Semantics for Safe Programming Languages

David Walker

Summer School on Security University of Oregon, June 2004

The Current State of Affairs

Software security flaws cost our economy \$10-\$30 billion/year*

* some unverified statistics I have read lately

The Current State of Affairs

Software security flaws cost our economy \$10-\$30 billion/year*

.... and Moore's law applies:

The cost of software security failures is doubling every year.*

* some unverified statistics I have read lately

The Current State of Affairs

- In 1998:
 - 85%* of all CERT advisories represent problems that cryptography can't fix
 - 30-50%* of recent software security problems are due to buffer overflow in languages like C
 and C++
 - problems that can be fixed with modern programming language technology (Java, ML, Modula, C#, Haskell, Scheme,)
 - perhaps many more of the remaining 35-55% may be addressed by programming language techniques
- * more unverified stats; I've heard the numbers are even higher

The Current State of Affairs

New York Times (1998): The security flaw reported this week in Email programs written by two highly-respected software companies points to an industry-wide problem – the danger of programming languages whose greatest strength is also their greatest weakness.

More modern programming languages like the Java language developed by Sun Microsystems, have built-in safeguards that prevent programmers from making many common types of errors that could result in security loopholes

Security in Modern Programming Languages

- What do programming language designers have to contribute to security?
 - modern programming language features
 - · objects, modules and interfaces for encapsulation
 - advanced access control mechanisms: stack inspection
 - automatic analysis of programs
 - basic type checking: client code respects system interfaces
 - access control code can't be circumvented
 - $\bullet \ advanced \ type/model/proof \ checking:$
 - data integrity, confidentiality, general safety and liveness properties

Security in Modern Programming Languages

- What have programming language designers done for us lately?
 - Development of secure byte code languages & platforms for distribution of untrusted mobile code
 - · JVM and CLR
 - · Proof-Carrying Code & Typed Assembly Language
 - Detecting program errors at run-time
 - eg: buffer overrun detection; making C safe
 - Static program analysis for security holes
 - · Information flow, buffer-overruns, format string attacks
 - · Type checking, model checking

These lectures

- Foundations key to recent advances:
 - techniques for giving precise definitions of programming language constructs:
 - · without precise definitions, we can't say what programs do let alone whether or not they are secure
 - techniques for designing safe language features:
 - · use of the features may cause programs to abort (stop) but do not lead to completely random, undefined program behavior that might allow an attacker to take over a machine
 - techniques for proving useful properties of all programs written in a language
 - · certain kinds of errors can't happen in any program

These lectures

- · Inductive definitions
 - the basis for defining all kinds of languages, logics and
- MinML (PCF)
 - Syntax
 - Type system
 - Operational semantics & safety
- Acknowledgement: Many of these slides come from lectures by Robert Harper (CMU) and ideas for the intro came from Martin Abadi

Reading & Study

- · Robert Harper's Programming Languages: Theory and
 - http://www-2.cs.cmu.edu/~rwh/plbook/
- · Benjamin Pierce's Types and Programming Languages available at your local bookstore
- Course notes, study materials and assignments
 - Andrew Myers: http://www.cs.cornell.edu/courses/cs611/2000fa/

 - David Walker: http://www.cs.princeton.edu/courses/archive/fall03/cs510/
 - Others...

Inductive Definitions

Inductive Definitions

Inductive definitions play a central role in the study of programming languages

They specify the following aspects of a language:

- Concrete syntax (via CFGs)
- Abstract syntax (via CFGs)
- Static semantics (via typing rules)
- Dynamic semantics (via evaluation rules)

Inductive Definitions

- An inductive definition consists of:
 - One or more judgments (ie: assertions)
 - A set of rules for deriving these judgments
- For example:
 - Judgment is "n nat"
 - Rules:
 - zero nat
 - if n nat, then succ(n) nat.

Inference Rule Notation

Inference rules are normally written as:

where J and J1,..., Jn are judgements. (For axioms, n = 0.)

An example

For example, the rules for deriving n nat are usually written:

Derivation of Judgments

- A judgment J is derivable iff either
 - there is an axiom

ĭ

- or there is a rule

- such that J1, ..., Jn are derivable

Derivation of Judgments

- We may determine whether a judgment is derivable by working backwards.
- For example, the judgment

succ(succ(zero)) nat

is derivable as follows:

optional: names of rules used at each step

Binary Trees

• Here is a set of rules defining the judgment t tree stating that t is a binary tree:

• Prove that the following is a valid judgment: node(empty, node(empty, empty)) tree

Rule Induction

- · By definition, every derivable judgment
 - $-\,$ is the consequence of some rule...
 - whose premises are derivable
- That is, the rules are an exhaustive description of the derivable judgments
- Just like an ML datatype definition is an exhaustive description of all the objects in the type being defined

Rule Induction

- To show that every derivable judgment has a property P, it is enough to show that
 - For every rule,

if J1, ..., Jn have the property P, then J has property P

This is the principal of rule induction.

Example: Natural Numbers

• Consider the rules for n nat

zero nat

n nat succ(n) nat

- We can prove that the property P holds of every n such that n nat by rule induction:
 - Show that P holds of zero;
 - Assuming that P holds of n, show that P holds of succ(n).
- · This is just ordinary mathematical induction....

Example: Binary Tree

- Similarly, we can prove that every binary tree t has a property P by showing that
 - empty has property P;
 - If t1 has property P and t2 has property P, then node(t1, t2) has property P.
- This might be called tree induction.

