The Current State of Affairs

Software security flaws cost our economy $10-$30 billion/year*

.... and Moore’s law applies:
The cost of software security failures is doubling every year.*

* some unverified statistics I have read lately

Security in Modern Programming Languages

• What do programming language designers have to contribute to security?
 – modern programming language features
 • objects, modules and interfaces for encapsulation
 • advanced access control mechanisms: stack inspection
 – automatic analysis of programs
 • basic type checking: client code respects system interfaces
 – access control code can’t be circumvented
 • advanced type/model proof checking:
 – data integrity, confidentiality, general safety and liveness properties

The Current State of Affairs

New York Times (1998): The security flaw reported this week in Email programs written by two highly-respected software companies points to an industry-wide problem – the danger of programming languages whose greatest strength is also their greatest weakness.

More modern programming languages like the Java language developed by Sun Microsystems, have built-in safeguards that prevent programmers from making many common types of errors that could result in security loopholes

* some unverified statistics I have read lately

The Current State of Affairs

• In 1998:
 – 85%* of all CERT advisories represent problems that cryptography can’t fix
 – 30-50%* of recent software security problems are due to buffer overflow in languages like C and C++
 • problems that can be fixed with modern programming language technology (Java, ML, Modula, C++, Haskell, Scheme, ...)
 • perhaps many more of the remaining 35-55% may be addressed by programming language techniques

* more unverified stats; I’ve heard the numbers are even higher
Security in Modern Programming Languages

- What have programming language designers done for us lately?
 - Development of secure byte code languages & platforms for distribution of untrusted mobile code
 - JVM and CLR
 - Proof-Carrying Code & Typed Assembly Language
 - Detecting program errors at run-time
 - e.g. buffer overrun detection; making C safe
 - Static program analysis for security holes
 - Information flow, buffer-oversruns, format string attacks
 - Type checking, model checking

These lectures

- Foundations key to recent advances:
 - Techniques for giving precise definitions of programming language constructs:
 - Without precise definitions, we can’t say what programs do let alone whether or not they are secure
 - Techniques for designing safe language features:
 - Use of the features may cause programs to abort (stop) but do not lead to completely random, undefined program behavior that might allow an attacker to take over a machine
 - Techniques for proving useful properties of all programs written in a language
 - Certain kinds of errors can’t happen in any program

These lectures

- Inductive definitions
 - The basis for defining all kinds of languages, logics and systems
- MinML (PCF)
 - Syntax
 - Type system
 - Operational semantics & safety
- Acknowledgement: Many of these slides come from lectures by Robert Harper (CMU) and ideas for the intro came from Martin Abadi

Reading & Study

- Robert Harper’s Programming Languages: Theory and Practice
- Benjamin Pierce’s Types and Programming Languages
 - Available at your local bookstore
- Course notes, study materials and assignments
 - Andrew Myoro: http://www.cs.cornell.edu/courses/ca611/2006fa/
 - David Walker: http://www.cs.princeton.edu/courses/archive/fall03/cs510/
 - Others...

Inductive Definitions

Inductive definitions play a central role in the study of programming languages.

They specify the following aspects of a language:

- Concrete syntax (via CFGs)
- Abstract syntax (via CFGs)
- Static semantics (via typing rules)
- Dynamic semantics (via evaluation rules)
Inductive Definitions

- An inductive definition consists of:
 - One or more judgments (ie: assertions)
 - A set of rules for deriving these judgments
- For example:
 - Judgment is “n nat”
 - Rules:
 - zero nat
 - if n nat, then succ(n) nat.

Inference Rule Notation

Inference rules are normally written as:

\[
\begin{align*}
J_1 & \ldots \quad J_n \\
\hline
 J
\end{align*}
\]

where J and J1, ..., Jn are judgements. (For axioms, n = 0.)

An example

For example, the rules for deriving n nat are usually written:

\[
\begin{align*}
\text{zero nat} \\
\text{suc(n) nat}
\end{align*}
\]

Derivation of Judgments

- A judgment J is derivable iff either
 - there is an axiom
 \[
 \begin{align*}
 & J \hline \\
 \end{align*}
 \]
 - or there is a rule
 \[
 \begin{align*}
 J_1 & \ldots \quad J_n \\
 \hline
 J
 \end{align*}
 \]
 - such that J1, ..., Jn are derivable

Derivation of Judgments

- We may determine whether a judgment is derivable by working backwards.
- For example, the judgment
 \[
 \text{suc(suc(zero)) nat}
 \]
 is derivable as follows:

 Optional: names of rules used at each step

Binary Trees

- Here is a set of rules defining the judgment t tree stating that t is a binary tree:

 \[
 \begin{align*}
 & \text{empty tree} \quad \text{t1 tree} \quad \text{t2 tree} \\
 \hline
 \text{node} (\text{empty}, \text{node} (\text{empty}, \text{empty})) \text{ tree}
 \end{align*}
 \]

- Prove that the following is a valid judgment:
 \[
 \text{node} (\text{empty}, \text{node} (\text{empty}, \text{empty})) \text{ tree}
 \]
Rule Induction

- By definition, every derivable judgment
 - is the consequence of some rule...
 - whose premises are derivable

- That is, the rules are an exhaustive description of the derivable judgments
- Just like an ML datatype definition is an exhaustive description of all the objects in the type being defined

Example: Natural Numbers

- Consider the rules for $n \text{ nat}$
 \[
 \begin{array}{c|c}
 \text{zero nat} & \text{n nat} \\
 \hline
 \text{succ(n) nat} & \text{succ(n) nat}
 \end{array}
 \]

- We can prove that the property P holds of every n such that $n \text{ nat}$ by rule induction:
 - Show that P holds of zero;
 - Assuming that P holds of n, show that P holds of succ(n).
- This is just ordinary mathematical induction....

Example: Binary Tree

- Similarly, we can prove that every binary tree t has a property P by showing that
 - empty has property P;
 - If t_1 has property P and t_2 has property P, then $\text{node}(t_1, t_2)$ has property P.
- This might be called tree induction.

