Semantics
for
Safe Programming Languages

David Walker

Summer School on Security
University of Oregon, June 2004

The Current State of Affairs

Software security flaws cost our economy
$10-$30 billion/year*

* some unverified statistics I have read lately

The Current State of Affairs

Software security flaws cost our economy
$10-$30 billion/year*

.... and Moore’s law applies:
The cost of software security failures is

doubling every year.*

* some unverified statistics I have read lately

The Current State of Affairs

e In 1998:

— 85%%* of all CERT advisories represent
problems that cryptography can’t fix
— 30-50%* of recent software security problems
are due to buffer overflow in languages like C
and C++
« problems that can be fixed with modern
programming language technology (Java, ML,
Modula, C#, Haskell, Scheme,)

« perhaps many more of the remaining 35-55% may
be addressed by programming language techniques

* more unverified stats; I’ve heard the numbers are even higher

The Current State of Affairs

New York Times (1998): The security flaw reported this
week in Email programs written by two highly-respected
software companies points to an industry-wide problem —
the danger of programming languages whose greatest
strength is also their greatest weakness.

More modern programming languages like the Java language
developed by Sun Microsystems, have built-in safeguards
that prevent programmers from making many common
types of errors that could result in security loopholes

Security in
Modern Programming Languages

* What do programming language designers have
to contribute to security?

— modern programming language features
* objects, modules and interfaces for encapsulation
» advanced access control mechanisms: stack inspection
— automatic analysis of programs
* basic type checking: client code respects system interfaces
— access control code can’t be circumvented

* advanced type/model/proof checking:

— data integrity, confidentiality, general safety and liveness
properties

Security in
Modern Programming Languages

* What have programming language designers done
for us lately?
— Development of secure byte code languages & platforms
for distribution of untrusted mobile code

* JVM and CLR
* Proof-Carrying Code & Typed Assembly Language

— Detecting program errors at run-time
« eg: buffer overrun detection; making C safe

— Static program analysis for security holes
« Information flow, buffer-overruns, format string attacks
* Type checking, model checking

These lectures

» Foundations key to recent advances:
— techniques for giving precise definitions of
programming language constructs:

< without precise definitions, we can’t say what programs do let
alone whether or not they are secure

— techniques for designing safe language features:

« use of the features may cause programs to abort (stop) but do
not lead to completely random, undefined program behavior
that might allow an attacker to take over a machine

— techniques for proving useful properties of all programs
written in a language

« certain kinds of errors can’t happen in any program

These lectures

 Inductive definitions

— the basis for defining all kinds of languages, logics and
systems

* MinML (PCF)
— Syntax
— Type system
— Operational semantics & safety

* Acknowledgement: Many of these slides come
from lectures by Robert Harper (CMU) and ideas
for the intro came from Martin Abadi

Reading & Study

» Robert Harper’s Programming Languages: Theory and
Practice
— http://www-2.cs.cmu.edu/~rwh/plbook/

» Benjamin Pierce’s Types and Programming Languages
— available at your local bookstore

» Course notes, study materials and assignments
— Andrew Myers: http://www.cs.cornell.edu/courses/cs611/2000fa/

— David Walker:
http://www.cs.princeton.edu/courses/archive/fall03/cs510/

— Others...

Inductive Definitions

Inductive Definitions

Inductive definitions play a central role in the
study of programming languages

They specify the following aspects of a
language:

* Concrete syntax (via CFGs)

* Abstract syntax (via CFGs)

« Static semantics (via typing rules)

» Dynamic semantics (via evaluation rules)

Inductive Definitions

* An inductive definition consists of:

— One or more judgments (ie: assertions)

— A set of rules for deriving these judgments
* For example:

— Judgment is “n nat”

— Rules:

¢ zero nat

« if n nat, then succ(n) nat.

Inference Rule Notation

Inference rules are normally written as:

u

where J and J1,..., Jn are judgements. (For
axioms, n =0.)

An example

For example, the rules for deriving n nat are
usually written:

n nat
zero nat succ(n) nat

Derivation of Judgments

e A judgment J is derivable iff either
— there is an axiom

— or there is a rule

J

— such that J1, ..., Jn are derivable

Derivation of Judgments

* We may determine whether a judgment is
derivable by working backwards.
* For example, the judgment

succ(succ(zero)) nat

is derivable as follows: optional:
names of
a derivation rules used

zero nat ™)

succ(zero) nat *'¢®)

succ(succ(zero)) nat (suce)

(ie: a proof) ™S

at each step

Binary Trees
» Here is a set of rules defining the judgment t
tree stating that t is a binary tree:

tl tree t2 tree
empty tree node (t1, t2) tree

* Prove that the following is a valid judgment:
node(empty, node(empty, empty)) tree

Rule Induction

» By definition, every derivable judgment
— is the consequence of some rule...
— whose premises are derivable

 That is, the rules are an exhaustive description of
the derivable judgments

« Just like an ML datatype definition is an

exhaustive description of all the objects in the type
being defined

Rule Induction

* To show that every derivable judgment has
a property P, it is enough to show that
— For every rule,
JI .. In
J
if J1, ..., Jn have the property P, then J has
property P

This is the principal of rule induction.

