned by A.
– G may be maintained by someone other A.
– The group may change over time, without immediate

knowledge of A.
– The ACL for f should be short and clear.
– Proofs of memberships resemble (are?) capabilities.
– Access to f might be partly anonymous.
– Still, A may require a proof of identity at each f

access, for auditing.

More on objects and operations

15

• Objects and operations may also be put in
groups, e.g.,
– all company files,
– all read operations on an object.

• Sometimes operations should be bundled, e.g.,
– read a patient's record,
– write a log record.

Design choices

16

• Principals, objects, and operations should have
the “right” granularity and be at the right level of
abstraction
– for ease of understanding,
– to avoid giving away too much privilege.

Programs

17

• Programs may be principals too.
But then:
• we need to deal with call chains,

– e.g., applet on browser on OS,
• we still need to connect programs to other

principals
– who write them or edit them,
– who provide them,
– who install them,
– who call them.

Installing programs

18

• Programs should be set up so that they get
appropriate rights when they run.

• Programs should be adequately protected from
editing.

Running programs

19

• What are the run-time rights of a program?
– those of the caller,
– those of the program owner, or
– some combination, or
– something else, e.g, because of intrinsic properties.
E.g., the program that moves incoming mail to a user's

inbox may need to combine system rights and user
rights.

• Some answers: setuid, program identities,
code access security (with stack inspection,
with history-based access control, …),
proof-carrying code, …

Protection and confinement

20

• At run-time, programs should be protected and
confined, that is, limited to communicate over
proper interfaces.

• This is often the job of the computing platform
(OS + hardware).
– It can implement address spaces so that programs in

separate spaces cannot interact directly
(e.g., cannot smash or snoop on one another).

• A language and its run-time system can provide
finer control over communication.
– (Remember the implementations of capabilities?)

Common dangers

21

• Access control can be insufficient or irrelevant
– when it is implemented incorrectly,
– when the underlying operations are implemented

incorrectly,
– when dangerous code is privileged,
– when it is circumvented.

Circumventing access control

22

• Sometimes the reference monitor does not
protect all important objects and operations,
or does not protect them all the time.
– Race conditions.
– Data recovery from disks.
– Hostile platforms (e.g., for DRM systems).
– Users that give out sensitive information.
– …

Issues

23

• Access control is pervasive
– applications
– virtual machines
– operating systems
– firewalls
– doors
– …

• Access control seems difficult to get right.
• Distributed systems make it harder.

General theories and systems

24

• Over the years, there have been many theories
and systems for access control.
– Logics
– Languages
– Infrastructures (e.g., PKIs)
– Architectures

• They often aim to explain, organize, and unify
access control.

• They may be intellectually pleasing.
• They may actually help.

Algorithmic analysis
[starting with Harrison, Ruzzo, and Ullman, 1976]

25

• A system has finite sets of rights and
commands.

• A configuration is an access control matrix.
• A command is of the form “if conditions hold,

perform operations” (with some parameters).
– The conditions are predicates on the matrix.
– The operations add or delete rights, principals, and

objects.
– E.g.:

Algorithmic analysis (cont.)

26

• Safety means that untrusted subjects cannot
access a resource in any reachable state.

• Safety is undecidable (in general).

Algorithmic analysis (cont.)
[in particular, Li, Winsborough, and Mitchell, 2003]

27

• Not all interesting problems are undecidable!
• Consider the containment problem:

In every reachable state, does every principal
that has one property (e.g., has access to a
resource) also have another property (e.g.,
being an employee)?

For different classes of systems, this problem is
decidable (in coNP or coNEXP).

Formal verification

28

A formally verified security kernel is widely
considered to offer the most promising basis for
the construction of truly secure computer
systems at least in the short term. A number of
kernelized systems have been constructed and
various models of security have been
formulated to serve as the basis for their
verification.
Despite the enthusiasm for this approach there
remain certain difficulties and problems in its
application […]

(Rushby, 1981)

A logic from matrices

29

• An access control matrix may be represented
with a ternary predicate symbol may-access.

• The setting may be a fairly standard, classical
predicate calculus.