Example: The Height of a Tree

- Consider the following equations:
 - $hgt(\text{empty}) = 0$
 - $hgt(\text{node}(t_1, t_2)) = 1 + \max(hgt(t_1), hgt(t_2))$
- **Claim:** for every binary tree t there exists a unique integer n such that $hgt(t) = n$.
- That is, the above equations define a function.

Example: The Height of a Tree

- We will prove the claim by rule induction:
 - If t is derivable by the axiom
 \[
 \text{empty tree}
 \]
 - then $n = 0$ is determined by the first equation:
 \[
 hgt(\text{empty}) = 0
 \]
 - is it unique? Yes.
Example: The Height of a Tree

- If t is derivable by the rule
 \[
 \text{node}(t_1, t_2) \quad \text{tree} \\
\]
 then we may assume that:
 - exists a unique n_1 such that $hgt(t_1) = n_1$;
 - exists a unique n_2 such that $hgt(t_2) = n_2$;
 Hence, there exists a unique n, namely
 \[1 + \max(n_1, n_2)\]
such that $hgt(t) = n$.

Example: The Height of a Tree

This is awfully pedantic, but it is useful to see the details at least once.
- It is not obvious \textit{a priori} that a tree has a well-defined height!
- Rule induction justified the existence of the function hgt.

A trick for studying programming languages

99% of the time, if you need to prove a fact, you will prove it by induction on \textit{something}.

The hard parts are
- setting up your basic language definitions in the first place
- figuring out what \textit{something} to induct over

Inductive Definitions in PL

- We will be looking at inductive definitions that determine
 - abstract syntax
 - static semantics (typing)
 - dynamic semantics (evaluation)
 - other properties of programs and programming languages

Inductive Definitions

Syntax

Abstract vs Concrete Syntax

- the \textit{concrete syntax} of a program is a string of characters:
 \[
 \text{‘(‘ ‘3’ ‘+’ ‘2’)’ ‘*’ ‘7’}
 \]
- the \textit{abstract syntax} of a program is a tree representing the \textit{computationally relevant} portion of the program:
Abstract vs Concrete Syntax

- the concrete syntax of a program contains many elements necessary for parsing:
 - parentheses
 - delimiters for comments
 - rules for precedence of operators
- the abstract syntax of a program is much simpler; it does not contain these elements
 - precedence is given directly by the tree structure

Arithmetic Expressions, Informally

- Informally, an arithmetic expression e is
 - a boolean value
 - an if statement (if e1 then e2 else e3)
 - the number zero
 - the successor of a number
 - the predecessor of a number
 - a test for zero (isZero e)

Arithmetic Expressions, Formally

- An arithmetic expression e is
 - a boolean, an if statement, a zero, a successor, a predecessor or a 0 test:

\[
\begin{array}{c|c|c|c|c}
\text{true exp} & \text{false exp} & e1 exp & e2 exp & e3 exp \\
\hline
\text{zero exp} & \text{succ e exp} & \text{pred e exp} & \text{iszero e exp} &
\end{array}
\]

Abstract vs Concrete Syntax

- Parsing was a hard problem solved in the ‘70s
- Since parsing is solved, we can work with simple abstract syntax rather than complex concrete syntax
- Nevertheless, we need a notation for writing down abstract syntax trees
 - When we write \((3 + 2) \times 7\), you should visualize the tree:

```
3 2 +
```

Arithmetic Expressions, Formally

- The arithmetic expressions are defined by the judgment e exp
 - A boolean value:

\[
\begin{array}{c|c|c|c|c}
\text{true exp} & \text{false exp} & e1 exp & e2 exp & e3 exp \\
\hline
\text{if e1 then e2 else e3 exp}
\end{array}
\]

- An if statement (if e1 then e2 else e3):

\[
\begin{array}{c|c|c|c|c}
\text{e1 exp} & \text{e2 exp} & \text{e3 exp} &
\end{array}
\]

BNF

- Defining every bit of syntax by inductive definitions can be lengthy and tedious
- Syntactic definitions are an especially simple form of inductive definition:
 - Context insensitive
 - Unary predicates
- There is a very convenient abbreviation: BNF
Arithmetic Expressions, in BNF

e ::= \text{true} \mid \text{false} \mid \text{if} \ e \ \text{then} \ e \ \text{else} \ e
\mid 0 \mid \text{suc} \ e \mid \text{pred} \ e \mid \text{iszero} \ e

- Pick a new letter (Greek symbol/word) to represent any object in the set of objects being defined
- Separates alternatives
- Subterm/ subobject is any "e" object

(7 alternatives implies 7 inductive rules)

An alternative definition

b ::= \text{true} \mid \text{false}

e ::= b \mid \text{if} \ e \ \text{then} \ e \ \text{else} \ e
\mid 0 \mid \text{suc} \ e \mid \text{pred} \ e \mid \text{iszero} \ e

corresponds to two inductively defined judgements:
1. \text{bool}
2. \text{exp}
The key rule is an inclusion of booleans in expressions:
\frac{\text{bool}}{\text{exp}}

2 Functions defined over Terms

\text{constants(true)} = \{\text{true}\}
\text{constants(false)} = \{\text{false}\}
\text{constants(0)} = \{0\}
\text{constants(suc} e) = \text{constants(pred} e) = \text{constants(iszero} e) = \text{constants} e
\text{constants(if} e_1 \ \text{then} \ e_2 \ \text{else} \ e_3) = \bigcup_{i=1}^{3} \text{constants} e_i

\begin{align*}
\text{size(true)} & = 1 \\
\text{size(false)} & = 1 \\
\text{size(0)} & = 1 \\
\text{size(suc} e) & = \text{size(pred} e) = \text{size(iszero} e) = \text{size} e + 1 \\
\text{size(if} e_1 \ \text{then} \ e_2 \ \text{else} \ e_3) & = \tau_{r+1} (\text{size} e) + 1
\end{align*}

Metavariabes

b ::= \text{true} \mid \text{false}

e ::= b \mid \text{if} \ e \ \text{then} \ e \ \text{else} \ e
\mid 0 \mid \text{suc} e \mid \text{pred} e \mid \text{iszero} e

- \text{b and e are called metavariables}
- They stand for classes of objects, programs, and other things
- They must not be confused with program variables

A Lemma

- The number of distinct constants in any expression e is no greater than the size of e:
 \mid \text{constants} e \mid \leq \text{size} e
- How to prove it?