Example: Natural Numbers

Consider the rules for n nat

n nat
zero nat succ(n) nat

* We can prove that the property P holds of every n
such that n nat by rule induction:
— Show that P holds of zero;
— Assuming that P holds of n, show that P holds of
succ(n).

* This is just ordinary mathematical induction....

Example: Binary Tree

» Similarly, we can prove that every binary
tree t has a property P by showing that
— empty has property P;
— If't1 has property P and t2 has property P, then
node(tl, t2) has property P.

* This might be called tree induction.

Example: The Height of a Tree

* Consider the following equations:
— hgt(empty) =0
— hgt(node(tl, t2)) = 1 + max(hgt(tl), hgt(t2))

* Claim: for every binary tree t there exists a
unique integer n such that 4gz(t) = n.

* That is, the above equations define a
function.

Example: The Height of a Tree

* We will prove the claim by rule induction:
— If'tis derivable by the axiom

empty tree

— then n = 0 is determined by the first equation:
hgt(empty) =0

— is it unique? Yes.

Example: The Height of a Tree

 If'tis derivable by the rule

tl tree t2 tree

node (t1, t2) tree
then we may assume that:
* exists a unique nl such that sgt(tl) =nl;
* exists a unique n2 such that 4g#(t2) = n2;
Hence, there exists a unique n, namely

I+max(nl, n2)

such that Agt(t) = n.

Example: The Height of a Tree

This is awfully pedantic, but it is useful to see
the details at least once.

« It is not obvious a priori that a tree has a
well-defined height!

* Rule induction justified the existence of the
function Agt.

A trick for studying programming
languages

99% of the time, if you need to prove a fact,
you will prove it by induction on something

The hard parts are

* setting up your basic language definitions in
the first place

« figuring out what something to induct over

Inductive Definitions in PL

* We will be looking at inductive definitions
that determine
— abstract syntax
— static semantics (typing)
— dynamic semantics (evaluation)

— other properties of programs and programming
languages

Inductive Definitions

Syntax

Abstract vs Concrete Syntax

* the concrete syntax of a program is a string
of characters:
=2y e
« the abstract syntax of a program is a tree
representing the computationally relevant
portion of the program:
*
N PR
PR
3 2

Abstract vs Concrete Syntax

* the concrete syntax of a program contains many
elements necessary for parsing:
— parentheses
— delimiters for comments
— rules for precedence of operators

* the abstract syntax of a program is much simpler;
it does not contain these elements

— precedence is given directly by the tree structure

Abstract vs Concrete Syntax

* parsing was a hard problem solved in the ‘70s

* since parsing is solved, we can work with simple
abstract syntax rather than complex concrete
syntax

 nevertheless, we need a notation for writing down
abstract syntax trees
— when we write (3 + 2) * 7, you should visualize the
tree: *
PN
+

N

3 2

Arithmetic Expressions, Informally

* Informally, an arithmetic expression e is
— a boolean value
— an if statement (if el then e2 else e3)
— the number zero
— the successor of a number
— the predecessor of a number
— a test for zero (isZero e)

Arithmetic Expressions, Formally

* The arithmetic expressions are defined by
the judgment e exp
— a boolean value:

true exp false exp
— an if statement (if el then e2 else e3):

elexp e2exp e3exp
if el then e2 else e3 exp

Arithmetic Expressions, formally

* An arithmetic expression e is

— a boolean, an if statement, a zero, a successor, a
predecessor or a 0 test:

elexp e2exp e3exp

true exp false exp if el then e2 else e3 exp
e exp e exp e exp
Zero exp succ e exp prede exp iszero e exp

BNF

» Defining every bit of syntax by inductive
definitions can be lengthy and tedious
 Syntactic definitions are an especially
simple form of inductive definition:
— context insensitive
— unary predicates

e There is a very convenient abbreviation:
BNF

Arithmetic Expressions, in BNF

e ;= true | false | if e then e else e
| 0| succ e | pred e | iszero e

pick a new letter separates subterm/
(Greek symbol/word) alternatives subobject
to represent any object is any “e”
in the set of objects (7 alternatives object
being defined implies

7 inductive rules)

An alternative definition

b ::=true | false

e:=b|ifethencelsee
| 0| succ e | pred e | iszero e

corresponds to two inductively defined judgements:

1. bbool 2. eexp

the key rule is an inclusion of booleans in expressions: b bool

b exp

Metavariables

b ::=true | false

e:=b]|ifethenecelsee

| 0] succe|prede|iszero e

b and e are called metavariables
« they stand for classes of objects, programs, and other things
« they must not be confused with program variables

2 Functions defined over Terms

constants(true) = {true}

constants (false) = {false}

constants (0) = {0}

constants(succ ¢) = constants(pred e) = constants(iszero) = constants e
constants (if el then e2 else e3) = U;_, ; (constants ei)

size(true) =1

size(false) = 1

size(0) =1

size(succ e) = size(pred e) = size(iszero ¢) = size e + 1
size(if el then e2 else e3) = +_, ; (size ei) +1

A Lemma

e The number of distinct constants in any
expression ¢ is no greater than the size of e:
| constants e | < size e

* How to prove it?

