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Introduction

• Ensuring that software is secure is hard

• Standard practice for software quality:
– Testing

• Make sure program runs correctly on set of inputs

– Code auditing
• Convince yourself and others that your code is correct
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Drawbacks to Standard Approaches

• Difficult
• Expensive
• Incomplete

• A malicious adversary is trying to exploit
anything you miss!
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Tools for Security

• What more can we do?
– Build tools that analyze source code

• Reason about all possible runs of the program

– Check limited but very useful properties
• Eliminate categories of errors
• Let people concentrate on the deep reasoning

– Develop programming models
• Avoid mistakes in the first place
• Encourage programmers to think about security
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Tools Need Specifications

put_tty_queue_nolock(c, tty);
spin_lock_irqsave(&tty->read_lock, flags);

spin_unlock_irqrestore(&tty->read_lock, flags);

• Goal:  Add specifications to programs
In a way that...
– Programmers will accept

• Lightweight

– Scales to large programs
– Solves many different problems
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ptr(             char)

ptr(char) → char

Type Qualifiers

• Extend standard type systems (C, Java, ML)
– Programmers already use types
– Programmers understand types
– Get programmers to write down a little more...

intconst ANSI C
Format-string vulnerabilitiestainted

kernel User/kernel vulnerabilities
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Application: Format String Vulnerabilities

• I/O functions in C use format strings
printf("Hello!"); Hello!
printf("Hello, %s!", name); Hello, name !

• Instead of
 printf("%s", name);

Why not
printf(name); ?
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Format String Attacks

• Adversary-controlled format specifier
name := <data-from-network>
printf(name); /* Oops */

– Attacker sets name = “%s%s%s” to crash program
– Attacker sets name = “...%n...” to write to memory

• Yields (often remote root) exploits

• Lots of these bugs in the wild
– New ones weekly on bugtraq mailing list
– Too restrictive to forbid variable format strings
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Using Tainted and Untainted

• Add qualifier annotations
int printf(untainted char *fmt, ...)
tainted char *getenv(const char *)

tainted = may be controlled by adversary
untainted = must not be controlled by adversary

Security Summer School, June 2004 10

Subtyping

void f(tainted int);
untainted int a;
f(a);

void g(untainted int);
tainted int b;
f(b);

OK

f accepts tainted or
untainted data

Error

g accepts only untainted
data

untainted ≤ tainted tainted ≤ untainted/

untainted < tainted
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Demo of cqual
http://www.cs.umd.edu/~jfoster
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The Plan

• The Nice Theory

• The Icky Stuff in C

• Something Completely Different
– (Not really)
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Type Qualifiers for MinML

• We’ll add type qualifiers to MinML
– Same approach works for other languages (like C)

• Standard type systems define types as
– t ::= c0(t, …, t) | … | cn(t, …, t)

• Where Σ = c0…cn is a set of type constructors

• Recall the types of MinML
– t ::= int | bool | t → t

• Here Σ = int, bool, → (written infix)
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Type Qualifiers for MinML (cont’d)

• Let Q be the set of type qualifiers
– Assumed to be chosen in advance and fixed
– E.g., Q = {tainted, untainted}

• Then the qualified types are just
– qt ::= Q s
– s ::= c0(qt, …, qt) | … | cn(qt, …, qt)

• Allow a type qualifier to appear on each type constructor

• For MinML
– qt ::= intQ | boolQ | qt →Q qt
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Abstract Syntax of MinML with Qualifiers

e ::= x | n | true | false | if e then e else e
| fun fQ (x:qt):qt = e | e e | annot(Q, e) | check(Q, e)

– annot(Q, e) = “expression e has qualifier Q”
– check(Q, e) = “fail if e does not have qualifier Q”