Example: The Height of a Tree

- Consider the following equations:
 - -hgt(empty) = 0
 - $-hgt(node(t1, t2)) = 1 + \max(hgt(t1), hgt(t2))$
- **Claim**: for every binary tree t there exists a unique integer n such that hgt(t) = n.
- That is, the above equations define a function.

Example: The Height of a Tree

- We will prove the claim by rule induction:
 - If t is derivable by the axiom

empty tree

– then n = 0 is determined by the first equation:

hgt(empty) = 0

- is it unique? Yes.

Example: The Height of a Tree

• If t is derivable by the rule

t1 tree t2 tree node (t1, t2) tree

then we may assume that:

- exists a unique n1 such that hgt(t1) = n1;
- exists a unique n2 such that hgt(t2) = n2;

Hence, there exists a unique n, namely 1+max(n1, n2)

such that hgt(t) = n.

Example: The Height of a Tree

This is awfully pedantic, but it is useful to see the details at least once.

- It is not obvious *a priori* that a tree has a well-defined height!
- Rule induction justified the existence of the function *hgt*.

A trick for studying programming languages

99% of the time, if you need to prove a fact, you will prove it by induction on *something*

The hard parts are

- setting up your basic language definitions in the first place
- figuring out what something to induct over

Inductive Definitions in PL

- We will be looking at inductive definitions that determine
 - abstract syntax
 - static semantics (typing)
 - dynamic semantics (evaluation)
 - other properties of programs and programming languages

Inductive Definitions

Syntax

Abstract vs Concrete Syntax

- the concrete syntax of a program is a string of characters:
 - '(' '3' '+' '2' ')' '*' '7'
- the abstract syntax of a program is a tree representing the computationally relevant portion of the program:

Abstract vs Concrete Syntax

- the concrete syntax of a program contains many elements necessary for parsing:
 - parentheses
 - delimiters for comments
 - rules for precedence of operators
- the abstract syntax of a program is much simpler; it does not contain these elements
 - precedence is given directly by the tree structure

Abstract vs Concrete Syntax

- parsing was a hard problem solved in the '70s
- since parsing is solved, we can work with simple abstract syntax rather than complex concrete syntax
- nevertheless, we need a notation for writing down abstract syntax trees
 - when we write (3 + 2) * 7, you should visualize the tree:

Arithmetic Expressions, Informally

- Informally, an arithmetic expression e is
 - a boolean value
 - an if statement (if e1 then e2 else e3)
 - the number zero
 - the successor of a number
 - the predecessor of a number
 - a test for zero (isZero e)

Arithmetic Expressions, Formally

- The arithmetic expressions are defined by the judgment e exp
 - a boolean value:

true exp false exp

- an if statement (if e1 then e2 else e3):

e1 exp e2 exp e3 exp if e1 then e2 else e3 exp

Arithmetic Expressions, formally

- An arithmetic expression e is
 - a boolean, an if statement, a zero, a successor, a predecessor or a 0 test:

$$\frac{1}{\text{true exp}} \qquad \frac{\text{el exp}}{\text{false exp}} \qquad \frac{\text{el exp}}{\text{if el then e2 else e3}} \quad \frac{\text{e3 exp}}{\text{exp}}$$

BNF

- Defining every bit of syntax by inductive definitions can be lengthy and tedious
- Syntactic definitions are an especially simple form of inductive definition:
 - context insensitive
 - unary predicates
- There is a very convenient abbreviation: BNF

Arithmetic Expressions, in BNF

```
e ::= true | false | if e then e else e
    | 0 | succ e | pred e | iszero e
pick a new letter
                              separates
                                                   subterm/
(Greek symbol/word)
                             alternatives
                                                   subobject
to represent any object
                                                   is any "e"
in the set of objects
                             (7 alternatives
                                                   object
being defined
                             implies
                              7 inductive rules)
```

An alternative definition

b ::= true | false

e ::= b | if e then e else e | 0 | succ e | pred e | iszero e

corresponds to two inductively defined judgements:

1. b bool

constants(true) = {true}

2. e exp

the key rule is an inclusion of booleans in expressions:

b bool b exp

Metavariables

b ::= true | false

e ::= b | if e then e else e | 0 | succ e | pred e | iszero e

- b and e are called metavariables
- they stand for classes of objects, programs, and other things
- they must not be confused with program variables

2 Functions defined over Terms

```
\begin{aligned} & \text{constants (false)} = \{ \text{false} \} \\ & \text{constants (0)} = \{ 0 \} \\ & \text{constants(succ e)} = \text{constants(pred e)} = \text{constants(iszero e)} = \text{constants e} \\ & \text{constants (if e1 then e2 else e3)} = U_{i=1-3} \text{ (constants ei)} \\ & \text{size(true)} = 1 \\ & \text{size(false)} = 1 \\ & \text{size(false)} = 1 \\ & \text{size(succ e)} = \text{size(pred e)} = \text{size(iszero e)} = \text{size e} + 1 \\ & \text{size(if e1 then e2 else e3)} = +_{i=1-3} \text{ (size ei)} + 1 \end{aligned}
```

A Lemma

- The number of distinct constants in any expression e is no greater than the size of e:
 - | constants e | ≤ size e
- How to prove it?