A Lemma

e The number of distinct constants in any
expression e is no greater than the size of e:
| constants e | < size e
* How to prove it?
— By rule induction on the rules for “e exp”

— More commonly called induction on the
structure of e

— a form of “structural induction”

Structural Induction

» Suppose P is a predicate on expressions.
— structural induction:

« for each expression e, we assume P(e”) holds for
each subexpression e’ of e and go on to prove P(e)
« result: we know P(e) for all expressions e

— if you study the theory of safe and secure
programming languages, you’ll use this idea for
the rest of your life!

Back to the Lemma

* The number of distinct constants in any
expression e is no greater than the size of e:

The Lemma

* Lemma: | constants ¢ | < size e 2-column

 Proof: ... proof
case e is 0, true, false: Z

| constants e | = |{e}] (by def of constants)
=1 (simple calculation)
=size e (by def of size)
- N

justification

A Lemma

* Lemma: | constants ¢ | < size e

case e is (if el then e2 else e3):

* Lemma: | constants ¢ | < size e

other cases are similar. QED

| constants e | = [U,_, 5 constants ei| ||(def of constants)
< Sum,_, ; |constants ei| (property of sets)
< Sumy_; ; (size ei) (IH on each ei)
<sizee (def of size)

| constants e | < size e always
.) state
Proof: method
By induction on the structure of e. first
case e is 0, true, false: ... separate
case e is succ e’, pred e’, iszero e’: ... ?Tses
case
case e is (if el then e2 else €3): ... per rule)
A Lemma
e Lemma: | constants e | < size e
case e is pred e’:
| constants e | = [constants ¢’ (def of constants)
<size ¢’ (TH)
<size e (by def of size)
A Lemma

this had better be true

use Latin to show off ©

What is a proof?

A proof is an easily-checked justification of
a judgment (ie: a theorem)

— different people have different ideas about what
“easily-checked” means

— the more formal a proof, the more “easily-
checked”

— when studying language safety and security, we
often have a pretty high bar because hackers
can often exploit even the tiniest flaw in our
reasoning

MinML

Syntax & Static Semantics

MinML, The E. Coli of PL’s

* We’ll study MinML, a tiny fragment of ML
— Integers and booleans.
— Recursive functions.

* Rich enough to be Turing complete, but
bare enough to support a thorough
mathematical analysis of its properties.

Abstract Syntax of MinML

e The types of MinML are inductively defined
by these rules:
—t==int|bool [t >t

Abstract Syntax of MinML

* The expressions of MinML are inductively
defined by these rules:
—e=x|n|true | false | o(e,...,e) | if e then e else e

[fun f(x:t):t=elee

» x ranges over a set of variables

* nranges over the integers ...,-2,-1,0,1,2,...

* 0 ranges over operators +,-,...
— sometimes 1’1l write operators infix: 2+x

Binding and Scope

¢ In the expression fun f (x:tl) : t2 = e the variables
fand x are bound in the expression e

* We use standard conventions involving bound
variables
— Expressions differing only in names of bound variables
are indistinguishable
o fun f(x:int) :int=x+3 sameas fung(zint):int=2z+3
— We’ll pick variables f and x to avoid clashes with other
variables in context.

Free Variables and Substitution

Variables that are not bound are called free.

— eg:yis free in fun f (x:t1) : 2 =fy
The capture-avoiding substitution e[e’/x] replaces all
free occurrences of x with ¢” in e.

— eg: (fun f(x:tl) : 2 =fy)[3/y] = (fun f (x:t]) : t2 = 3)
Rename bound variables during substitution to avoid
“capturing” free variables

— eg: (fun f (x:tl) : 2 = fy)[x/y] = (fun f (z:t]) : t2 = fx)

Static Semantics

» The static semantics, or type system, imposes
context-sensitive restrictions on the formation of
expressions.

— Distinguishes well-typed from ill-typed expressions.

— Well-typed programs have well-defined behavior; ill-
typed programs have ill-defined behavior

— If you can’t say what your program does, you certainly
can’t say whether it is secure or not!