• Checks only the top-level qualifier

• Examples:
– fun fread (x:qt):inttainted = …42tainted

– fun printf (x:qt):qt’ = check(untainted, x), …

Security Summer School, June 2004 16

Typing Rules:  Qualifier Introduction

• Newly-constructed values have “bare” types

• Annotation adds an outermost qualifier

G |-- n : int

G |-- true : bool G |-- false : bool

G |-- e1 : s

G |-- annot(Q, e) : Q s
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Typing Rules:  Qualifier Elimination

• By default, discard qualifier at destructors

• Use check() if you want to do a test
G |-- e1 : Q s

G |-- check(Q, e) : Q s

G |-- e1 : boolQ   G |-- e2 : qt   G |-- e3 : qt

G |-- if e1 then e2 else e3 : qt
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Subtyping

• Our example used subtyping
– If anyone expecting a T can be given an S instead,

then S is a subtype of T.
– Allows untainted to be passed to tainted positions
– I.e., check(tainted, annot(untainted, 42)) should

typecheck

• How do we add that to our system?
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Partial Orders

• Qualifiers Q come with a partial order ≤:
– q ≤ q (reflexive)
– q ≤ p, p ≤ q ⇒ q = p (anti-symmetric)
– q ≤ p, p ≤ r ⇒ q ≤ r (transitive)

• Qualifiers introduce subtyping

• In our example:
– untainted < tainted
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Example Partial Orders

• Lower in picture = lower in partial order
• Edges show ≤ relations

a

b

a

b c

d

a b c

2-point lattice Discrete partial order
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Combining Partial Orders

• Let (Q1, ≤1) and (Q2, ≤2) be partial orders
• We can form a new partial order, their cross-

product:
(Q1, ≤1) x (Q2, ≤2) = (Q, ≤)

    where
– Q = Q1 x Q2

– (a, b) ≤ (c, d) if a ≤1 c and b ≤2 d
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Example

• Makes sense with orthogonal sets of qualifiers
– Allows us to write type rules assuming only one set

of qualifiers

tainted

untainted

const

nonconst
×

tainted
const

untainted
const

tainted
nonconst

untainted
nonconst

=
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Extending the Qualifier Order to Types

• Add one new rule subsumption to type system

Q ≤ Q’

boolQ ≤ boolQ’

Q ≤ Q’

intQ ≤ intQ’

• Means:  If any position requires an expression
of type qt’, it is safe to provide it a subtype qt

G |-- e : qt   qt ≤ qt’

G |-- e : qt’
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Use of Subsumption

|-- 42 : int                                   
|-- annot(untainted, 42) : untainted int     untainted ≤ tainted

|-- annot(untainted, 42) : tainted int
|-- check(tainted, annot(untainted, 42)) : tainted int
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Subtyping on Function Types

• What about function types?

• Recall:  S is a subtype of T if an S can be
used anywhere a T is expected
– When can we replace a call “f x” with a call “g x”?

?

qt1 →Q qt2 ≤ qt1’ →Q’ qt2’

Security Summer School, June 2004 26

Replacing “f x” by “g x”

• When is qt1’ →Q’ qt2’ ≤ qt1 →Q qt2 ?
• Return type:

– We are expecting qt2 (f’s return type)
– So we can only return at most qt2
– qt2’ ≤ qt2

• Example:  A function that returns tainted can
be replaced with one that returns untainted
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Replacing “f x” by “g x” (cont’d)

• When is qt1’ →Q’ qt2’ ≤ qt1 →Q qt2 ?
• Argument type:

– We are supposed to accept qt1 (f’s argument type)
– So we must accept at least qt1
– qt1 ≤ qt1’

• Example:  A function that accepts untainted
can be replaced with one that accepts tainted
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Subtyping on Function Types

• We say that → is
– Covariant in the range (subtyping dir the same)
– Contravariant in the domain (subtyping dir flips)

qt1’ ≤ qt1    qt2 ≤ qt2’   Q ≤ Q’

qt1 →Q qt2 ≤ qt1’ →Q’ qt2’
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Dynamic Semantics with Qualifiers