A Lemma

- The number of distinct constants in any expression e is no greater than the size of e:
 \mid \text{constants} e \mid \leq \text{size} e
- How to prove it?
 - By rule induction on the rules for "e exp"
 - More commonly called induction on the structure of e
 - A form of "structural induction"
Structural Induction

- Suppose P is a predicate on expressions.
 - structural induction:
 - for each expression e, we assume P(e') holds for each subexpression e' of e and go on to prove P(e)
 - result: we know P(e) for all expressions e

- if you study the theory of safe and secure programming languages, you’ll use this idea for the rest of your life!

Back to the Lemma

- The number of distinct constants in any expression e is no greater than the size of e:
 \[| \text{constants e} | \leq \text{size e} \]

- Proof:
 By induction on the structure of e.
 case e is 0, true, false: ...
 case e is succ e', pred e', iszero e': ...
 case e is (if e1 then e2 else e3): ...

The Lemma

- Lemma: \[| \text{constants e} | \leq \text{size e} \]
- Proof: ...
 case e is 0, true, false:
 \[| \text{constants e}_i | = | \{e\} | \]
 \[= 1 \]
 \[= \text{size e} \]

 (by def of constants)
 (simple calculation)
 (by def of size)

A Lemma

- Lemma: \[| \text{constants e} | \leq \text{size e} \]
- Proof: ...
 case e is pred e':
 \[| \text{constants e} | = | \text{constants e'} | \]
 \[\leq \text{size e'} \]
 \[< \text{size e} \]

 (def of constants)
 (IH)
 (by def of size)

A Lemma

- Lemma: \[| \text{constants e} | \leq \text{size e} \]
- Proof: ...
 case e is (if e1 then e2 else e3):
 \[| \text{constants e} | = \bigcup_{i=1,3} | \text{constants e}_i | \]
 \[\leq \sum_{i=1,3} | \text{constants e}_i | \]
 \[\leq \sum_{i=1,3} \text{size e}_i \]
 \[< \text{size e} \]

 (def of constants)
 (property of sets)
 (IH on each ei)
 (def of size)
What is a proof?

- A proof is an easily-checked justification of a judgment (i.e. a theorem)
 - different people have different ideas about what “easily-checked” means
 - the more formal a proof, the more “easily-checked”
 - when studying language safety and security, we often have a pretty high bar because hackers can often exploit even the tiniest flaw in our reasoning

MinML

Syntax & Static Semantics

MinML, The E. Coli of PL’s

- We’ll study MinML, a tiny fragment of ML
 - Integers and booleans.
 - Recursive functions.
- Rich enough to be Turing complete, but bare enough to support a thorough mathematical analysis of its properties.

Abstract Syntax of MinML

- The types of MinML are inductively defined by these rules:
 - \(t ::= \text{int} | \text{bool} | t \to t \)

Binding and Scope

- In the expression \(\text{fun } f (x : t_1) : t_2 = e \) the variables \(f \) and \(x \) are bound in the expression \(e \)
- We use standard conventions involving bound variables
 - Expressions differing only in names of bound variables are indistinguishable
 - \(\text{fun } f (x : \text{int}) : \text{int} = x + 3 \) same as \(\text{fun } g (x : \text{int}) : \text{int} = x + 3 \)
 - We’ll pick variables \(f \) and \(x \) to avoid clashes with other variables in context.

Abstract Syntax of MinML

- The expressions of MinML are inductively defined by these rules:
 - \(e ::= x | n | \text{true} | \text{false} | o(e,...,e) | \text{if } e \text{ then } e \text{ else } e | \text{fun } f (x : t) : e = e | e e \)
 - \(x \) ranges over a set of variables
 - \(n \) ranges over the integers \(-,2,1,0,1,2,...\)
 - \(o \) ranges over operators \(+,-,...\)
 - sometimes I’ll write operators infix: \(2 + x \)
Free Variables and Substitution

- Variables that are not bound are called free.
 - eg: y is free in \(\text{fun } (x : t_1) : t_2 = f_y \)
- The capture-avoiding substitution \(e[e'/x] \) replaces all free occurrences of \(x \) in \(e \).
 - eg: \(\text{fun } (x : t_1) : t_2 = f_y)(3/y) = (\text{fun } (x : t_1) : t_2 = f_3) \)
- Rename bound variables during substitution to avoid “capturing” free variables.
 - eg: \((\text{fun } (x : t_1) : t_2 = f_y)(x/y) = (\text{fun } (x : t_1) : t_2 = f_x) \)

Static Semantics

- The static semantics, or type system, imposes context-sensitive restrictions on the formation of expressions.
 - Distinguishes well-typed from ill-typed expressions.
 - Well-typed programs have well-defined behavior; ill-typed programs have ill-defined behavior.
 - If you can’t say what your program does, you certainly can’t say whether it is secure or not!

Typing Judgments

- A typing judgment, or typing assertion, is a triple \(G \vdash e : t \)
 - A type context \(G \) that assigns types to a set of variables
 - An expression \(e \) whose free variables are given by \(G \)
 - A type \(t \) for the expression \(e \)

Type Assignments

- Formally, a type assignment is a finite function \(G : \text{Variables} \rightarrow \text{Types} \)
- We write \(G, x : t \) for the function \(G' \) defined as follows:
 \[G'(y) = t \quad \text{if } x = y \]
 \[G'(y) = G(y) \quad \text{if } x \neq y \]

Typing Rules

- A variable has whatever type \(G \) assigns to it:
 \[G \vdash x : G(x) \]
- The constants have the evident types:
 \[G \vdash \text{true} : \text{bool} \quad G \vdash \text{false} : \text{bool} \]

Typing Rules

- The primitive operations have the expected typing rules:
 \[
 \frac{G \vdash e_1 : \text{int}\quad G \vdash e_2 : \text{int}}{G \vdash \text{+}(e_1,e_2) : \text{int}}
 \]
 \[
 \frac{G \vdash e_1 : \text{int}\quad G \vdash e_2 : \text{int}}{G \vdash \text{--}(e_1,e_2) : \text{bool}}
 \]
Typing Rules

- Both “branches” of a conditional must have the same type!
 \[G \vdash e : \text{bool} \quad G \vdash e_1 : t \quad G \vdash e_2 : t \]
 \[G \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : t \]
- Intuitively, the type checker can’t predict the outcome of the test (in general) so we must insist that both results have the same type. Otherwise, we could not assign a unique type to the conditional.