• We may then write formulas such as:

may-access(Alice, Foo.txt, Rd)

and rules such as:

may-access(p, o, Wr) ⇒ may-access(p, o, Rd)

A logic from matrices: questions

30

• Does this really help?
– In describing policies?
– In analyzing policies?

• We may need many more constructs and
axioms for representing security policies.
For example:
– may-jointly-access(p,q,o,r)
– owns(p,o)
– …
(When are we done?)

Some references

31

• “A Unified Framework for Enforcing Multiple
Access Control Policies” by Jajodia, Samarati,
Subrahmanian, and Bertino (1997)

• “A Logical Language for Expressing
Authorizations” by Jajodia, Samarati, and
Subrahmanian (1997)

• “A Logical Framework for Reasoning about
Access Control Models” by Bertino, Catania,
Ferrari, and Perlasca (2003)

(See my paper “Logic in Access Control”
for additional references.)

Access control in distributed systems

32

• Many characteristics of distributed systems
make access control harder:
– size
– faultiness

e.g., revocation messages may get lost
– heterogeneity

e.g., of communication channels
of protection mechanisms

– autonomy and lack of central administration
and therefore of central trust

– …

An approach

33

• A notation for representing principals and their
statements, and perhaps more:
– objects and operations,
– trust,
– channels,
– …

• Derivation rules

Some early ideas
(Excerpts of a message from Roger Needham, August 1987)

34

• Notations
P$|= S Principals in the set P$ are

the guarantors for S
C ||- S Channel C actually asserts S
C -> P Channel C authenticates Principal P

• Postulates
C ||- S, C -> P

P |= S

A calculus for access control
[Abadi, Burrows, Lampson, and Plotkin, 1993]

35

• A simple notation for assertions
– A says S
– A speaks for B

• With logical rules
– ⊢ A says (S ⇒ T) ⇒ (A says S) ⇒ (A says T)
– If ⊢ S then ⊢ A says S.
– ⊢ A speaks for B ⇒ (A says S) ⇒ (B says S)
– ⊢ A speaks for A
– ⊢ (A speaks for B ∧ B speaks for C) ⇒ A speaks for C

An example

36

• Let good-to-delete-file1 be a proposition.
Let B controls S stand for

(B says S) ⇒ S
• Assume that

– B controls (A speaks for B)
– B controls good-to-delete-file1
– B says (A speaks for B)
– A says good-to-delete-file1

• We can derive:
– B says good-to-delete-file1
– good-to-delete-file1

Another example

37

• Let good-to-delete-file2 be a proposition too.
• Assume that

– B controls (A speaks for B)
– B controls good-to-delete-file1
– B says (A speaks for B)
– A says (good-to-delete-file1 ∧ good-to-delete-file2)

• We can derive:
– B says good-to-delete-file1
– good-to-delete-file1

Says

38

export

import

context 1
statement

context 2
context 1 says

statement

Certificate
statement

(signed: context 1)

export

import

context 1
statement

context 2
context 1 says

statement

Channel
statement

(from: context 1)

Says represents
communication
across contexts.

Says abstracts from
the details of
authentication.

Choosing axioms

39

• Standard modal logic?
– (As above.)

• Less?
– Treat says “syntactically”, with no special rules

(Halpern and van der Meyden, 2001)
• More?

– ⊢ S ⇒ (A says S)
(Lampson, 198?; Appel and Felten, 1999)
but then ⊢ (A says S) ∧ ¬ S ⇒ (A says false)

Semantics

40

• Following standard semantics of modal logics, a
principal may be mapped to a binary relation on
possible worlds.
A says S holds at world w

iff
S holds at world w’
for every w’ such that w A w’

• This is formally viable, also for richer logics.
• It does not give any insight on the nature of

authority and duty, but it is sometimes useful.

Proof strategies

41

• Style of proofs:
– Hilbert systems
– Tableaux

(Massacci, 1997)
– …

• Proof distribution:
– Proofs done at reference monitors
– Partial proofs provided by clients

(Wobber et al., 1994; Appel and Felten, 1999)
– With certificates pulled or pushed

Compound principals

42

• Compound principals represent a richer class of
sources for requests:
– A ∧ B Alice and Bob

(cosigning a document)
– A for B ws17.uxyz.edu for Alice

(connecting to the web server)
– A quoting B server.uxyz.edu quoting Alice

(sending a file to the printer)
– A as R Alice as Reviewer

(opening submissions)
• A ∧ B speaks for A, etc.