A Lemma

- The number of distinct constants in any expression e is no greater than the size of e:
 - | constants $e | \le size e$
- How to prove it?
 - By rule induction on the rules for "e exp"
 - More commonly called induction on the structure of e
 - a form of "structural induction"

Structural Induction

- Suppose P is a predicate on expressions.
 - structural induction:
 - for each expression e, we assume P(e') holds for each subexpression e' of e and go on to prove P(e)
 - result: we know P(e) for all expressions e
 - if you study the theory of safe and secure programming languages, you'll use this idea for the rest of your life!

Back to the Lemma

• The number of distinct constants in any expression e is no greater than the size of e:

expression e is no greater than the size of e:

| constants e | ≤ size e |
| always state method first |
| case e is 0, true, false: ... |
| case e is succ e', pred e', iszero e': ... |
| case e is (if e1 then e2 else e3): ... |
| separate cases (1 case per rule)

What is a proof?

- A proof is an easily-checked justification of a judgment (ie: a theorem)
 - different people have different ideas about what "easily-checked" means
 - the more formal a proof, the more "easily-checked"
 - when studying language safety and security, we often have a pretty high bar because hackers can often exploit even the tiniest flaw in our reasoning

MinML

Syntax & Static Semantics

MinML, The E. Coli of PL's

- We'll study MinML, a tiny fragment of ML
 - Integers and booleans.
 - Recursive functions.
- Rich enough to be Turing complete, but bare enough to support a thorough mathematical analysis of its properties.

Abstract Syntax of MinML

- The types of MinML are inductively defined by these rules:
 - $-t := int \mid bool \mid t \rightarrow t$

Abstract Syntax of MinML

- The expressions of MinML are inductively defined by these rules:
 - $-e := x \mid n \mid true \mid false \mid o(e,...,e) \mid if e then e else e \mid fun f (x:t):t = e \mid e e$
- x ranges over a set of variables
- n ranges over the integers ...,-2,-1,0,1,2,...
- o ranges over operators +,-,...
 - sometimes I'll write operators infix: 2+x

Binding and Scope

- In the expression fun f (x:t1): t2 = e the variables f and x are bound in the expression e
- We use standard conventions involving bound variables
 - Expressions differing only in names of bound variables are indistinguishable
 - fun f(x:int): int = x + 3 same as fun g(z:int): int = z + 3
 - We'll pick variables f and x to avoid clashes with other variables in context.

Free Variables and Substitution

- Variables that are not bound are called free.
 - eg: y is free in fun f(x:t1): t2 = fy
- The capture-avoiding substitution e[e'/x] replaces all free occurrences of x with e' in e.
 - eg: (fun f(x:t1) : t2 = fy)[3/y] = (fun f(x:t1) : t2 = f3)
- Rename bound variables during substitution to avoid "capturing" free variables
 - eg: (fun f (x:t1) : t2 = f y)[x/y] = (fun f (z:t1) : t2 = f x)

Static Semantics

- The static semantics, or type system, imposes context-sensitive restrictions on the formation of expressions.
 - Distinguishes well-typed from ill-typed expressions.
 - Well-typed programs have well-defined behavior; illtyped programs have ill-defined behavior
 - If you can't say what your program does, you certainly can't say whether it is secure or not!

Typing Judgments

- A typing judgment, or typing assertion, is a triple G |-- e : t
 - A type context G that assigns types to a set of
 - An expression e whose free variables are given by G
 - A type t for the expression e

Type Assignments

- Formally, a type assignment is a finite function G: Variables → Types
- We write G,x:t for the function G' defined as follows:

$$G'(y) = t$$
 if $x = y$
 $G'(y) = G(y)$ if $x \neq y$

Typing Rules

• A variable has whatever type G assigns to it:

$$\overline{G \mid --x : G(x)}$$

• The constants have the evident types:

 \overline{G} |-- true : bool \overline{G} |-- false : bool

Typing Rules

• The primitive operations have the expected typing rules:

$$\frac{G \mid --e1 : int \quad G \mid --e2 : int}{G \mid --+(e1,e2) : int}$$

 $\frac{G \mid --e1 : int \quad G \mid --e2 : int}{G \mid --=(e1,e2) : bool}$

Typing Rules

• Both "branches" of a conditional must have the same type!

$$\frac{G \mid \text{-- e : bool} \quad G \mid \text{-- e1 : t} \quad G \mid \text{-- e2 : t}}{G \mid \text{-- if e then e1 else e2 : t}}$$

• Intuitively, the type checker can't predict the outcome of the test (in general) so we must insist that both results have the same type. Otherwise, we could not assign a unique type to the conditional.

Typing Rules

• Functions may only be applied to arguments in their domain:

$$\frac{G \mid --e1 : t2 \rightarrow t \quad G \mid --e2 : t2}{G \mid --e1 e2 : t}$$

• The result type of the co-domain (range) of the function.

Typing Rules

• Type checking recursive function:

$$\frac{G,f: t1 \rightarrow t2, x:t1 \mid --e: t2}{G \mid --\text{ fun } f (x:t1): t2 = e: t1 \rightarrow t2}$$

We tacitly assume that {f,x} ∩ dom(G) = {}.
 This is always possible by our conventions on binding operators.

Typing Rules

- Type checking a recursive function is tricky! We assume that:
 - The function has the specified domain and range types, and
 - The argument has the specified domain type.
- We then check that the body has the range type under these assumptions.
- If the assumptions are consistent, the function is type correct, otherwise not.