Typing Rules

- Functions may only be applied to arguments in their domain:
 \[G \vdash e_1 : t_2 \rightarrow t \quad G \vdash e_2 : t_2 \]
 \[G \vdash e_1 \ e_2 : t \]
- The result type of the co-domain (range) of the function.

Typing Rules

- Type checking a recursive function is tricky! We assume that:
 - The function has the specified domain and range types, and
 - The argument has the specified domain type.
- We then check that the body has the range type under these assumptions.
- If the assumptions are consistent, the function is type correct, otherwise not.

Typing Rules

- Type checking recursive function:
 \[G, f : t_1 \rightarrow t_2, x : t_1 \vdash e : t_2 \]
 \[G \vdash \text{fun } f(x : t_1) : t_2 = e : t_1 \rightarrow t_2 \]
- We tacitly assume that \(\{f,x\} \cap \text{dom}(G) = \{\} \). This is always possible by our conventions on binding operators.

Well-Typed and Ill-Typed Expressions

- An expression \(e \) is well-typed in a context \(G \) iff there exists a type \(t \) such that \(G \vdash e : t \).
- If there is no \(t \) such that \(G \vdash e : t \), then \(e \) is ill-typed in context \(G \).

Typing Example

- Consider the following expression \(e \):
 \[
 \text{fun } f(n : \text{int}) : \text{int} = \\
 \text{if } n = 0 \text{ then } 1 \text{ else } n * f(n-1)
 \]
- Lemma: The expression \(e \) has type \(\text{int} \rightarrow \text{int} \).
 To prove this, we must show that
 \[\{\} \vdash e : \text{int} \rightarrow \text{int} \]
Typing Example

\[
\{ \} \vdash \text{fun } f \left(\text{n : int} \right) \text{ : int} = \text{if } n = 0 \text{ then } 1 \text{ else } n \cdot f \left(n - 1 \right) \text{ : int} \rightarrow \text{int}
\]

Typing Example

\[
\begin{align*}
&G \vdash n = 0 \text{ : bool} & G \vdash 1 \text{ : int} & G \vdash n \cdot f \left(n - 1 \right) \text{ : int} \\
&G \vdash \text{if } n = 0 \text{ then } 1 \text{ else } n \cdot f \left(n - 1 \right) \text{ : int} \\
&\{ \} \vdash \text{fun } f \left(\text{n : int} \right) \text{ : int} = \text{if } n = 0 \text{ then } 1 \text{ else } n \cdot f \left(n - 1 \right) \text{ : int} \rightarrow \text{int}
\end{align*}
\]

Typing Example

\[
\begin{align*}
&G \vdash n = 0 \text{ : int} & G \vdash 0 \text{ : int} & G \vdash 1 \text{ : int} & G \vdash n \cdot f \left(n - 1 \right) \text{ : int} \\
&G \vdash \text{if } n = 0 \text{ then } 1 \text{ else } n \cdot f \left(n - 1 \right) \text{ : int} \\
&\{ \} \vdash \text{fun } f \left(\text{n : int} \right) \text{ : int} = \text{if } n = 0 \text{ then } 1 \text{ else } n \cdot f \left(n - 1 \right) \text{ : int} \rightarrow \text{int}
\end{align*}
\]

Typing Example

\[
\text{Derivation } D = \\
\begin{align*}
&G \vdash n \text{ : int} & G \vdash 1 \text{ : int} & G \vdash n \cdot f \left(n - 1 \right) \text{ : int} \\
&G \vdash \text{if } n = 0 \text{ then } 1 \text{ else } n \cdot f \left(n - 1 \right) \text{ : int} \\
&\{ \} \vdash \text{fun } f \left(\text{n : int} \right) \text{ : int} = \text{if } n = 0 \text{ then } 1 \text{ else } n \cdot f \left(n - 1 \right) \text{ : int} \rightarrow \text{int}
\end{align*}
\]

Typing Example

- Thank goodness that’s over!
- The precise typing rules tell us when a program is well-typed and when it isn’t.
- A type checker is a program that decides:
 - Given \(G, e, \) and \(t \), is there a derivation of \(G \vdash e : t \) according to the typing rules?
Type Checking

- How does the type checker find typing proofs?
- Important fact: the typing rules are syntax-directed --- there is one rule per expression form.
- Therefore the checker can invert the typing rules and work backwards toward the proof, just as we did above.
 - If the expression is a function, the only possible proof is one that applies the function typing rules. So we work backwards from there.

Summary of Static Semantics

- The static semantics of MinML is specified by an inductive definition of typing judgment \(G \vdash e : t \).
- Properties of the type system may be proved by induction on typing derivations.

Induction on Typing

- To show that some property \(\text{P}(G, e, t) \) holds whenever \(G \vdash e : t \), it’s enough to show the property holds for the conclusion of each rule given that it holds for the premises:
 - \(\text{P}(G, x, \text{G}(x)) \)
 - \(\text{P}(G, n, \text{int}) \)
 - \(\text{P}(G, \text{true}, \text{bool}) \) and \(\text{P}(G, \text{false}, \text{bool}) \)
 - if \(\text{P}(G, e, \text{bool}), \text{P}(G, e1, t) \) and \(\text{P}(G, e2, t) \) then \(\text{P}(G, \text{if } e \text{ then } e1 \text{ else } e2) \)
 - and similarly for functions and applications...