Groups

43

• We may represent each group by a principal.
Then, when A is a member of G, we may write
that A speaks for G.

• In practice, it is harder to know when A is not a
member of G.

Running programs

44

• Programs need not be fully trusted, not even
the operating system.

• Programs can be put into groups.
• Formally, programs can be treated much like

roles, and even as roles.

An example

45

• The cast:
– CA, the certification authority, with public key KCA

– WS, a workstation, with public key KWS

– OS, an operating system, with no key
– (WS as OS), the resulting node, with ephemeral

public key Kn

– bwl, a user, with public key Kbwl

– Kdel, an ephemeral public key for the node for bwl
– C, a secure channel to a file server
– TrustedNode and SysAdm, two groups

An example (cont.)

46

• KCA says (KWS speaks for WS)
• KWS says (Kn speaks for (WS as OS))
• KCA says (Kbwl speaks for bwl)
• Kbwl says (Kdel speaks for ((WS as OS) for bwl))
• Kn says (Kdel speaks for ((WS as OS) for bwl))
• Kdel says (C speaks for ((WS as OS) for bwl))
• C says good-to-delete-file1
• And we may deduce:

((WS as OS) for bwl) says good-to-delete-file1

An example (cont.)

47

• KCA says ((WS as OS) speaks for TrustedNode)
• KCA says (bwl speaks for SysAdm)
• Then we may deduce:

TrustedNode for SysAdm
says good-to-delete-file1

• The ACL for file1 may say:
TrustedNode for SysAdm

controls good-to-delete-file1
• Then we conclude: good-to-delete-file1

Applications (1): Security in an
operating system [Wobber et al., 1994]

48

Workstation
hardware WS

Taos node

Accounting

Server
hardware

bsd 4.3

NFS Server

network
channel

C | pr

WS as Taos for bwl
Kn–1

Kws–1

pr
WS as Taos as
Accounting for bwl

C

bwl

file foo

SRC-node as Accounting for bwl
may read

Kbwl
-1

WS as Taos

Kbwl ⇒ bwl Kws ⇒ WS

WS as Taos ⇒ SRC-node

Applications (2): An account of security in
JVMs [Wallach and Felten, 1998]

49

Applications (3): A Web access control
system [Bauer, Schneider, and Felten, 2002]

50

Other languages and systems

51

• PolicyMaker and KeyNote [Blaze et al.]

• SDSI [Lampson and Rivest]

• SPKI [Ellison et al.]

• D1LP and RT [Li et al.]

• SD3 [Jim]

• Binder [DeTreville]

• XrML 2.0
• …

• Several of the most recent are based on ideas and
techniques from logic programming.

SDSI (a Simple Distributed Systems
Security Infrastructure)

52

• SDSI includes support for hierarchical public-
key certification (in the style of X.509).
– There can be a tree of authorities for associating

principals with their public keys.
• It also supports local name spaces.

– Each principal can bind local names at wish.
• Local name spaces can be linked.

– A local name space may bind bwl to Ron’s Butler.
• SDSI allows definitions of groups and ACLs.
• SDSI was merged into SPKI, a Simple Public-

Key Infrastructure.

The meaning(s) of bindings

53

• In SDSI, “principals are public keys”.
• So, what is the meaning of bindings?

lawyer ↦ K means that:
lawyer is K
or that

K speaks for lawyer
(or some other asymmetric relation)

bwl ↦ Ron’s Butler means that:
bwl is Ron’s Butler
or that

Ron’s Butler speaks for bwl ??

The meaning(s) of bindings (cont.)

54

• Only asymmetric meanings are viable.
• In fact, “speaks for” (or something similar) was

intended by the authors.
• There are further delicate points and

ambiguities, e.g., early vs. late binding.