• Operational semantics tags values with
qualifiers
– v ::= x | nQ | trueQ | falseQ

       | fun fQ (x : qt1) : qt2 = e

• Evaluation rules same as before, carrying the
qualifiers along, e.g.,

if trueQ then e1 else e2 → e1
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Dynamic Semantics with Qualifiers (cont’d)

• One new rule checks a qualifier:

– Evaluation at a check can continue only if the
qualifier matches what is expected

• Otherwise the program gets stuck

– (Also need rule to evaluate under a check)

Q’ ≤ Q

check(Q, vQ’) → v
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Soundness

• We want to prove
– Preservation:  Evaluation preserves types
– Progress:  Well-typed programs don’t get stuck

• Proof:  Exercise
– See if you can adapt proofs to this system
– (Not too much work; really just need to show that

check doesn’t get stuck)
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Updateable References

• Our MinML language is missing side-effects
– There’s no way to write to memory
– Recall that this doesn’t limit expressiveness

• But side-effects sure are handy
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Language Extension

• We’ll add ML-style references
– e ::= … | refQ e | !e | e := e

• refQ e   -- Allocate memory and set its contents to e
– Returns memory location
– Q is qualifier on pointer (not on contents)

• !e          -- Return the contents of memory location e
• e1 := e2 -- Update e1’s contents to contain e2

– Things to notice
• No null pointers (memory always initialized)
• No mutable local variables (only pointers to heap allowed)
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Static Semantics

• Extend type language with references:
– qt ::= … | refQ qt

• Note:  In ML the ref appears on the right

G |-- e : qt

G |-- refQ e : refQ qt

G |-- e : refQ qt

G |-- !e : qt

G |-- e1 : refQ qt    G |-- e2 : qt

G |-- e1 := e2 : qt
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Dynamic Semantics and Copying

• Our previous semantics implemented
everything with substitution and copying
– This works OK for values…

(fun f x = x + x) 3 →

3 + 3 →

6
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Dynamic Semantics and Copying

– But it doesn’t make sense for references…

(fun f x = (x:=3); !x + !x) (ref 4) →

(ref 4) := 3; !(ref 4) + !(ref 4) →

8??
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The Solution

• Add a level of indirection to semantics
– Add locations to set of values

• v ::= … | loc

– A store S is a mapping from locations to values
– New reduction relation <S, e> → <S’, e’>

• In initial store S, expression e evaluates to e’, resulting in
new store S’
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Adding Stores to Old Rules

• Most rules just carry the stores along

• Ordering rules need to thread the store

<S, if trueQ then e1 else e2> → <S, e1>

<S, e1> → <S’, e1’>

<S, e1 e2> → <S’, e1’ e2>
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Dynamic Semantics for Allocation

<S, e> → <S’, e’>

<S, ref e> → <S’, ref e’>

loc fresh in S

<S, ref v> → <S[loc:v], loc>
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Dynamic Semantics for Dereference

<S, e> → <S’, e’>

<S, !e> → <S’, !e’>

loc in S

<S, !loc> → <S, S(loc)>
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Dynamic Semantics for Assignment

<S, e1> → <S’, e1’>

<S, e1:=e2> → <S’, e1:=e2>

loc in S

<S, loc:=v> → <S[loc:v], v>

<S, e2> → <S’, e2’>

<S, loc:=e2> → <S’, loc:=e2>
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Subtyping References

• The wrong rule for subtyping references is

• Counterexample
let x = ref 0untainted in
  let y = x in
    y := 3tainted;
    check(untainted, !x) oops!

Q ≤ Q’    qt ≤ qt’

refQ qt ≤ refQ’ qt’
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You’ve Got Aliasing!