Well-Typed and Ill-Typed Expressions

- An expression e is well-typed in a context G iff there exists a type t such that G |-- e : t.
- If there is no t such that G |-- e : t, then e is ill-typed in context G.

Typing Example

• Consider the following expression e:

fun f (n:int): int =
if n=0 then 1 else n * f(n-1)

• Lemma: The expression e has type int → int. To prove this, we must show that

 $\{\}\ | -- e : int \rightarrow int$

Typing Example

$\{\}\ |\text{-- fun }f\ (n:int):int=if\ n=0\ then\ 1\ else\ n*f(n-1):int\to int$

Typing Example

```
\frac{G \mid \text{-- if } n = 0 \text{ then } 1 \text{ else } n*f(n-1) : \text{int}}{\{\} \mid \text{-- fun } f (n:\text{int}) : \text{int} = \text{if } n = 0 \text{ then } 1 \text{ else } n*f(n-1) : \text{int} \to \text{int}}
```

where $G = f : int \rightarrow int, n : int$

Typing Example

```
\frac{G \mid -\text{n} = 0 \text{ : bool} \qquad G \mid -\text{1 : int} \qquad G \mid -\text{n} = n \text{ : int}}{G \mid -\text{n} = 0 \text{ then } 1 \text{ else } n \text{ * f}(n-1) \text{ : int}}
\frac{G \mid -\text{ : if } n = 0 \text{ then } 1 \text{ else } n \text{ * f}(n-1) \text{ : int}}{\{\} \mid -\text{ : fun } f \text{ (n:int):int} = \text{ if } n = 0 \text{ then } 1 \text{ else } n \text{ * f}(n-1) \text{ : int} \rightarrow \text{ int}}
```

Typing Example

Typing Example

$$Derivation \ D = \qquad \frac{\overline{G \mid \text{-- } f : int \rightarrow int} \quad \overline{G \mid \text{-- } n - 1 : int}}{\overline{G \mid \text{-- } f - 1 : int}} \\ \overline{G \mid \text{-- } f : int \rightarrow int} \quad \overline{G \mid \text{-- } n - 1 : int}$$

Typing Example

- Thank goodness that's over!
- The precise typing rules tell us when a program is well-typed and when it isn't.
- A type checker is a program that decides:
 - Given G, e, and t, is there a derivation of G \mid –- e : t according to the typing rules?

Type Checking

- How does the type checker find typing proofs?
- Important fact: the typing rules are syntax-directed --- there is one rule per expression form.
- Therefore the checker can invert the typing rules and work backwards toward the proof, just as we did above
 - If the expression is a function, the only possible proof is one that applies the function typing rules. So we work backwards from there.

Type Checking

- Every expression has at most one type.
- To determine whether or not G |-- e : t, we
 - Compute the unique type t' (if any) of e in G.
 - Compare t' with t

Summary of Static Semantics

- The static semantics of MinML is specified by an inductive definition of typing judgment G |-- e : t.
- Properties of the type system may be proved by induction on typing derivations.

Properties of Typing

- Lemma (Inversion)
 - If G |-- x : t, then G(x) = t.
 - -If G | -- n : t, then t = int.
 - If $G \mid$ -- true : t, then t = bool, (similarly for false)
 - If G |-- if e then e1 else e2 : t, then G |-- e : bool, G |-- e1 : t and G |-- e2 : t.
 - etc...
- Proof: By induction on the typing rules

Induction on Typing

- To show that some property P(G, e, t) holds whenever G |-- e: t, it's enough to show the property holds for the conclusion of each rule given that it holds for the premises:
 - $-\ P(G,\,x,\,G(x))$
 - P(G, n, int)
 - P(G, true, bool) and P(G, false, bool)
 - if P(G, e, bool), P(G, e1, t) and P(G, e2, t) then P(G, if e then e1 else e2)

and similarly for functions and applications...

Properties of Typing

- Lemma (Weakening):
 - If $G \mid --e : t$ and $G' \subseteq G$, then $G' \mid --e : t$.
- Proof: by induction on typing
- Intuitively, "junk" in the context doesn't matter.

Properties of Typing

• Lemma (Substitution):

If G, x:t \mid -- e': t' and G \mid -- e: t, then G \mid -- e'[e/x]: t'.

• Proof: ?

Properties of Typing

• Lemma (Substitution):

If G, x:t |--e': t' and G |--e: t, then G |--e'[e/x]: t'.

MinML

Dynamic Semantics

Dynamic Semantics

- Describes how a program executes
- · At least three different ways:
 - Denotational: Compile into a language with a well understood semantics
 - Axiomatic: Given some preconditions P, state the (logical) properties Q that hold after execution of a statement
 - {P} e {Q} Hoare logic
 - Operational: Define execution directly by rewriting the program step-by-step
- · We'll concentrate on the operational approach

Dynamic Semantics of MinML

- Judgment: $e \rightarrow e'$
 - A transition relation read:

"expression e steps to e"

- A transition consists of execution of a single instruction.
- Rules determine which instruction to execute next
- There are no transitions from values.

Values

- Values are defined as follows:
 - -v := x | n | true | false | fun f (x : t1) : t2 = e
- Closed values include all values except variables (x).

Primitive Instructions

- First, we define the primitive instructions of MinML. These are the atomic transition steps.
 - Primitive operation on numbers (+,-,etc.)
 - Conditional branch when the test is either true or false.
 - Application of a recursive function to an argument value.