Typing Judgments

* A typing judgment, or typing assertion, is a
triple G |--e: t
— A type context G that assigns types to a set of
variables
— An expression e whose free variables are given
by G
— A type t for the expression e

Type Assignments

* Formally, a type assignment is a finite
function G : Variables — Types

¢ We write G,x:t for the function G’ defined
as follows:
G'(y)=t ifx=y
G(y)=G(y) ifx#y

Typing Rules

* A variable has whatever type G assigns to it:

G |--x: G(x)

* The constants have the evident types:

G|--n:int

G |-- true : bool G |-- false : bool

Typing Rules

» The primitive operations have the expected
typing rules:

Gl|--el:int Gl-e2:int
G |-- +(el,e2) : int

Gl|--el:int Gl-e2:int
G |--=(el,e2) : bool

10

Typing Rules

* Both “branches” of a conditional must have
the same type!

G|--e:bool Gl-el:t GJ|-e2:t
G|--ifethenel elsee2 : t

* Intuitively, the type checker can’t predict
the outcome of the test (in general) so we
must insist that both results have the same
type. Otherwise, we could not assign a
unique type to the conditional.

Typing Rules
 Functions may only be applied to arguments
in their domain:

Gl-el: 2>t G|-e2:t2
Gl-ele2:t

e The result type of the co-domain (range) of
the function.

Typing Rules
* Type checking recursive function:

Gfitl -2, xitl [--e:t2
Gl--funf(xitl):t2=e:tl -> 12

» We tacitly assume that {f;x} N dom(G) = {}.

This is always possible by our conventions
on binding operators.

Typing Rules

» Type checking a recursive function is tricky! We
assume that:
— The function has the specified domain and range types,

and

— The argument has the specified domain type.

* We then check that the body has the range type
under these assumptions.

« If the assumptions are consistent, the function is
type correct, otherwise not.

Well-Typed and I1l-Typed
Expressions

* An expression e is well-typed in a context G
iff there exists a type t such that G |-- e : t.

o Ifthere is no t such that G |-- e : t, then e is
ill-typed in context G.

Typing Example

 Consider the following expression e:

fun f (n:int) : int =
if n=0 then 1 else n * f(n-1)

* Lemma: The expression ¢ has type int — int.
To prove this, we must show that
{} |--e:int —int

11

Typing Example

{} |-- fun f (n:int):int = if n = 0 then 1 else n*f(n-1) : int — int

Typing Example

G |-- if n =0 then 1 else n*f(n-1) : int
{} |-- fun f (n:int):int = if n = 0 then 1 else n*f(n-1) : int — int

where G =f: int — int, n : int

Typing Example

G |-- n=0 : bool Gl--1:int G |-- n*f(n-1) : int
G |-- if n =0 then 1 else n*f(n-1) : int
{} |-- fun f (n:int):int = if n = 0 then 1 else n*f(n-1) : int — int

Typing Example

Gl-n:int G|-0:int

G |-- n=0 : bool G|--1:int G |-- n*f(n-1) : int

G |--ifn=0 then 1 else n*f(n-1) : int
{} |- fun f (n:int):int = if n = 0 then 1 else n*f(n-1) : int — int

Typing Example
Gl|-n:int G|-1:int
o G |-- f:int — int G |--n-1:int
Derivation D = G- f(n-1) : int
Gl|--n:int G|-0:int G|--n:int Derivation D
G |-- n=0 : bool GJ--1:int G |-- n*f(n-1) : int

G |--ifn =0 then 1 else n*f(n-1) : int
{} |-- fun f (n:int):int = if n = 0 then 1 else n*f(n-1) : int — int

Typing Example

» Thank goodness that’s over!
» The precise typing rules tell us when a
program is well-typed and when it isn’t.
* A type checker is a program that decides:
— Given G, e, and t, is there a derivation of
G |-- e : t according to the typing rules?

12

Type Checking Type Checking

* How does the type checker find typing proofs? » Every expression has at most one type.

» Important fact: the typing rules are syntax-directed * To determine whether or not G |-- e : t, we

--- there i 1 ion form. . . .
there s one rule per expression form — Compute the unique type t’ (if any) of e in G.

» Therefore the checker can invert the typing rules
and work backwards toward the proof, just as we
did above.

— If the expression is a function, the only possible proofis
one that applies the function typing rules. So we work
backwards from there.

— Compare t” with t

Summary of Static Semantics Properties of Typing
¢ The static semantics of MinML is specified * Lemma (Inversion)
by an inductive definition of typing —1IfG|--x:t, then G(x) = t.
judgment G |--¢ : t. —IfG|--n:t, then t = int.

— If G |-- true : t, then t = bool, (similarly for false)

. —If G |--if e then el else e2 : t, then G |-- e : bool,
* Properties of the type system may be proved Gl-el:tandG|-e2:t.

by induction on typing derivations. _etc...
* Proof: By induction on the typing rules

Induction on Typing Properties of Typing
* To show that some property P(G, c, t) holds e [Lemma (Weakening):
whenever G |-- e : t, it’s enough to show the , ,
property holds for the conclusion of each rule IfG|-e:tand G’ c G, then G’ |--e : t.
given that it holds for the premises: « Proof: by induction on typing
- P(G, x, G(x))
— P(G, n, int)
= P(G, true, bool) and P(G, false, bool) * Intuitively, “junk” in the context doesn’t
— if P(G, e, bool), P(G, el, t) and P(G, €2, t) then P(G, if e matter.
then el else €2)
and similarly for functions and applications...