Properties of Typing

- **Lemma (Inversion)**
 - If \(G \vdash x : t \), then \(\text{G}(x) = t \).
 - If \(G \vdash n : t \), then \(t = \text{int} \).
 - If \(G \vdash \text{true} : t \), then \(t = \text{bool} \) (similarly for false)
 - If \(G \vdash \text{if } e \text{ then } e1 \text{ else } e2 : t \), then \(G \vdash e : \text{bool} \), \(G \vdash e1 : t \) and \(G \vdash e2 : t \).
 - etc...
- **Proof**: By induction on the typing rules

Properties of Typing

- **Lemma (Weakening):**
 If \(G \vdash e : t \) and \(G' \subseteq G \), then \(G' \vdash e : t \).
- **Proof**: by induction on typing
- Intuitively, “junk” in the context doesn’t matter.
Properties of Typing

- Lemma (Substitution):
 If $G, x : t' \vdash e' : t'$ and $G \vdash e : t$, then
 $G \vdash e'[e/x] : t'$.
- Proof: ?

Dynamic Semantics

- Describes how a program executes
- At least three different ways:
 - Denotational: Compile into a language with a well understood semantics
 - Axiomatic: Given some preconditions P, state the (logical) properties Q that hold after execution of a statement
 - ($P) \Rightarrow (Q)$: Hoare logic
 - Operational: Define execution directly by rewriting the program step-by-step
- We'll concentrate on the operational approach

MinML

Dynamic Semantics

Dynamic Semantics of MinML

- Judgment: $e \rightarrow e'$
 - A transition relation read: “e steps to e'”
 - A transition consists of execution of a single instruction.
 - Rules determine which instruction to execute next.
 - There are no transitions from values.

Values

- Values are defined as follows:
 - $v ::= x \mid n \mid true \mid false \mid \text{fun}\ f \ (x : t_1) : t_2 = e$
- Closed values include all values except variables (x).
Primitive Instructions

- First, we define the **primitive instructions** of MinML. These are the atomic transition steps.
 - Primitive operation on numbers (+, -, etc.)
 - Conditional branch when the test is either true or false.
 - Application of a recursive function to an argument value.

\[
\begin{align*}
(n = n_1 + n_2) & \implies (n_1, n_2) \rightarrow n \\
(n_1 \neq n_2) & \implies (n_1, n_2) \rightarrow \text{false}
\end{align*}
\]

Primitive Instructions

- Conditional branch:

\[
\begin{align*}
\text{if true then } e_1 \text{ else } e_2 & \rightarrow e_1 \\
\text{if false then } e_1 \text{ else } e_2 & \rightarrow e_2
\end{align*}
\]

Primitive Instructions

- Application of a recursive function:

\[
\begin{align*}
(v \text{ = fun } f(x : t1) : t2 \rightarrow e) \\
& \forall v \rightarrow e[v/f] [v1/x]
\end{align*}
\]

\[v1 \rightarrow e[v1/f] [v1/x]\]

- Note: We substitute the entire function expression for \(f\) in \(e\)!

Search Rules

- Second, we specify the next instruction to execute by a set of **search rules**.
- These rules specify the **order of evaluation** of MinML expressions.
 - left-to-right
 - right-to-left

\[
e_1 \rightarrow e'_1 \\
\tau(e_1, e_2) \rightarrow \tau(e'_1, e_2)
\]

\[
e_2 \rightarrow e'_2 \\
\tau(v_1, e_2) \rightarrow \tau(v_1, e'_2)
\]
Search Rules

• For conditionals we evaluate the instruction inside the test expression:

\[
\text{if } e \text{ then } e_1 \text{ else } e_2 \rightarrow \text{if } e' \text{ then } e_1 \text{ else } e_2
\]

Multi-step Evaluation

• The relation \(e \rightarrow^* e' \) is inductively defined by the following rules:

\[
\begin{align*}
\frac{\text{ } & }{e \rightarrow^* e} \\
\frac{e \rightarrow e' \quad e' \rightarrow^* e''}{e \rightarrow^* e''}
\end{align*}
\]

• That is, \(e \rightarrow^* e' \) iff

\[
e = e_0 \rightarrow e_1 \rightarrow \ldots \rightarrow e_n = e' \text{ for some } n \geq 0.
\]

Example Execution

\[
v 3 \rightarrow \text{if } 3=0 \text{ then } 1 \text{ else } 3*v(3-1) \\
\rightarrow \text{if false then } 1 \text{ else } 3*v(3-1) \\
\rightarrow 3*v(3-1) \\
\rightarrow 3*v 2 \\
\rightarrow 3*v(2*0) \text{ if } 2=0 \text{ then } 1 \text{ else } 2*v(2-1) \\
\ldots \\
\rightarrow 3*(2*1) \\
\rightarrow 3*2 \\
\rightarrow 6
\]

where \(v = \text{fun f (n:int) :int = if n=0 then 1 else n*f(n-1)} \)

Search Rules

• Applications are evaluated left-to-right: first the function then the argument.

\[
\begin{align*}
e_1 \rightarrow e_1' \\
e_1 e_2 \rightarrow e_1' e_2 \\
e_2 \rightarrow e_2'
\end{align*}
\]

Example Execution

• Suppose that \(v \) is the function

\[
\text{fun f (n:int) :int = if n=0 then 1 else n*f(n-1)}
\]

• Consider its evaluation:

\[
v 3 \rightarrow \text{if } 3=0 \text{ then } 1 \text{ else } 3*v(3-1)
\]

• We have substituted 3 for \(n \) and \(v \) for \(f \) in the body of the function.