• We have multiple names for the same memory
location
– But they have different types
– And we can write into memory at different types

x ytainted
untai

nted
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Solution #1:  Java’s Approach

• Java uses this subtyping rule
– If S is a subclass of T, then S[] is a subclass of T[]

• Counterexample:
– Foo[] a = new Foo[5];
– Object[] b = a;
– b[0] = new Object(); // forbidden at runtime
– a[0].foo(); // …so this can’t happen
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Solution #2:  Purely Static Approach

• Reason from rules for functions
– A reference is like an object with two methods:

• get    : unit → qt
• set    :  qt → unit

– Notice that qt occurs both co- and contravariantly

• The right rule:

Q ≤ Q’    qt ≤ qt’   qt’ ≤ qt

refQ qt ≤ refQ’ qt’

Q ≤ Q’    qt = qt’

refQ qt ≤ refQ’ qt’
or
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Challenge Problem:  Soundness

• We want to prove
– Preservation:  Evaluation preserves types
– Progress:  Well-typed programs don’t get stuck

• Can you prove it with updateable references?
– Hint:  You’ll need a stronger induction hypothesis

• You’ll need to reason about types in the store
– E.g., so that if you retrieve a value out of the store,

you know what type it has
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Type Qualifier Inference

• Recall our motivating example
– We gave a legacy C program that had no

information about qualifiers
– We added signatures only for the standard library

functions
– Then we checked whether there were any

contradictions

• This requires type qualifier inference
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Type Qualifier Inference Statement

• Given a program with
– Qualifier annotations
– Some qualifier checks
– And no other information about qualifiers

• Does there exist a valid typing of the
program?

• We want an algorithm to solve this problem



25

Security Summer School, June 2004 49

First Problem:  Subsumption Rule

• We’re allowed to apply this rule at any time
– Makes it hard to develop a deterministic algorithm
– Type checking is not syntax driven

• Fortunately, we don’t have that many choices
– For each expression e, we need to decide

• Do we apply the “regular” rule for e?
• Or do we apply subsumption (how many times)?

G |-- e : qt   qt ≤ qt’

G |-- e : qt’
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Getting Rid of Subsumption

• Lemma:  Multiple sequential uses of
subsumption can be collapsed into a single use
– Proof: Transitivity of ≤

• So now we need only apply subsumption once
after each expression
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Getting Rid of Subsumption (cont’d)

• We can get rid of the separate subsumption
rule
– Incorporate it directly into the other rules

             G |-- e1 : qt’ →Q’ qt’’           G |-- e2 : qt

 qt1 ≤ qt’ Q’ ≤ Q qt’’ ≤ qt2            qt ≤ qt1

      G |-- e1 : qt1 →Q qt2       G |-- e2 : qt1

G |-- e1 e2 : qt2
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Getting Rid of Subsumption (cont’d)

• 1. Fold e2 subsumption into rule

             G |-- e1 : qt’ →Q’ qt’’      

 qt1 ≤ qt’ Q’ ≤ Q qt’’ ≤ qt2      

      G |-- e1 : qt1 →Q qt2       G |-- e2 : qt   qt ≤ qt1

G |-- e1 e2 : qt2
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Getting Rid of Subsumption (cont’d)

• 2. Fold e1 subsumption into rule

   

 qt1 ≤ qt’ Q’ ≤ Q qt’’ ≤ qt2      

      G |-- e1 : qt’ →Q’ qt’’       G |-- e2 : qt   qt ≤ qt1

G |-- e1 e2 : qt2
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Getting Rid of Subsumption (cont’d)

• 3. We don’t use Q, so remove that constraint

   

 qt1 ≤ qt’            qt’’ ≤ qt2      

      G |-- e1 : qt’ →Q’ qt’’       G |-- e2 : qt   qt ≤ qt1

G |-- e1 e2 : qt2
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Getting Rid of Subsumption (cont’d)

• 4. Apply transitivity of ≤
– Remove intermediate qt1

   

                     qt’’ ≤ qt2      

      G |-- e1 : qt’ →Q’ qt’’       G |-- e2 : qt   qt ≤ qt’