Properties of Typing

e Lemma (Substitution):
IfG,xit]--e’:t"and G |-- e : t, then
G |--e’[e/x]: t.

* Proof: ?

Properties of Typing

* Lemma (Substitution):
IfG,xit|--e’:t"and G |-- e : t, then
G |--e’[e/x] : t.

G, xit]--x:t G, xit|--x:t Gl-e:t Gl-e:t

—

G, xit]-e :t’ Gl-e’[e/x]:t

MinML

Dynamic Semantics

Dynamic Semantics

* Describes how a program executes
* At least three different ways:

— Denotational: Compile into a language with a well
understood semantics

— Axiomatic: Given some preconditions P, state the
(logical) properties Q that hold after execution of a
statement

« {P} e {Q} Hoare logic

— Operational: Define execution directly by rewriting the

program step-by-step
» We’ll concentrate on the operational approach

Dynamic Semantics of MinML

e Judgment: e — ¢’
— A transition relation read:
“expression e steps to e’ ”’

— A transition consists of execution of a single
instruction.

— Rules determine which instruction to execute
next.

— There are no transitions from values.

Values

* Values are defined as follows:
—vu=x|n|true|false|funf(x:tl): 2 =¢

¢ Closed values include all values except
variables (X).

14

Primitive Instructions

* First, we define the primitive instructions of
MinML. These are the atomic transition
steps.

— Primitive operation on numbers (+,-,etc.)
— Conditional branch when the test is either true
or false.

— Application of a recursive function to an
argument value.

Primitive Instructions

¢ Addition of two numbers:

(n=nl+n2)
+(nl,n2) ->n

» Equality test:

(nl =n2) (nl #n2)
=(nl, n2) — true =(nl, n2) — false

Primitive Instructions

e Conditional branch:

if true then el else e2 — el

if false then el else e2 — €2

Primitive Instructions

e Application of a recursive function:

(v=funf(x:tl):t2=¢)
v vl = e[v/f] [v1/x]

* Note: We substitute the entire function
expression for fin e!

Search Rules

» Second, we specify the next instruction to
execute by a set of search rules.

* These rules specify the order of evaluation
of MinML expressions.
— left-to-right
— right-to-left

Search Rules

* We will choose a left-to-right evaluation
order:
el —»el’
+el, e2) - +el’, e2)

e2 »e2’
+(vl, e2) > +(vl, e2”)

15

Search Rules

« For conditionals we evaluate the instruction
inside the test expression:

e—e’
if e then el else e2 — if ¢’ then el else e2

Search Rules

» Applications are evaluated left-to-right: first
the function then the argument.

el »el’
ele2—el’e2

e2 »e2’
vle2 > vle2’

Multi-step Evaluation

e The relation e —* ¢’ is inductively defined
by the following rules:

e—e e —o*e”

e —>*e e 5F e

e Thatis, e =>* ¢’ iff
e=e0—el >..—>en=¢ forsomen=>0.

Example Execution

» Suppose that v is the function
fun f (n:int) :int = if n=0 then 1 else n*f(n-1)

« Consider its evaluation:

v 3 — if 3=0 then 1 else 3*v(3-1)

¢ We have substituted 3 for n and v for f in the
body of the function.

Example Execution

v 3 — if 3=0 then 1 else 3*v(3-1)
— if false then 1 else 3*v(3-1)
— 3*v (3-1)
—3*v2
— 3*(if 2=0 then 1 else 2*v(2-1)

— 3%(2*(1*1))
— 3%(2*1)

— 3%2

-6

where v = fun f (n:int) :int = if n=0 then 1 else n*f(n-1)

Induction on Evaluation

e To prove that e — ¢’ implies P(e, e”) for
some property P, it suffices to prove
— P(e, ¢’) for each instruction axiom

— Assuming P holds for each premise of a search
rule, show that it holds for the conclusion as
well.

16

Induction on Evaluation

* To show that e —* ¢” implies Q(e, e’) it
suffices to show
—Q(e,e) (Qisreflexive)
—Ife —>e’and Q(e’, ¢”’) then Q(e, e””)

* Often this involves proving some property P of
single-step evaluation by induction.

Properties of Evaluation

* Lemma (Values Irreducible)
There is no e such that v — e.
» By inspection of the rules

— No instruction rule has a value on the left
— No search rule has a value on the left

Properties of Evaluation

e Lemma (Determinacy)

For every e there exists at most one ¢’
such thate — ¢’.
* By induction on the structure of e
— Make use irreducibility of values
— eg: application rules

Properties of Evaluation

» Every expression evaluates to at most one
value

* Lemma (Determinacy of values)

For any e there exists at most one v such
thate —* v.