An algorithm for name resolution

55

Ref2(o, p) = if p is a global identifier f
then return f
else if p is a local name n

and n ↦ q in assumptions(o)
then return Ref2(o, q)
else if p is a compound name q’s r
then return Ref2(Ref2(o, q), r)
else fail

Some axioms [Abadi, 1998]

56

• Reflexivity p ↦ p
• Transitivity p ↦ q ⇒ (q ↦ r ⇒ p ↦ r)
• Left-mono p ↦ q ⇒ (p’s r ↦ q’s r)
• Globality p’s g ↦ g if g is a global name
• Associativity (p’s q)’s r ↦ p’s (q’s r)

p’s (q’s r) ↦ (p’s q)’s r
• Linking p says (n ↦ r) ⇒ (p’s n ↦ p’s r)
• Speaking-for p ↦ q ⇒ (q says S ⇒ p says S)
+ standard propositional logic
+ standard modal logic for says

Some semantics

57

(Again, borrow from modal logics.)

Some results and further work

58

• The algorithm can be simulated in the logic:
given a set of assumptions E, if Ref2(o, p) = g
then E ⇒ (o’s p ↦ g) is provable.

• This logic is strictly stronger than the algorithm
(in several ways).

• SDSI and SPKI have rough corners anyway.
• There has been substantial subsequent work on

logical accounts of SDSI and related systems.
– With special logics

(e.g., Halpern and van der Meyden, 2001).
– With first-order logic

(Li and Mitchell, 2003).

Alternative axioms
[Halpern and van der Meyden, 2001]

59

• Reflexivity p ↦ p
• Transitivity p ↦ q ⇒ (q ↦ r ⇒ p ↦ r)
• Left-mono p ↦ q ⇒ (p’s r ↦ q’s r)
• Globality K’s g ↦ g if g is a global name

and K is a key
• (Two more globality axioms)
• Associativity (p’s q)’s r ↦ p’s (q’s r)

p’s (q’s r) ↦ (p’s q)’s r

Alternative axioms (cont.)

60

• Linking K cert (n ↦ r) ⇒ (K’s n ↦ K’s r)
• Key distinctness ¬(K ↦ K1) for K and K1

distinct keys
• Non-emptiness (p ↦ K1) ⇒ (p’s K ↦ K)
• (Three more non-emptiness axioms)
+ standard propositional logic
+ additional axioms if the set of keys is finite
but nothing more for cert!

Alternative axioms (cont.)

61

• Closer fit with Ref2
• Closer fit with a semantics
• More complexity
• Different account of “saying”

Comments

62

We remark that, in a sense, our task is much
easier than Abadi’s, since we give the
constructs in the logic a somewhat narrower
reading than he does. Abadi tends to intertwine
and occasionally identify issues of naming and
issues of rights and delegation. (Such an
identification is also implicitly made to some
extent in designs such as PolicyMaker
[BFL96].) We believe that it is important to treat
these issues separately.

(Halpern and van der Meyden)

Binder

63

• Binder is a relative of Prolog.
• Like Datalog, it lacks function symbols.
• It also includes the special construct says.
• It does not include much else.

An example in Binder

64

• Facts
– owns(Alice, Foo.txt).
– Alice says good(Bob).

• Rules
– may_access(p, o) :- owns(q, o), blesses(q, p).
– blesses(Alice, p) :- Alice says good(p).

• Conclusions
– may_access(Bob, Foo.txt).

Binder’s proof rules

65

• Binder includes a standard resolution rule.
• In addition, Binder includes a rule for importing

formulas from a context F to a context D.
– The rule adds a “F says” in front of all atoms without

a “says”.
– The rule applies only to clauses where the head

atom does not have “says”.

Binder’s proof rules: example

66

• Suppose F has the rules
– may_access(p, o) :- owns(q, o), blesses(q, p).
– blesses(Alice, p) :- Alice says good(p).
– Alice says good(Bob).

• D may import the first two as:
– F says may_access(p, o) :-

F says owns(q, o), F says blesses(q, p).
– F says blesses(Alice, p) :- Alice says good(p).

• D may import good(Bob) directly from Alice.

Binder’s proof rules (cont.)

67

• Suppose F has the rule
– blesses(Alice, p) :- Alice says good(p).

• D may import it as:
– F says blesses(Alice, p) :- Alice says good(p).

• D and F should agree on Alice’s identity.
• But the meaning of predicates may vary, and it

typically will.
For example, F may also have:
– blesses(Bob, p) :- Bob says excellent(p).