G |-- e1 e2 : qt2
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Getting Rid of Subsumption (cont’d)

• 5. We’re going to apply subsumption
afterward, so no need to weaken qt’’

   

     

      G |-- e1 : qt’ →Q’ qt’’       G |-- e2 : qt   qt ≤ qt’

G |-- e1 e2 : qt’’
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Getting Rid of Subsumption (cont’d)

G |-- e : Q’ s     Q’ s ≤ Q s

G |-- e : Q s

G |-- check(Q, e) : Q s

G |-- e : Q’ s  Q’ ≤ Q

G |-- check(Q, e) : Q s
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Getting Rid of Subsumption (cont’d)

• We apply the same reasoning to the other
rules
– We’re left with a purely syntax-directed system

• Good!  Now we’re half-way to an algorithm
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Second Problem:  Assumptions

• Let’s take a look at the rule for functions:

• There’s a problem with applying this rule
– We’re assuming that we’re given the argument type

qt1 and the result type qt2
– But in the problem statement, we said we only have

annotations and checks

G, f: qt1 →Q qt2, x:qt1 |-- e : qt2’   qt2’ ≤ qt2

G |-- fun fQ (x:qt1):qt2 = e : qt1 →Q qt2
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Type Checking vs. Type Inference

• Let’s think about C’s type system
– C requires programmers to annotate function types
– …but not other places

• E.g., when you write down 3 + 4, you don’t need to give
that a type

– So all type systems trade off programmer
annotations vs. computed information

• Type checking = it’s “obvious” how to check
• Type inference = it’s “more work” to check
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Why Do We Want Qualifier Inference?

• Because our programs weren’t written with
qualifiers in mind
– They don’t have qualifiers in their type annotations
– In particular, functions don’t list qualifiers for

their arguments

• Because it’s less work for the programmer
– …but it’s harder to understand when a program

doesn’t type check
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Unknowns in Qualifier Inference

• We’ve got regular type annotations for
functions
– (We could even get away without these…)

• How do we pick the qualifiers for f?
– We generate fresh, unknown qualifier variables

and then solve for them

G, f: ? →Q ?, x:? |-- e : qt2’    qt2’ ≤ qt2

G |-- fun fQ (x:t1):t2 = e : qt1 →Q qt2
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Adding Fresh Qualifiers

• We’ll add qualifier variables a, b, c, … to our
set of qualifiers
– (Letters closer to p, q, r will stand for constants)

• Define fresh : t → qt as
– fresh(int) = inta

– fresh(bool) = boola

– fresh(refQ t) = refa fresh(t)
– fresh(t1→t2) = fresh(t1) →a fresh(t2)

• Where a is fresh
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Rule for Functions

qt1 = fresh(t1)   qt2 = fresh(t2)

G, f: qt1 →Q qt2, x:qt1 |-- e : qt2’    qt2’ ≤ qt2

G |-- fun fQ (x:t1):t2 = e : qt1 →Q qt2
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A Picture of Fresh Qualifiers

→

ptr

int

int

ptr

chartainted

a a0

a1 a2

user

ptr(             char)tainted int →         ptr(int) user
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Where Are We?

• A syntax-directed system
– For each expression, clear which rule to apply

• Constant qualifiers
• Variable qualifiers

– Want to find a valid assignment to constant qualifiers

• Constraints qt ≤ qt’  and Q ≤ Q’
– These restrict our use of qualifiers
– These will limit solutions for qualifier variables
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Qualifier Inference Algorithm

• 1. Apply syntax-directed type inference rules
– This generates fresh unknowns and constraints

among the unknowns

• 2. Solve the constraints
– Either compute a solution
– Or fail, if there is no solution

• Implies the program has a type error
• Implies the program may have a security vulnerability
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Solving Constraints:  Step 1