Example Execution

\[
v 3 \rightarrow \text{if } 3=0 \text{ then } 1 \text{ else } 3*v(3-1) \\
\rightarrow \text{if false then } 1 \text{ else } 3*v(3-1) \\
\rightarrow 3*v(3-1) \\
\rightarrow 3*v 2 \\
\rightarrow 3*v(2*0) \text{ if } 2=0 \text{ then } 1 \text{ else } 2*v(2-1) \\
\ldots \\
\rightarrow 3*(2*1) \\
\rightarrow 3*2 \\
\rightarrow 6
\]

where \(v = \text{fun f (n:int) :int = if n=0 then 1 else n*f(n-1)} \)

Induction on Evaluation

• To prove that \(e \rightarrow e' \) implies \(P(e, e') \) for some property \(P \), it suffices to prove

– \(P(e, e') \) for each instruction axiom

– Assuming \(P \) holds for each premise of a search rule, show that it holds for the conclusion as well.
Induction on Evaluation

- To show that $e \rightarrow^* e'$ implies $Q(e, e')$ it suffices to show
 - $Q(e, e)$ (Q is reflexive)
 - If $e \rightarrow e'$ and $Q(e', e''')$ then $Q(e, e''')$
 - Often this involves proving some property P of single-step evaluation by induction.

Properties of Evaluation

- **Lemma (Values Irreducible)**
 - There is no e such that $v \rightarrow e$.
- By inspection of the rules
 - No instruction rule has a value on the left
 - No search rule has a value on the left

Properties of Evaluation

- **Lemma (Determinacy)**
 - For every e there exists at most one e' such that $e \rightarrow e'$.
- By induction on the structure of e
 - Make use irreducibility of values
 - eg: application rules
 - $e_1 \rightarrow e_1'$
 - $e_2 \rightarrow e_2'$
 - $v \rightarrow v_1 \rightarrow v_1 e_2 \rightarrow \ldots \\
 - $(v = \text{fun } f (x :: t1) : t2 = e)$
 - $v \rightarrow v_1 \rightarrow e[v_1[x] / x]$

Properties of Evaluation

- **Every expression evaluates to at most one value**
- **Lemma (Determinacy of values)**
 - For any e there exists at most one v such that $e \rightarrow^* v$.
- By induction on the length of the evaluation sequence using determinacy.

Stuck States

- Not every irreducible expression is a value!
 - $(\text{if } ? \text{ then } 1 \text{ else } 2)$ does not reduce
 - $(\text{true} \cdot \text{false})$ does not reduce
 - $(\text{true} \cdot 1)$ does not reduce
- If an expression is not a value but doesn’t reduce, its meaning is ill-defined
 - Anything can happen next
- An expression e that is not a value, but for which there exists no e' such that $e \rightarrow e'$ is said to be stuck.
- Safety: no stuck states are reachable from well-typed programs. ie: evaluation of well-typed programs is well-defined.

Alternative Formulations of Operational Semantics

- We have given a “small-step” operational semantics
 - $e \rightarrow e'$
- Some people like “big-step” operational semantics
 - $e \Downarrow v$
- Another choice is a “context-based” “small-step” operational semantics
Context-based Semantics

- To avoid multiple search rules in the small-step semantics, we can define the set of
 “computational contexts” in which an instruction rule can be invoked
- Contexts $E ::= [] | o(v,...,E,e,...) |
 | if E then e_1 else e_2
 | $E \ e \ \ve E$

textbox-contents: CONTEXT-BASED SEMANTICS

Context-based Semantics

- Any expression e that can take a step can be factored into two parts:
 - $e = E[r]$
 - r is a “redex” – the left-hand side of an instruction rule
 - $r ::= o(v,...,v)$
 | if true then e_1 else e_2
 | if false then e_1 else e_2
 | $(\text{fun } f(x:1):x2 = e) \ v$

textbox-contents: CONTEXT-BASED SEMANTICS

Context-based Semantics

- Now, we just need one rule to implement all
 of the search rules:

$$
\frac{e \rightarrow e'}{E[e] \rightarrow E[e']}
$$

- Sometimes this makes the specification of
 the OS and proofs about it much more
 concise

textbox-contents: CONTEXT-BASED SEMANTICS

Summary of Dynamic Semantics

- We define the operational semantics of
 MinML using a judgment $e \rightarrow e'$
- Evaluation is deterministic
- Evaluation can get stuck...if expressions are
 not well-typed.

textbox-contents: SUMMARY OF DYNAMIC SEMANTICS

MinML

Type Safety

- Java and ML are type safe, or strongly
typed, languages.
- C and C++ are often described as weakly
typed languages.
- What does this mean? What do strong type
 systems do for us?

textbox-contents: MINML

Type Safety
Type Safety

- A type system predicts at compile time the behavior of a program at run time.
 - eg: \(\texttt{e : int \rightarrow int} \) predicts that
 - the expression \(e \) will evaluate to a function value that requires an integer argument and returns an integer result, or does not terminate
 - the expression \(e \) will not get stuck during evaluation

Type Safety

- Because they make valid predictions, strongly typed languages guarantee that certain errors never occur.
- The kinds of errors vary depending upon the predictions made by the type system.
 - MinML predicts the shapes of values (Is it a boolean? a function? an integer?)
 - MinML guarantees integers aren’t applied to arguments.

Type Safety

- Demonstrating that a program is well-typed means proving a theorem about its behavior.
 - A type checker is therefore a theorem prover.
 - Non-computability theorems limit the strength of theorems that a mechanical type checker can prove.
 - Type checkers are always conservative --- a strong type system will rule out some good programs as well as all the bad ones.

Type Safety

- Fundamentally there is a tension between
 - the expressiveness of the type system, and
 - the difficulty of proving that a program is well-typed.
- Therein lies the art of type system design.

Type Safety

- Two common misconceptions:
 - Type systems are only useful for checking simple decidable properties.
 - Not true: powerful type systems have been created to check for termination of programs for example
 - Anything that a type checker can do can also be done at run-time (perhaps at some small cost).
 - Not true: type systems prove properties for all runs of a program, not just the current run. This has many ramifications. See François’ lectures for one example.
Formalization of Type Safety

- The coherence of the static and dynamic semantics is nearly summarized by two related properties:
 - **Preservation**: A well-typed program remains well-typed during execution.
 - **Progress**: Well-typed programs do not get stuck. If an expression is well-typed then it is either a value or there is a well-defined next instruction.