Another example
[DeTreville]

68

import

importexport

export

certificate c1
“John Smith is a BCL
employee.” (signed:

BCL HR)

certificate c2

“John Smith is a
BigCo employee.”

(signed: BigCo HR)

certificate c4
“All BCL employees

are BigCo
employees.” (signed:

BigCo HR)

certificate c3

“I trust BCL HR to say
who is a BCL

employee.” (signed:
BigCo HR)

“John Smith is a
BCL employee.”

BCL HR

BigCo HR

“All BCL
employees are

BigCo
employees.”

“I trust BCL HR
to say who is a

BCL employee.”
“I trust BigCo HR

to say who is a
BigCo

employee.”

Service S

A logical analysis

69

• Suppose that A has the rule:
p :- B says q, r

• C would import this as:
A says p :- B says q, A says r

• We may represent C’s view of A’s rule by:
A says ((B says q) ∧ r ⇒ p)

• We may represent C’s conclusion by:
(B says q) ∧ (A says r) ⇒ (A says p)

• How did we get here?

A logical analysis (cont.)

70

• So we assume:
A says ((B says q) ∧ r ⇒ p)

and would like to derive:
(B says q) ∧ (A says r) ⇒ (A says p)

• Assume the standard modal axiom
A says (S ⇒ T) ⇒ (A says S) ⇒ (A says T)

and the necessitation rule.
• We obtain:

A says ((B says q) ∧ r) ⇒ (A says p)
and then (only!):
(A says B says q) ∧ (A says r) ⇒ (A says p)

A logical analysis (cont.)

71

• We can finish with the strong axiom:
S ⇒ (A says S)

• A weaker form suffices:
B says S ⇒ (A says B says S)

Important properties of Binder

72

• Binder programs can define and use new,
application-specific predicates.

• A statement in Binder can be read as a
declarative English sentence.

• Queries in Binder are decidable (in PTime).

Questions:
– Should there be more built-in syntax and semantics?
– Can all reasonable policies be expressed?

Can the simple ones be expressed simply enough?
– What about other algorithmic problems?

Data integration

73

• A classic database problem is how to integrate
multiple sources of data.
– The sources may be heterogeneous.

Their contents and structure may be partly unknown.
– The data may be semi-structured (e.g., XML on

the Web).

TSIMMIS and MSL
[Garcia-Molina et al., mid 1990’s]

74

• Wrappers translate between a common
language and the native languages of sources.

• Mediators then give integrated views of data
from multiple sources.

• The mediators may be written in the Mediator
Specification Language (MSL).

<cs_person {<name N> <relation R> Rest1 Rest2}>@med :-
<person {<name N> <dept `CS'> <relation R> | Rest1}>@whois
AND decompose_name(N, LN, FN)
AND <R {<first_name FN> <last_name LN> | Rest2}>@cs

Similarities

75

• MSL is remarkably similar to Binder.
– They start from Datalog.
– They add sites (or contexts).
– X@s corresponds to s says X.
– In X@s, the site s may be a variable.

• More broadly, distributed access control is
partly about data integration.
– Binder follows the “global as view” approach (GAV),

in which each relation in the mediator schema is
defined by a query over the data sources.

– The converse “local as view” approach (LAV) might
not be as meaningful for access control.

Caveats

76

• MSL and Binder are used in different
environments and for different purposes.
– Work in databases seems to focus on a messy but

benign and tolerant world, full of opportunities.
– Work in security deals with a hostile world and tries

to do less.
• Security is primarily a property of systems,

not of languages.
Coincidences in languages go only so far.

Potential outcomes (speculation)

77

• Language-design ideas
– Constructs beyond Datalog
– Semi-structured data

• More theory, algorithms, tools
• Closer relation to database machinery

Q(x)?Bob Authentication Mediator
may_Q(Bob,x)?

may_Q(p,x) :- s1 says Q(x),
s2 says Ok(p,x)

S1

S2

S3

Proof-carrying code (PCC)
[Necula and Lee, 1996]

78

• Proof-carrying code is also based on logic.
• It is also essentially concerned with an

authorization decision (running code):

Annotation

Code

VCGen
VC

Axiomatization (Safety policy)

Proof
reconstructor

and checker

Proof
skeleton

Proof-carrying code (cont.)
[recent work with Necula and Whitehead]

79

• How does PCC fit into the broader context of
access control?