• Constraints of the form qt ≤ qt’ and Q ≤ Q’
– qt ::= intQ | boolQ | qt →Q qt | refQ qt

• Solve by simplifying
– Can read solution off of simplified constraints

• We’ll present algorithm as a rewrite system
– S ==> S’   means constraints S rewrite to (simpler)

constraints S’
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Solving Constraints:  Step 1

• S + { intQ ≤ intQ’ } ==> S + { Q ≤ Q’ }
• S + { boolQ ≤ boolQ’ } ==> S + { Q ≤ Q’ }
• S + { qt1 →Q qt2 ≤ qt1’ →Q’ qt2’ } ==>

      S + { qt1’ ≤ qt1 } + { qt2 ≤ qt2’ } + { Q ≤ Q’ }
• S + { refQ qt1 ≤ refQ’ qt2 } ==>

      S + { qt1 ≤ qt2 } + { qt2 ≤ qt1 } + { Q ≤ Q’ }
• S + { mismatched constructors } ==> error

– Can’t happen if program correct w.r.t. std types
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Solving Constriants:  Step 2

• Our type system is called a structural
subtyping system
– If qt ≤ qt’, then qt and qt’ have the same shape

• When we’re done with step 1, we’re left with
constraints of the form Q ≤ Q’
– Where either of Q, Q’ may be an unknown
– This is called an atomic subtyping system
– That’s because qualifiers don’t have any “structure”
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→

ptr

int

int

f

ptr

int

y

int

z

Constraint Generation

ptr(int) f(x : int) = { ... } y := f(z)

a0

a1 a2

a3

a4

a5

a6

a6 ≤ a1

a2 ≤ a4

a3 = a5
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Constraints as Graphs

a0

a1 a2

a3

a4

a5

a6

a6 ≤ a1

a2 ≤ a4

a3 = a5

a8

untainted

tainted

a7

a9 •
•
•
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Some Bad News

• Solving atomic subtyping constraints is NP-
hard in the general case

• The problem comes up with some really weird
partial orders

p

r

q

s
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But That’s OK

• These partial orders don’t seem to come up in
practice
– Not very natural

• Most qualifier partial orders have one of two
desirable properties:
– They either always have least upper bounds or

greatest lower bounds for any pair of qualifiers



38

Security Summer School, June 2004 75

Lubs and Glbs

• lub = Least upper bound
– p lub q = r such that

• p ≤ r and q ≤ r
• If p ≤ s and q ≤ s, then r ≤ s

• glb = Greatest lower bound, defined dually

• lub and glb may not exist
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Lattices

• A lattice is a partial order such that lubs and
glbs always exist

• If Q is a lattice, it turns out we can use a
really simple algorithm to check satisfiability
of constraints over Q



39

Security Summer School, June 2004 77

Satisfiability via Graph Reachability

a0

a1 a2

a3

a4

a5

a6

a6 ≤ a1

a2 ≤ a4

a3 = a5

a8

untainted

tainted

a7

a9 •
•
•

Is there an inconsistent path through the graph?

Security Summer School, June 2004 78

Satisfiability via Graph Reachability

a0

a1 a2

a3

a4

a5

a6

a6 ≤ a1

a2 ≤ a4

a3 = a5

a8

untainted

tainted

a7

a9 •
•
•

Is there an inconsistent path through the graph?
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Satisfiability via Graph Reachability

a0

a1 a2

a3

a4

a5

a6

a6 ≤ a1

a2 ≤ a4

a3 = a5

a8

untainted

tainted

a7

a9 •
•
•

tainted ≤ a6 ≤ a1 ≤ a3 ≤ a5 ≤ a7 ≤ untainted
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Satisfiability in Linear Time

• Initial program of size n
– Fixed set of qualifiers tainted, untainted, ...