Primitive Instructions

• Addition of two numbers:

$$\frac{(n = n1 + n2)}{+(n1, n2) \rightarrow n}$$

• Equality test:

$$\frac{(n1 = n2)}{= (n1, n2) \rightarrow true}$$

$$\frac{(n1 \neq n2)}{= (n1, n2) \rightarrow false}$$

Primitive Instructions

• Conditional branch:

if true then e1 else e2 \rightarrow e1

if false then e1 else e2 \rightarrow e2

Primitive Instructions

• Application of a recursive function:

$$\frac{(v = \text{fun } f(x:t1):t2 = e)}{v \ v1 \rightarrow e[v/f][v1/x]}$$

• Note: We substitute the entire function expression for f in e!

Search Rules

- Second, we specify the next instruction to execute by a set of search rules.
- These rules specify the order of evaluation of MinML expressions.
 - left-to-right
 - right-to-left

Search Rules

• We will choose a left-to-right evaluation order:

$$\frac{\text{el} \rightarrow \text{el'}}{\text{+(el, e2)} \rightarrow \text{+(el', e2)}}$$

$$\frac{e2 \to e2'}{+(v1, e2) \to +(v1, e2')}$$

Search Rules

• For conditionals we evaluate the instruction inside the test expression:

$$\frac{e \rightarrow e'}{\text{if e then e1 else e2} \rightarrow \text{if e' then e1 else e2}}$$

Search Rules

• Applications are evaluated left-to-right: first the function then the argument.

$$\frac{e1 \rightarrow e1'}{e1 \ e2 \rightarrow e1' \ e2}$$

$$\frac{e2 \rightarrow e2'}{v1 \ e2 \rightarrow v1 \ e2'}$$

Multi-step Evaluation

• The relation e →* e' is inductively defined by the following rules:

$$e \rightarrow * e$$

$$\frac{e \rightarrow e^{'} \quad e^{'} \rightarrow^{*} e^{''}}{e \rightarrow^{*} e^{''}}$$

• That is, $e \rightarrow * e'$ iff $e = e0 \rightarrow e1 \rightarrow ... \rightarrow en = e'$ for some $n \ge 0$.

Example Execution

• Suppose that v is the function

fun f(n:int):int = if n=0 then 1 else n*f(n-1)

• Consider its evaluation:

$$v 3 \rightarrow if 3=0 then 1 else 3*v(3-1)$$

• We have substituted 3 for n and v for f in the body of the function.

Example Execution

$$\begin{array}{l} v\: 3 \to if\: 3\text{=0 then 1 else } 3\text{*v}(3\text{-1}) \\ \to if\: false then 1 else } 3\text{*v}(3\text{-1}) \\ \to 3\text{*v } (3\text{-1}) \\ \to 3\text{*v 2} \\ \to 3\text{*(if 2=0 then 1 else } 2\text{*v}(2\text{-1}) \\ \dots \\ \to 3\text{*(2\text{*}(1\text{*}1\text{1}))} \\ \to 3\text{*}(2\text{*1}) \\ \to 3\text{*2} \\ \to 6 \end{array}$$

where v = fun f(n:int) : int = if n=0 then 1 else n*f(n-1)

Induction on Evaluation

- To prove that e → e' implies P(e, e') for some property P, it suffices to prove
 - P(e, e') for each instruction axiom
 - Assuming P holds for each premise of a search rule, show that it holds for the conclusion as well.

Induction on Evaluation

- To show that $e \rightarrow^* e'$ implies Q(e, e') it suffices to show
 - Q(e, e) (Q is reflexive)
 - If $e \rightarrow e^{\text{`}}$ and Q(e', e'') then Q(e, e'')
 - Often this involves proving some property P of single-step evaluation by induction.

Properties of Evaluation

• Lemma (Values Irreducible)

There is no e such that $v \rightarrow e$.

- By inspection of the rules
 - No instruction rule has a value on the left
 - No search rule has a value on the left

Properties of Evaluation

• Lemma (Determinacy)

For every e there exists at most one e' such that $e \rightarrow e'$.

- By induction on the structure of e
 - Make use irreducibility of values
 - eg: application rules

$$\frac{e1 \rightarrow e1'}{e1\ e2 \rightarrow e1'\ e2} \qquad \frac{e2 \rightarrow e2'}{v1\ e2 \rightarrow v1\ e2'} \qquad \frac{(v = \mathrm{fun}\ f(x:t1):t2 = e)}{v\ v1 \rightarrow e[v/f]\ [v1/x]}$$

Properties of Evaluation

- Every expression evaluates to at most one value
- Lemma (Determinacy of values)

For any e there exists at most one v such that $e \rightarrow^* v$.

• By induction on the length of the evaluation sequence using determinacy.

Stuck States

- · Not every irreducible expression is a value!
 - (if 7 then 1 else 2) does not reduce
 - (true+false) does not reduce
 - (true 1) does not reduce
- If an expression is not a value but doesn't reduce, its meaning is ill-defined
 - Anything can happen next
- An expression e that is not a value, but for which there exists no e' such that e → e' is said to be stuck.
- Safety: no stuck states are reachable from well-typed programs. ie: evaluation of well-typed programs is welldefined.