Formalization of Type Safety

- The type of a closed value determines its form.
- **Canonical Forms Lemma**: If \(\vdash v : t \) then
 - If \(t = \text{int} \) then \(v = n \) for some integer \(n \)
 - If \(t = \text{bool} \) then \(v = \text{true} \) or \(v = \text{false} \)
 - If \(t = f : \tau \rightarrow t_1 \) then \(v = \text{fun } f(x : t_1) : t_2 = e \) for some \(f, x, \) and \(e \).
- Proof by induction on typing rules.
- eg: If \(\vdash e : \text{int} \) and \(e \rightarrow^* v \) then \(v = n \) for some integer \(n \).

Proof of Preservation

- **Theorem (Preservation)**
 \[
 \text{If } \vdash e : t \text{ and } e \rightarrow e' \text{ then } \vdash e' : t.
 \]
- **Proof**: The proof is by induction on evaluation.
 - For each operational rule we assume that the theorem holds for the premises; we show it is true for the conclusion.

Proof of Preservation

- **Case addition**:
 \[
 \frac{(n = n_1 + n_2)}{(n, n_1, n_2) \rightarrow n} \vdash (n_1, n_2) : t
 \]
 Proof:
 \[
 t = \text{int} \quad \text{(by inversion lemma)}
 \]
Proof of Preservation

• Case addition:
 Given:
 \[(n = n1 + n2) \vdash (n1, n2) : t\]
 Proof:
 \[t = \text{int} \quad \text{(by inversion lemma)}\]
 \[\vdash n : \text{int} \quad \text{(by typing rule for ints)}\]

Proof of Preservation

• Case application:
 Given:
 \[(v = \text{fun } f \,(x : t1) : t2 = e) \vdash v : t1 \rightarrow t2; \vdash v1 : t1; \; t = t2 \quad \text{(by inversion)}\]

Proof of Preservation

• Case application:
 Given:
 \[(v = \text{fun } f \,(x : t1) : t2 = e) \vdash v : t1 \rightarrow e[v/f] [v1/x] \quad \text{(by inversion)}\]
 \[f : t1 \rightarrow t2, x:t1 \vdash e : t2 \quad \text{(by inversion)}\]

Proof of Preservation

• Case application:
 Given:
 \[(v = \text{fun } f \,(x : t1) : t2 = e) \vdash v : t1 \rightarrow e[v/f] [v1/x] \quad \text{(by inversion)}\]
 \[f : t1 \rightarrow t2, x:t1 \vdash e : t2 \quad \text{(by inversion)}\]

Proof of Preservation

• Case addition search1:
 Given:
 \[e1 \rightarrow e1' \quad \tau(e1, e2) \rightarrow \tau(e1', e2) \quad \vdash \tau(e1, e2) : t\]
 Proof:
Proof of Preservation

- Case addition search 1:
 Given:
 \[
 \frac{e_1 \rightarrow e_1'}{\tau(e_1, e_2) \rightarrow \tau(e_1', e_2)} \quad \vdash \tau(e_1, e_2) : t
 \]
 Proof:
 \[
 \vdash e_1 : \text{int} \quad \text{(by inversion)}
 \]

- Case addition search 1:
 Given:
 \[
 \frac{e_1 \rightarrow e_1'}{\tau(e_1, e_2) \rightarrow \tau(e_1', e_2)} \quad \vdash \tau(e_1, e_2) : t
 \]
 Proof:
 \[
 \vdash e_1 : \text{int} \quad \text{(by inversion)}
 \]
 \[
 \vdash e_1' : \text{int} \quad \text{(by induction)}
 \]
 \[
 \vdash e_2 : \text{int} \quad \text{(by inversion)}
 \]
 \[
 \vdash \tau(e_1', e_2) : \text{int} \quad \text{(by typing rule for +)}
 \]

Proof of Preservation

- How might the proof have failed?
- Only if some instruction is mis-defined. eg:
 \[
 \frac{(m = n)}{(m, n) \rightarrow t} \quad \frac{(m \neq n)}{(m, n) \rightarrow 0}
 \]
 \[
 G \vdash e_1 : \text{int} \quad G \vdash e_2 : \text{int}
 \]
 \[
 G \vdash \neg(e_1, e_2) : \text{bool}
 \]
- Preservation fails. The result of an equality test is not a boolean.

Proof of Preservation

- Notice that if an instruction is undefined, this does not disturb preservation!
 \[
 \frac{(m = n)}{(m, n) \rightarrow \text{true}}
 \]
 \[
 G \vdash e_1 : \text{int} \quad G \vdash e_2 : \text{int}
 \]
 \[
 G \vdash \neg(e_1, e_2) : \text{bool}
 \]
Proof of Progress

- Theorem (Progress)
 If \(\vdash e : t \) then either \(e \) is a value or there exists \(e' \) such that \(e \rightarrow e' \).
- Proof is by induction on typing.

Proof of Progress

- Case variables:
 Given:
 \(G \vdash x : G(x) \)
 Proof: This case does not apply since we are considering closed values (\(G \) is the empty context).

Proof of Progress

- Case integer:
 Given:
 \(\vdash n : \text{int} \)
 Proof: Immediate (\(n \) is a value). Similar reasoning for all other values.