* By induction on the length of the evaluation
sequence using determinacy.

el —»el’ e2 »e2’ (v=funf(x:tl):t2=¢)
ele2 »el’e2 vle2 - vle2’ v vl = e[v/f] [v1/x]
Stuck States

* Not every irreducible expression is a value!
— (if 7 then 1 else 2) does not reduce
— (truetfalse) does not reduce
— (true 1) does not reduce
+ Ifan expression is not a value but doesn’t reduce, its
meaning is ill-defined
— Anything can happen next
An expression e that is not a value, but for which there
exists no ¢’ such that e — ¢’ is said to be stuck.
» Safety: no stuck states are reachable from well-typed

programs. ie: evaluation of well-typed programs is well-
defined.

Alternative Formulations of
Operational Semantics

* We have given a “small-step” operational
semantics

—e—¢
» Some people like “big-step” operational
semantics

—SU'V

¢ Another choice is a “context-based” “small-
step” operational semantics

17

Context-based Semantics

* To avoid multiple search rules in the small-
step semantics, we can define the set of
“computational contexts” in which an
instruction rule can be invoked

* Contexts E ::=[]] o(v,...,E.e,...) |

|if E then el else e2
|[Ee|VvE

Context-based Semantics

» Any expression e that can take a step can be
factored into two parts:
— e=E[r]

— ris a “redex” — the left-hand side of an instruction rule

| if true then el else e2
| if false then el else e2
| (fun fix:tl):t2=¢e) v

Context-based Semantics

* Now, we just need one rule to implement all
of the search rules:

e—>e’
Ele] — E[e’]

» Sometimes this makes the specification of
the OS and proofs about it much more
concise

Summary of Dynamic Semantics

* We define the operational semantics of
MinML using a judgment e — ¢’

¢ Evaluation is deterministic

 Evaluation can get stuck...if expressions are
not well-typed.

MinML

Type Safety

Type Safety

e Javaand ML are type safe, or strongly
typed, languages.

* Cand C++ are often described as weakly
typed languages.

* What does this mean? What do strong type
systems do for us?

18

Type Safety

* A type system predicts at compile time the
behavior of a program at run time.
—eg: |-- e : int — int predicts that
« the expression e will evaluate to a function value

that requires an integer argument and returns an
integer result, or does not terminate

« the expression e will not get stuck during evaluation

Type Safety

» Type safety is a matter of coherence between the
static and dynamic semantics.

— The static semantics makes predictions about the
execution behavior.

— The dynamic semantics must comply with those
predictions.
 Strongly typed languages always make valid
predictions.
» Weakly typed languages get it wrong part of the
time.

Type Safety

* Because they make valid predictions,
strongly typed languages guarantee that
certain errors never occur.

* The kinds of errors vary depending upon the
predictions made by the type system.
— MinML predicts the shapes of values (Is it a
boolean? a function? an integer?)
— MinML guarantees integers aren’t applied to
arguments.

Type Safety

* Demonstrating that a program is well-typed

means proving a theorem about its behavior.

— A type checker is therefore a theorem prover.

— Non-computability theorems limit the strength
of theorems that a mechanical type checker can
prove.

— Type checkers are always conservative --- a
strong type system will rule out some good
programs as well as all of the bad ones.

Type Safety

» Fundamentally there is a tension between
— the expressivenes of the type system, and

— the difficulty of proving that a program is well-
typed.

¢ Therein lies the art of type system design.

Type Safety

e Two common misconceptions:

— Type systems are only useful for checking
simple decidable properties.

« Not true: powerful type systems have been created
to check for termination of programs for example

— Anything that a type checker can do can also be
done at run-time (perhaps at some small cost).

« Not true: type systems prove properties for all runs
of a program, not just the current run. This has
many ramifications. See Francois’ lectures for one
example.

19

Formalization of Type Safety

* The coherence of the static and dynamic
semantics is neatly summarized by two
related properties:

— Preservation: A well-typed program remains
well-typed during execution.

— Progress: Well-typed programs do not get
stuck. If an expression is well-typed then it is
either a value or there is a well-defined next
instruction.

Formalization of Type Safety

* Preservation:
If|--e:tande — e’ then|--¢e’ : t
* Progress:
If |-- e : t then either
e ¢ is a value, or
« there exists e’ such thate — ¢’
» Consequently we have Safety:
If|--e: tand e —>* ¢’ then e’ is not stuck.

Formalization of Type Safety

» The type of a closed value determines its form.
» Canonical Forms Lemma: If|-- v : t then

— Ift = int then v = n for some integer n

— If t =bool then v = true or v = false

— Ift=tl — t2 then v=fun f(x : tl) : t2 = e for some f,
X, and e.

 Proof by induction on typing rules.

* eg: If|--e:intand e —»* v then v =n for some
integer n.

Proof of Preservation

e Theorem (Preservation)
If|--e:tande — e’ then|--¢” : t.
e Proof: The proof is by induction on
evaluation.

— For each operational rule we assume that the
theorem holds for the premises; we show it is
true for the conclusion.