Alternative Formulations of Operational Semantics

- We have given a "small-step" operational semantics
 - $-e \rightarrow e^{3}$
- Some people like "big-step" operational semantics
 - e ↓ v
- Another choice is a "context-based" "smallstep" operational semantics

Context-based Semantics

- To avoid multiple search rules in the smallstep semantics, we can define the set of "computational contexts" in which an instruction rule can be invoked
- Contexts E ::= [] | o(v,...,E,e,...) | $| \text{ if E then e1 else e2} \\ | E e | v E$

Context-based Semantics

- Any expression e that can take a step can be factored into two parts:
 - -e = E[r]
 - r is a "redex" the left-hand side of an instruction rule
 - r := o(v,...,v)
 - | if true then e1 else e2
 - | if false then e1 else e2
 - | (fun f(x:t1):t2 = e) v

Context-based Semantics

 Now, we just need one rule to implement all of the search rules:

$$\frac{e \to e'}{E[e] \to E[e']}$$

 Sometimes this makes the specification of the OS and proofs about it much more concise

Summary of Dynamic Semantics

- We define the operational semantics of MinML using a judgment e → e'
- Evaluation is deterministic
- Evaluation can get stuck...if expressions are not well-typed.

MinML

Type Safety

Type Safety

- Java and ML are type safe, or strongly typed, languages.
- C and C++ are often described as weakly typed languages.
- What does this mean? What do strong type systems do for us?

Type Safety

- A type system predicts at compile time the behavior of a program at run time.
 - eg: |-- e: int \rightarrow int predicts that
 - the expression e will evaluate to a function value that requires an integer argument and returns an integer result, or does not terminate
 - the expression e will not get stuck during evaluation

Type Safety

- Type safety is a matter of coherence between the static and dynamic semantics.
 - The static semantics makes predictions about the execution behavior.
 - The dynamic semantics must comply with those predictions.
- Strongly typed languages always make valid predictions.
- Weakly typed languages get it wrong part of the time.

Type Safety

- Because they make valid predictions, strongly typed languages guarantee that certain errors never occur.
- The kinds of errors vary depending upon the predictions made by the type system.
 - MinML predicts the shapes of values (Is it a boolean? a function? an integer?)
 - MinML guarantees integers aren't applied to arguments.

Type Safety

- Demonstrating that a program is well-typed means proving a theorem about its behavior.
 - A type checker is therefore a theorem prover.
 - Non-computability theorems limit the strength of theorems that a mechanical type checker can prove.
 - Type checkers are always conservative --- a strong type system will rule out some good programs as well as all of the bad ones.

Type Safety

- Fundamentally there is a tension between
 - the expressivenes of the type system, and
 - the difficulty of proving that a program is welltyped.
- Therein lies the art of type system design.

Type Safety

- Two common misconceptions:
 - Type systems are only useful for checking simple decidable properties.
 - Not true: powerful type systems have been created to check for termination of programs for example
 - Anything that a type checker can do can also be done at run-time (perhaps at some small cost).
 - Not true: type systems prove properties for all runs of a program, not just the current run. This has many ramifications. See Francois' lectures for one example.

Formalization of Type Safety

- The coherence of the static and dynamic semantics is neatly summarized by two related properties:
 - Preservation: A well-typed program remains well-typed during execution.
 - Progress: Well-typed programs do not get stuck. If an expression is well-typed then it is either a value or there is a well-defined next instruction.

Formalization of Type Safety

• Preservation:

If $|--e: t \text{ and } e \rightarrow e' \text{ then } |--e': t$

• Progress:

If |-- e : t then either

- e is a value, or
- there exists e' such that $e \rightarrow e'$
- · Consequently we have Safety:

If |--e|: t and $e \rightarrow *e'$ then e' is not stuck.

Formalization of Type Safety

- The type of a closed value determines its form.
- Canonical Forms Lemma: If |-- v : t then
 - If t = int then v = n for some integer n
 - If t = bool then v = true or v = false
 - If $t = t1 \rightarrow t2$ then v = fun f(x:t1):t2 = e for some f, x, and e.
- · Proof by induction on typing rules.
- eg: If |-- e: int and e →* v then v = n for some integer n.

Proof of Preservation

• Theorem (Preservation)

If
$$|--e|$$
: t and $e \rightarrow e'$ then $|--e'|$: t.

- Proof: The proof is by induction on evaluation.
 - For each operational rule we assume that the theorem holds for the premises; we show it is true for the conclusion.

Proof of Preservation

• Case addition:

Given:

$$\frac{(n=n1+n2)}{+(n1, n2) \rightarrow n}$$

|-- +(n1,n2) : t

Proof:

Proof of Preservation

• Case addition:

Given:

$$\frac{(n=n1+n2)}{+(n1,n2)\to n}$$
 |--+(n1,n2): t

Proof:

t = int

(by inversion lemma)

Proof of Preservation

• Case addition:

Given:

$$\frac{(n = n1 + n2)}{+(n1, n2) \to n} \quad |--+(n1, n2) : t$$

Proof:

Proof of Preservation

• Case application:

Given:

$$\frac{(v = \text{fun } f(x:t1):t2 = e)}{v \ v1 \rightarrow e[v/f][v1/x]} \quad |-v \ v1:t$$

Proof:

Proof of Preservation

• Case application:

Given:

$$\frac{(v = \text{fun } f (x : t1) : t2 = e)}{v v 1 \rightarrow e[v/f] [v1/x]} \qquad |--v v1 : t$$