• How about hybrid policies and mechanisms?

Annotation

Code

VCGen
VC

Signed axiomatization (safety policy)

Proof
reconstructor
and checker

Signed
claims

Proof
skeleton

80

PCC
checker

Host OS

Game library

Strategy

JVM

Resource
check library

JVM
verifier

Resource
signature check

Trusted PCC
for memory
safety

Developer

Trusted
resource limit
technology

Trusted JVML
technology

Trusted
library

provider

Rendering

Proof

An example

Example rules in BLF (Binder + LF)

81

XrML
[ContentGuard]

82

• “The eXtensible rights Markup LanguageTM

(XrMLTM) is a general-purpose, XML-based
specification grammar for expressing rights and
conditions associated with digital content,
services, or any digital resource.”

• It is fairly complex.
• It resembles a large subset of Binder in

expressiveness [DeTreville].

• With some difficulty, it can be given a logical
interpretation [Weismann and Halpern].

License basics

83

A minimal XrML license
(without an issuer)

84

Conclusions and open issues

85

• Big stakes—apparently getting bigger
• A growing body of sophisticated techniques
• Some art, some science

• Elaborate machinery, but
not always easy to explain or to apply reliably

• Substantial, credible efforts, but
without full proofs or good metrics of security

	Access Control and Logic
	Plan
	The access control model
	Authentication vs. access control
	An access control matrix [Lampson, 1971]
	Implementing access control
	The principle of complete mediation
	More on ACLs
	More on capabilities
	Implementing capabilities
	ACLs and capabilities
	Conjunctions
	Groups and roles
	Groups and roles (cont.)
	More on objects and operations
	Design choices
	Programs
	Installing programs
	Running programs
	Protection and confinement
	Common dangers
	Circumventing access control
	Issues
	General theories and systems
	Algorithmic analysis [starting with Harrison, Ruzzo, and Ullman, 1976]
	Algorithmic analysis (cont.)
	Algorithmic analysis (cont.)[in particular, Li, Winsborough, and Mitchell, 2003]
	Formal verification
	A logic from matrices
	A logic from matrices: questions
	Some references
	Access control in distributed systems
	An approach
	Some early ideas(Excerpts of a message from Roger Needham, August 1987)
	A calculus for access control[Abadi, Burrows, Lampson, and Plotkin, 1993]
	An example
	Another example
	Says
	Choosing axioms
	Semantics
	Proof strategies
	Compound principals
	Groups
	Running programs
	An example
	An example (cont.)
	An example (cont.)
	Applications (1): Security in an operating system [Wobber et al., 1994]
	Applications (2): An account of security in JVMs [Wallach and Felten, 1998]
	Applications (3): A Web access control system [Bauer, Schneider, and Felten, 2002]
	Other languages and systems
	SDSI (a Simple Distributed Systems Security Infrastructure)
	The meaning(s) of bindings
	The meaning(s) of bindings (cont.)
	An algorithm for name resolution
	Some axioms [Abadi, 1998]
	Some semantics
	Some results and further work
	Alternative axioms [Halpern and van der Meyden, 2001]
	Alternative axioms (cont.)
	Alternative axioms (cont.)
	Comments
	Binder
	An example in Binder
	Binder’s proof rules
	Binder’s proof rules: example
	Binder’s proof rules (cont.)
	Another example [DeTreville]
	A logical analysis
	A logical analysis (cont.)
	A logical analysis (cont.)
	Important properties of Binder
	Data integration
	TSIMMIS and MSL [Garcia-Molina et al., mid 1990’s]
	Similarities
	Caveats
	Potential outcomes (speculation)
	Proof-carrying code (PCC)[Necula and Lee, 1996]
	Proof-carrying code (cont.)[recent work with Necula and Whitehead]
	An example
	Example rules in BLF (Binder + LF)
	XrML[ContentGuard]
	License basics
	A minimal XrML license (without an issuer)
	Conclusions and open issues