• Constraint generation yields O(n) constraints
– Recursive abstract syntax tree walk

• Graph reachability takes O(n) time
– Works for semi-lattices, discrete p.o., products
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Limitations of Subtyping

• Subtyping gives us a kind of polymorphism
– A polymorphic type represents multiple types
– In a subtyping system, qt represents qt and all of

qt’s subtypes

• As we saw, this flexibility helps make the
analysis more precise
– But it isn’t always enough…
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Limitations of Subtype Polymorphism

• Consider tainted and untainted again
– untainted ≤ tainted

• Let’s look at the identity function
– fun id (x:int):int = x

• What qualified types can we infer for id?
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Types for id

• fun id (x:int):int = x (ignoring int, qual on id)
– tainted → tainted

• Fine but untainted data passed in becomes tainted

– untainted → untainted
• Fine but can’t pass in tainted data

– untainted → tainted
• Not too useful

– tainted → untainted
• Impossible
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Function Calls and Context-Sensitivity

• All calls to strdup conflated
– Monomorphic or context-insensitive

str

strdup_ret

tainted

a

untainted

b

char *strdup(char *str) {
   // return a copy of str
}
char *a = strdup(tainted_string);
char *b = strdup(untainted_string);
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What’s Happening Here?

• The qualifier on x appears both covariantly
and contravariantly in the type
– We’re stuck

• We need parametric polymorphism
– We want to give fun id (x:int):int = x the type

∀a.inta → inta
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The Observation of Parametric Polymorphism

• Type inference on id yields a proof like this:

– If we just infer a type for id, no constraints will
be placed on a

id : a → a

a
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The Observation of Parametric Polymorphism

• We can duplicate this proof for any a, in any
type environment

id : a → a

a

id : b → b

b
id : c → c

c

id : d → d

d
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The Observation of Parametric Polymorphism

• The constraints on a only come from “outside”
tainted ≤ a

id : a → a id
a

id

a ≤untainted
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The Observation of Parametric Polymorphism

• But the two uses of id are different
– We can inline id
– And compute a type with a different a each time

tainted ≤ b

id : a → a a

c ≤untainted

b c
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Implementing Polymorphism Efficiently

• ML-style polymorphic type inference is
EXPTIME-hard
– In practice, it’s fine
– Bad case can’t happen here, because we’re

polymorphic only in the qualifiers
• That’s because we’ll apply this to C

• We need polymorphically constrained types
x : ∀a.qt where C

– For any qualifiers a where constraints C hold, x
has type qt
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Polymorphically Constrainted Types

• Must copy constraints at each instantiation
– Inefficient
– (And hard to implement)

foo : a → b

foo : a1→b1

foo : a2→b2
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A Better Solution:  CFL Reachability

• Can reduce this to another problem
– Equivalent to the constraint-copying formulation
– Supports polymorphic recursion in qualifiers
– It’s easy to implement
– It’s efficient (O(n3))

• Previous best algorithm O(n8)

• Idea due to Horwitz, Reps, and Sagiv, and
Rehof, Fahndrich, and Das
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The Problem Restated:  Unrealizable Paths

• No execution can exhibit that particular
call/return sequence

str

strdup_ret

tainted

a

untainted

b
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Only Propagate Along Realizable Paths

• Add edge labels for calls and returns
– Only propagate along valid paths whose returns

balance calls

str

strdup_ret

tainted

a

untainted

b

(1

)1

(2

)2
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Instantiation Constraints

• These edges represent a new kind of
constraint

a ≤+/-
i b

– At use i of a polymorphic type
– Qualifier variable a
– Is instantiated to qualifier b
– Either positively or negatively (or both)

• Formally, these are semiunification constraints
– But we won’t discuss that
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Type Rules

• We’ll use Hindley-Milner style polymorphism
– Quantifiers only appear at the outmost level
– Quantified types only appear in the environment

• * This is not quite the right rule, yet…

qt1 = fresh(t1)   qt2 = fresh(t2)