Proof:

$$|-v:t1 \rightarrow t2; |-v1:t1; t = t2$$
 (by inversion)

Proof of Preservation

• Case application:

Given:

$$\frac{(v = \text{fun } f(x : t1) : t2 = e)}{v v 1 \rightarrow e[v/f][v1/x]}$$
 |-- v v1 : t

Proof:

$$|--v:t1\rightarrow t2;\;|--v1:t1;\;t=t2$$
 (by inversion)
f: $t1\rightarrow t2,\;x:t1|--e:t2$ (by inversion)

Proof of Preservation

• Case application:

Given:

$$\frac{(v = \text{fun } f(x:t1):t2 = e)}{v \ v1 \rightarrow e[v/f][v1/x]} \quad |-v \ v1:t$$

Proof:

|-- v : t1
$$\rightarrow$$
 t2; |-- v1 : t1; t = t2 (by inversion)
f: t1 \rightarrow t2, x:t1|-- e : t2 (by inversion)
|-- e [v/f][v1/x] : t2 (by substitution)

Proof of Preservation

• Case addition search1:

Given:

$$\frac{e1 \rightarrow e1^{\,\prime}}{+(e1,\,e2) \rightarrow +(e1^{\,\prime},\,e2)} \qquad \quad |\text{--} + (e1,\!e2) : t$$

Proof:

Proof of Preservation

• Case addition search1:

Given:

$$\frac{e1 \rightarrow e1'}{+(e1,\,e2) \rightarrow +(e1',\,e2)} \hspace{1cm} \text{$|\text{--+}(e1,e2): t$}$$

Proof:

Proof of Preservation

• Case addition search1:

Given:

$$\frac{e1 \to e1'}{+(e1,e2) \to +(e1',e2)} \hspace{1cm} \text{$|$--+(e1,e2):$} t$$

Proof:

Proof of Preservation

• Case addition search1:

Given:

$$\frac{e1\rightarrow e1'}{+(e1,e2)\rightarrow +(e1',e2)} \hspace{1cm} \text{$|$^{--}$ +(e1,e2): t$}$$
 Proof:

Proof of Preservation

• Case addition search1:

Given:

$$\begin{array}{c} e1 \to e1' \\ \hline +(e1,e2) \to +(e1',e2) \\ \hline Proof: \\ \hline |-- e1 : int \\ \hline |-- e1' : int \\ \hline |-- e2 : int \\ \hline |-- e2 : int \\ \hline |-- +(e1',e2) : int \\ \hline |-- e1' : int \\ \hline |-- e2 : int \\ \hline |-- +(e1',e2) : int \\ \hline |-- +(e1',e2)$$

Proof of Preservation

- How might the proof have failed?
- Only if some instruction is mis-defined. eg:

$$\frac{(m=n)}{=(m,n)\to 1} \qquad \qquad \frac{(m\neq n)}{=(m,n)\to 0}$$

$$\frac{G \mid --e1 : int \quad G \mid --e2 : int}{G \mid --=(e1,e2) : bool}$$

• Preservation fails. The result of an equality test is not a boolean.

Proof of Preservation

• Notice that if an instruction is undefined, this does not disturb preservation!

$$\frac{(m=n)}{=(m, n) \to true}$$

$$\frac{G \mid --e1 : int \quad G \mid --e2 : int}{G \mid --=(e1,e2) : bool}$$

Proof of Progress

- Theorem (Progress)
 - If |--e|: t then either e is a value or there exists e' such that $e \rightarrow e'$.
- Proof is by induction on typing.

Proof of Progress

· Case variables:

Given:

 $G \mid --x : G(x)$

Proof: This case does not apply since we are considering closed values (G is the empty context).

Proof of Progress

• Case integer:

Given:

|-- n : int

Proof: Immediate (n is a value). Similar reasoning for all other values.

Proof of Progress

• Case addition:

Given:

|-- e1 : int |-- e2 : int | |-- +(e1,e2) : int

Proof:

Proof of Progress

• Case addition:

Given:

|-- e1 : int |-- e2 : int |-- +(e1,e2) : int

Proof:

(1) $e1 \rightarrow e1$ ', or (2) e1 = v1

(by induction)

Proof of Progress

• Case addition:

Given:

|-- e1 : int |-- e2 : int |-- +(e1,e2) : int

Proof:

(1) $e1 \rightarrow e1$ ', or (2) e1 = v1

(by induction)

 $+(e1,e2) \rightarrow +(e1',e2)$

(by search rule, if 1)

Proof of Progress

· Case addition:

Given:

Proof:

Assuming (2) e1 = v1

(we've taken care of 1)

(3) $e2 \rightarrow e2$ ', or (4) e2 = v2 $+(v1,e2) \rightarrow +(v1,e2)$

(by induction) (by search rule, if 3)

Proof of Progress

· Case addition:

Given:

Proof:

Assuming (2) e1 = v1Assuming (4) e2 = v2 (we've taken care of 1) (we've taken care of 3)

Proof of Progress

· Case addition:

Given:

Proof: Assuming (2) e1 = v1(we've taken care of 1)

Assuming (4) e2 = v2(we've taken care of 3) v1 = n1 for some integer n1(by canonical forms)

v2 = n2 for some integer n1

(by canonical forms)

Proof of Progress

· Case addition:

Given:

Proof:

Assuming (2) e1 = v1(we've taken care of 1) Assuming (4) e2 = v2(we've taken care of 3)

v1 = n1 for some integer n1(by canonical forms) v2 = n2 for some integer n1(by canonical forms)

+(n1,n2) = n where n is sum of n1 and n2 (by instruction rule)

Proof of Progress

- Cases for if statements and function application are
 - use induction hypothesis to generate multiple cases involving search rules
 - use canonical forms lemma to show that the instruction rules can be applied properly

Proof of Progress

- How could the proof have failed?
 - Some operational rule was omitted

$$\frac{(m=n)}{=(m, n) \to true}$$

$$\frac{G \mid --e1 : int \quad G \mid --e2 : int}{G \mid --=(e1,e2) : bool}$$

Extending the Language

- Suppose we add (immutable) arrays:
 - -e := [e0,...,ek] | sub ea ei

Extending the Language

- Suppose we add (immutable) arrays:
 - e ::= [e0,...,ek] | sub ea ei

$$\frac{e1 \to e1'}{[v0,...,vj,e1,e2...,ek] \to [v0,...,vj,e1',e2...,ek]}$$

Extending the Language

- Suppose we add (immutable) arrays:
 - -e := [e0,...,ek] | sub ea ei

$$\frac{e1 \to e1'}{[v0,...,vj,e1,e2...,ek] \to [v0,...,vj,e1',e2...,ek]}$$

$$\begin{array}{c|c} \underline{ea \rightarrow ea'} & \underline{ei \rightarrow ei'} & \underline{0 <= n <= k} \\ \overline{sub \ ea \ ei \rightarrow sub \ ea' \ ei} & \overline{sub \ va \ ei \rightarrow sub \ va \ ei'} & \overline{sub \ [v0,...,vk] \ n \rightarrow vj} \\ \end{array}$$

 $\frac{G \mid \text{-- e0} : \text{t} \dots G \mid \text{-- ek} : \text{t}}{G \mid \text{-- [e0,...,ek]} : \text{t array}} \qquad \frac{G \mid \text{-- ea} : \text{t array}}{G \mid \text{-- sub ea ei} : \text{t}} \qquad \frac{G \mid \text{-- ei} : \text{int}}{G \mid \text{-- sub ea ei} : \text{t}}$

Extending the Language

- Is the language still safe?
 - Preservation still holds: execution of each instruction preserves types
 - Progress fails:

|-- sub [17,25,44] 9 : int

but

|-- sub [17,25,44] 9 : int \rightarrow ???

Extending the Language

- How can we recover safety?
 - Strengthen the type system to rule out the offending case
 - Change the dynamic semantics to avoid "getting stuck" when we do an array subscript

Option 1

- Strengthen the type system by keeping track of array lengths and the values of integers:
 - $\ types \ t ::= ... \mid t \ array(a) \mid int \ (a)$
 - a ranges over arithmetic expressions that describe array lengths and specific integer values
- Pros: out-of-bounds errors detected at compiletime; facilitates debugging; no run-time overhead
- Cons: complex; limits type inference

Option 2

- Change the dynamic semantics to avoid "getting stuck" when we do an array subscript
 - Introduce rules to check for out-of-bounds
 - Introduce well-defined error transitions that are different from undefined stuck states
 - mimic raising an exception
 - Revise statement of safety to take error transitions into account

Option 2

- Changes to operational semantics:
 - Primitive operations yield "error" exception in well-defined places

$$\frac{n < 0 \text{ or } n > k}{\text{sub [v0,...,vk] } n \rightarrow \text{error}}$$

- Search rules propagate errors once they arise

$$\frac{\text{e1} \rightarrow \text{error}}{+(\text{e1, e2}) \rightarrow \text{error}}$$

$$\frac{e2 \to error}{+(v1, e2) \to error}$$

(similarly with all other search rules)

Option 2

- · Changes to statement of safety
 - Preservation: If \mid -- e : t and $e \rightarrow e$ ' and
 - $e' \neq error then \mid -- e' : t$
 - Progress: If \mid -- e : t then either e is a value or
 - $e \rightarrow e^{2}$
 - Stuck states: e is stuck if e is not a value, not error and there is no e' such that $e \rightarrow e$ '
 - Safety: If |--e|: t and |--e| e' then e' is not stuck.

Weakly-typed Languages

- Languages like C and C++ are weakly typed:
 - They do not have a strong enough type system to ensure array accesses are in bounds at compile time.
 - They do not check for array out-of-bounds at run time.
 - They are unsafe.

Weakly-typed Languages

- · Consequences:
 - Constructing secure software in C and C++ is extremely difficult.
 - Evidence:
 - Hackers break into C and C++ systems constantly.
 - $-\,$ It's costing us > \$20 billion dollars per year and looks like it's doubling every year.
 - · How are they doing it?
 - > 50% of attacks exploit buffer overruns, format string attacks, "double-free" attacks, none of which can happen in safe languages.
 - The single most effective defence against these hacks is to develop software infrastructure in safe languages.

Summary

- Type safety express the coherence of the static and dynamic semantics.
- Coherence is elegantly expressed as the conjunction of preservation and progress.
- When type safety fails programs might get stuck (behave in undefined and unpredictable ways).
- Leads to security vulnerabilities
- · Fix safety problems by:
 - Strengthening the type system, or
 - Adding dynamic checks to the operational semantics.
 - A type safety proof tells us whether we have a sound language design and where to fix problems.