Proof of Progress

- Case addition:
 Given:
 \[
 \begin{align*}
 \vdash e_1 : \text{int} & \quad \vdash e_2 : \text{int} \\
 \vdash+ (e_1, e_2) : \text{int}
 \end{align*}
 \]
 Proof:
 (1) \(e_1 \rightarrow e_1' \), or (2) \(e_1 = v_1 \) (by induction)

Proof of Progress

- Case addition:
 Given:
 \[
 \begin{align*}
 \vdash e_1 : \text{int} & \quad \vdash e_2 : \text{int} \\
 \vdash+ (e_1, e_2) : \text{int}
 \end{align*}
 \]
 Proof:
 (1) \(e_1 \rightarrow e_1' \), or (2) \(e_1 = v_1 \) (by induction)
 \(+ (e_1, e_2) \rightarrow + (e_1', e_2) \) (by search rule, if 1)
Proof of Progress

• Case addition:
 Given:
 \[\vdash e_1 : \text{int} \quad \vdash e_2 : \text{int} \]
 \[\vdash +(e_1,e_2) : \text{int} \]
 Proof:
 Assuming (2) \(e_1 = v_1 \) (we’ve taken care of 1)
 (3) \(e_2 \to e_2' \), or (4) \(e_2 = v_2 \) (by induction)
 \[+(v_1,e_2) \to +(v_1,e_2') \] (by search rule, if 3)

Proof of Progress

• Case addition:
 Given:
 \[\vdash e_1 : \text{int} \quad \vdash e_2 : \text{int} \]
 \[\vdash +(e_1,e_2) : \text{int} \]
 Proof:
 Assuming (2) \(e_1 = v_1 \) (we’ve taken care of 1)
 Assuming (4) \(e_2 = v_2 \) (we’ve taken care of 3)
 \[v_1 = n_1 \text{ for some integer } n_1 \] (by canonical forms)
 \[v_2 = n_2 \text{ for some integer } n_1 \] (by canonical forms)
 \[+(n_1,n_2) = n \text{ where } n \text{ is sum of } n_1 \text{ and } n_2 \] (by instruction rule)

Proof of Progress

• Case addition:
 Given:
 \[\vdash e_1 : \text{int} \quad \vdash e_2 : \text{int} \]
 \[\vdash +(e_1,e_2) : \text{int} \]
 Proof:
 Assuming (2) \(e_1 = v_1 \) (we’ve taken care of 1)
 Assuming (4) \(e_2 = v_2 \) (we’ve taken care of 3)
 \[v_1 = n_1 \text{ for some integer } n_1 \] (by canonical forms)
 \[v_2 = n_2 \text{ for some integer } n_1 \] (by canonical forms)
 \[+(n_1,n_2) = n \text{ where } n \text{ is sum of } n_1 \text{ and } n_2 \] (by instruction rule)

Proof of Progress

• Cases for if statements and function application are similar:
 – use induction hypothesis to generate multiple cases
 involving search rules
 – use canonical forms lemma to show that the instruction
 rules can be applied properly

Proof of Progress

• How could the proof have failed?
 – Some operational rule was omitted
 \[
 \frac{m = n}{(m, n) \to \text{true}}
 \]
 \[
 \frac{G \vdash e_1 : \text{int}}{G \vdash \neg(e_1,e_2) : \text{bool}}
 \]
Extending the Language

• Suppose we add (immutable) arrays:
 – e ::=[e0,...,ek] | sub ea ei

\[
e_1 \rightarrow e_1' \\
[e_0,...,e_j,e_1,e_2,...,e_k] \rightarrow [e_0,...,e_j,e_1',e_2,...,e_k] \\
e_i \rightarrow e_i' \\
\text{sub ea ei} \rightarrow \text{sub ea' ei} \\
\text{sub va ei} \rightarrow \text{sub va' ei'} \\
0 <= n <= k \\
\text{sub } [e_0,...,e_k] n \rightarrow v_j
\]

G |- e0 : t _ _ G |- e k : t \\
G |- ea : t array G |- ei : int \\
G |- [e_0,...,e_k] : t array G |- sub ea ei : t

Extending the Language

• Is the language still safe?
 – Preservation still holds: execution of each instruction preserves types
 – Progress fails:
 \[\vdash \text{sub } [17,25,44] 9 : \text{int} \]
 \[\text{but} \]
 \[\vdash \text{sub } [17,25,44] 9 : \text{int} \rightarrow ??? \]

Extending the Language

• How can we recover safety?
 – Strengthen the type system to rule out the offending case
 – Change the dynamic semantics to avoid “getting stuck” when we do an array subscript

Option 1

• Strengthen the type system by keeping track of array lengths and the values of integers:
 – types t ::= ... | t array(a) | int(a)
 – a ranges over arithmetic expressions that describe array lengths and specific integer values
• Pros: out-of-bounds errors detected at compile-time; facilitates debugging; no run-time overhead
• Cons: complex; limits type inference
Option 2

- Change the dynamic semantics to avoid “getting stuck” when we do an array subscript
 - Introduce rules to check for out-of-bounds
 - Introduce well-defined error transitions that are different from undefined stuck states
 - mimic raising an exception
 - Revise statement of safety to take error transitions into account

Option 2

- Changes to operational semantics:
 - Primitive operations yield “error” exception in well-defined places
 \[n < 0 \text{ or } n > k \]
 \[\text{sub [v0...vk]} n \rightarrow \text{error} \]
 - Search rules propagate errors once they arise
 \[e_1 \rightarrow \text{error} \]
 \[e_2 \rightarrow \text{error} \]
 \[\text{+(e_1, e_2)} \rightarrow \text{error} \]
 (similarly with all other search rules)

Weakly-typed Languages

- Languages like C and C++ are weakly typed:
 - They do not have a strong enough type system to ensure array accesses are in bounds at compile time.
 - They do not check for array out-of-bounds at run time.
 - They are unsafe.

Weakly-typed Languages

- Consequences:
 - Constructing secure software in C and C++ is extremely difficult.
 - Evidence:
 - Hackers break into C and C++ systems constantly.
 - It’s costing us > $20 billion dollars per year and looks like it’s doubling every year.
 - How are they doing it?
 - > 50% of attacks exploit buffer overruns, format string attacks, “double-free” attacks, none of which can happen in safe languages.
 - The single most effective defense against these hacks is to develop software infrastructure in safe languages.

Summary

- Type safety express the coherence of the static and dynamic semantics.
- Coherence is elegantly expressed as the conjunction of preservation and progress.
- When type safety fails programs might get stuck (behave in undefined and unpredictable ways).
 - Leads to security vulnerabilities
- Fix safety problems:
 - Strengthening the type system, or
 - Adding dynamic checks to the operational semantics.
 - A type safety proof tells us whether we have a sound language design and where to fix problems.