Proof of Preservation

e Case addition:
Given:

(n=nl +n2)

—_— = |-- +(n1,n2) : t
+(nl,n2) > n

Proof:

Proof of Preservation

e Case addition:

Given:
_(n=nl+n2) |-- +(n1,n2) : t
+(nl,n2) ->n

Proof:

t=int (by inversion lemma)

20

Proof of Preservation

e Case addition:
Given:

(n=nl +n2) - +(nln2) - t
+(nl,n2) > n F-+(nln2):

Proof:

t=int (by inversion lemma)

|--n:int (by typing rule for ints)

Proof of Preservation

* Case application:

Proof of Preservation

» Case application:
Given:

(v=funf(x:tl):2=¢) vyl ot
v vl = e[v/f] [v1/x]

Proof:
[-vitl—>t2; |--vl:tl;t=12

(by inversion)

Given:
(v=funf(x:tl):t2=¢) l-vvl ot
v vl — e[v/] [v1/x] ’
Proof:
Proof of Preservation

e Case application:
Given:

(v=funf(x:tl):2=¢) vl ot
v vl — e[v/f] [v1/x]

Proof:
[--vitl=>t2; [--vl:tl; t=12
fitl— 2, x:tlf--e: t2

(by inversion)
(by inversion)

Proof of Preservation

 Case application:

Given:

(v=funf(x:tl):t2=¢) l-vvl ot
v vl = e[v/f] [v1/x]

Proof:

[-vitl—>t2; |--vl:tl;t=12

f:tl— 2, x:tl|--e : t2

[--e [v/A][vl/x] : 2

(by inversion)
(by inversion)
(by substitution)

Proof of Preservation

¢ Case addition searchl:
Given:
o el—elr _
+el, €2) > +(el’, e2) |- +(el,e2) : t

Proof:

21

Proof of Preservation

e Case addition searchl:
Given:

el »el’

Hel, 2) = +(el’, 2) - Hele2) - t

Proof:
|--el :int (by inversion)

Proof of Preservation

e Case addition searchl:

Proof of Preservation

» Case addition searchl:

Given:
el »el’

+(el, e2) —» +H(el’, e2)
Proof:
|--el :int (by inversion)
[--el”:int (by induction)
|-- €2 :int (by inversion)

|- +(el,e2) : t

Proof of Preservation

* How might the proof have failed?
* Only if some instruction is mis-defined. eg:

(m=n) (m #n)

=(m,n) -1 =(m,n) =0

Gl--el:int Gl-e2:int
G |--=(el,e2) : bool

» Preservation fails. The result of an equality test is
not a boolean.

Given:
el »el’ .
Hel, e2) = +(e1’, 2) - Hele2) : t
Proof:
|--el :int (by inversion)
|--el”:int (by induction)
Proof of Preservation
» Case addition searchl:
Given:
el »el’ .
el)l e
Proof:
|--el :int (by inversion)
|--el’ :int (by induction)
|-- €2 :int (by inversion)
|--+(el’, e2) s int (by typing rule for +)
Proof of Preservation

¢ Notice that if an instruction is undefined,
this does not disturb preservation!

(m=n)
=(m, n) — true

Gl-el:int Gl-e2:int
G |--=(el,e2) : bool

22

Proof of Progress

* Theorem (Progress)

If |-- e : t then either e is a value or there
exists e’ such thate — e’.

* Proofis by induction on typing.

Proof of Progress

e (Case variables:
Given:
G|--x:G(x)

Proof: This case does not apply since we are
considering closed values (G is the empty
context).

Proof of Progress

» Case integer:
Given:

|--n:int

Proof: Immediate (n is a value). Similar
reasoning for all other values.

Proof of Progress

¢ Case addition:

Given:
--el :int |--e2:int
|- +(el,e2) : int
Proof:

Proof of Progress

e Case addition:

Given:
--el :int |--e2:int
|-- +(el,e2) : int
Proof:
(1)el > el’,or (2) el =vl (by induction)

Proof of Progress

e Case addition:

Given:
--el :int |--e2:int
|- +(el,e2) : int
Proof:
(I)el > el’,or (2) el =vl (by induction)

+(el,e2) — +(el’,e2)

(by search rule, if 1)

23

Proof of Progress

» Case addition:

Given:
|--+(el,e2) : int
Proof:

Assuming (2) el =vl
(3)e2 »>e2’,or (4) e2=Vv2

(by induction)
+(vl,e2) — +(vl,e2’)

(we’ve taken care of 1)

(by search rule, if 3)

Proof of Progress
» Case addition:
Given:
--el :int |--e2:int
[-- +(el,e2) : int
Proof:

Assuming (2) el =vl

(we’ve taken care of 1)
Assuming (4) e2=v2

(we’ve taken care of 3)

Proof of Progress
 Case addition:
Given:
--el:int |--e2:int
|-- +(el,e2) : int
Proof:

Assuming (2) el =vl (we’ve taken care of 1)
Assuming (4) e2=v2 (we’ve taken care of 3)
vl =nl for some integer nl (by canonical forms)
v2 =n2 for some integer nl (by canonical forms)

Proof of Progress
» Case addition:
Given:
--el :int |--e2 :int
|- +(el,e2) : int
Proof:

Assuming (2) el =vl
Assuming (4) e2=v2
vl =nl for some integer nl
v2 =n2 for some integer nl

(we’ve taken care of 1)
(we’ve taken care of 3)

(by canonical forms)

(by canonical forms)
+(n1,n2) = n where n is sum of nl and n2 (by instruction rule)

Proof of Progress

* Cases for if statements and function application are

similar:

— use induction hypothesis to generate multiple cases
involving search rules

— use canonical forms lemma to show that the instruction

rules can be applied properly

Proof of Progress
e How could the proof have failed?
— Some operational rule was omitted

(m=n)
=(m, n) — true

Gl-el:int Gl-e2:int
G |--=(el,e2) : bool

24

Extending the Language

* Suppose we add (immutable) arrays:
— e = [e0,...,ek] | sub ea ei

Extending the Language

» Suppose we add (immutable) arrays:
— e = [e0,...,ek] | sub ea ei

el »el’
[vO0,...,vj,el,e2....ek] — [v0,...,vj,el’,e2....ek]

ea —ea’ ei —>ei’ 0<=n<=k

subeaei - subea’ei subvaei—subvaei’ sub[v0,.,vk]n— vn

Extending the Language

» Suppose we add (immutable) arrays:
— e = [e0,...,ek] | sub ea ei

el »>el’
[v0,...,vj,el,e2....ek] — [VO0,...,vj,e1’,e2...,ek]

eca—ea’ ei —»>ei’ 0<=n<=k

subeaei —subea’ei subvaei—subvaei’ sub [v0,.,vk]n — vj

Gl-e0:t .. Gl-ek:t
G |-- [e0,...,ek] : t array

Gl-eca:tarray G|-ei:int
G|--subeaei:t

Extending the Language

* Is the language still safe?
— Preservation still holds: execution of each
instruction preserves types
— Progress fails:
|-- sub [17,25,44] 9 : int
but
|-- sub [17,25,44] 9 : int — ?2?

Extending the Language

* How can we recover safety?
— Strengthen the type system to rule out the
offending case

— Change the dynamic semantics to avoid
“getting stuck” when we do an array subscript

Option 1

 Strengthen the type system by keeping track of
array lengths and the values of integers:
— types t :i= ... | tarray(a) | int (a)
— aranges over arithmetic expressions that describe array
lengths and specific integer values
* Pros: out-of-bounds errors detected at compile-
time; facilitates debugging; no run-time overhead

» Cons: complex; limits type inference

25

Option 2

 Change the dynamic semantics to avoid
“getting stuck” when we do an array
subscript
— Introduce rules to check for out-of-bounds
— Introduce well-defined error transitions that are
different from undefined stuck states
* mimic raising an exception
— Revise statement of safety to take error
transitions into account

Option 2

* Changes to operational semantics:
— Primitive operations yield “error”” exception in
well-defined places

n<0 orn>k
sub [v0,..,vk] n — error

— Search rules propagate errors once they arise

el — error e2 — error
+(el, e2) — error +(vl, e2) — error

(similarly with all other search rules)

Option 2

» Changes to statement of safety
— Preservation: If |--e:tande — e’ and
e’ #error then |-- ¢’ : t
— Progress: If|-- e : t then either ¢ is a value or
e—e’

— Stuck states: e is stuck if e is not a value, not error and
there is no ¢’ such thate — ¢’

— Safety: If|--e:tand e »* ¢’ then ¢’ is not stuck.

Weakly-typed Languages

e Languages like C and C++ are weakly
typed:
— They do not have a strong enough type system

to ensure array accesses are in bounds at
compile time.

— They do not check for array out-of-bounds at
run time.

— They are unsafe.

Weakly-typed Languages

° Consequences:

— Constructing secure software in C and C++ is
extremely difficult.

— Evidence:

 Hackers break into C and C++ systems constantly.

— It’s costing us > $20 billion dollars per year and looks like it’s

doubling every year.
* How are they doing it?

— > 50% of attacks exploit buffer overruns, format string attacks,
“double-free” attacks, none of which can happen in safe
languages.

« The single most effective defence against these hacks is to
develop software infrastructure in safe languages.

Summary

Type safety express the coherence of the static and
dynamic semantics.

» Coherence is elegantly expressed as the conjunction of
preservation and progress.

* When type safety fails programs might get stuck (behave
in undefined and unpredictable ways).
— Leads to security vulnerabilities
» Fix safety problems by:
— Strengthening the type system, or
— Adding dynamic checks to the operational semantics.

— A type safety proof tells us whether we have a sound language
design and where to fix problems.

26