G, f: qt1 →Q qt2, x:qt1 |-- e : qt2’    qt2’ ≤ qt2

G |-- fun fQ (x:t1):t2 = e : qt1 →Q qt2
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Type Rules

– Implicit:  Only apply to function names (f)
– Each has a label i
– fresh(qt) generates type like qt but with fresh

quals
• *This is not quite the right rule yet…

qt = G(f)    qt’ = fresh(qt)   qt ≤+i qt’

G |-- fi : qt’
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Resolving Instantiation Constraints

• Just like subtyping, reduce to only qualifiers
– S + { intQ ≤pi intQ’ } ==> S + { Q ≤pi Q’ }

• p stands for either + or -

– …
– S + { qt1 →Q qt2 ≤pi qt1’ →Q’ qt2’ } ==>

S + {qt1 ≤(-p)i qt1’} + {qt2 ≤pi qt2} + {Q ≤pi Q’}
• Here -(+) is - and -(-) is +
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Instantiation Constraints as Graphs

• Three kinds of edges
– Q ≤ Q’      becomes

– Q ≤+i Q’    becomes

– Q ≤-i Q’    becomes

Q

Q

Q

Q’

Q’

Q’

)i

(i
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An Example (Stolen from RF01)

fun idpair (x:int*int):int*int = x in
  fun f y = idpair1 (3q, 4p) in
    let z = snd (f2 0)

*
a b

*
c d

→

*
q p

*
e f

→

)1

(1 )1

(1 (1 )1 )1
*

g h

)2 )2
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Two Observations

• We are doing constraint copying
– Notice the edge from b to d got “copied” to p to f

• We didn’t draw the transitive edge, but we could have

• This algorithm can be made demand-driven
– We only need to worry about paths from constant

qualifiers
– Good implications for scalability in practice
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CFL Reachability

• We’re trying to find paths through the graph
whose edges are a language in some grammar
– Called the CFL Reachability problem
– Computable in cubic time
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CFL Reachability Grammar

S ::= P N
P ::= M P
    |  )i P for any i
    | empty
N ::= M N
    |  (i N for any i
    |  empty
M ::= (i M )i for any i
     |  M M
     |  d regular subtyping edge
     |  empty

• Paths may have unmatched but not mismatched parens
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Global Variables

• Consider the following identity function
fun id(x:int):int = z := x; !z

– Here z is a global variable

• Typing of id, roughly speaking:

id : a → b
a

z b
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Global Variables

• Suppose we instantiate and apply id to q
inside of a function

– And then another function returns z
– Uh oh!  (1 )2 is not a valid flow path

• But q may certainly pop out at d

a

z b
q
c

(1

)1d
)2
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Thou Shalt Not Quantify a Global Type
(Qualifier) Variable

• We violated a basic rule of polymorphism
– We generalized a variable free in the environment
– In effect, we duplicated z at each instantiation

• Solution:  Don’t do that!
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Our Example Again

• We want anything flowing into z, on any path,
to flow out in any way
– Add a self-loop to z that consumes any

mismatched parens

a

z b
q
c

(1

)1d
)2

(i, )i

Security Summer School, June 2004 108

Typing Rules, Fixed

• Track unquantifiable vars at generalization

qt1 = fresh(t1)   qt2 = fresh(t2)

G, f: (qt1 →Q qt2, v), x:qt1 |-- e : qt2’    qt2’ ≤ qt2

v = free vars of G

G |-- fun fQ (x:t1):t2 = e : (qt1 →Q qt2, v)
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Typing Rules, Fixed

• Add self-loops at instantiation

(qt, v) = G(f)    qt’ = fresh(qt)   qt ≤+i qt’

v ≤+i v    v ≤-i v

G |-- fi : qt’
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Efficiency

• Constraint generation yields O(n) constraints
– Same as before
– Important for scalability

• Context-free language reachability is O(n3)
– But a few tricks make it practical (not much

slowdown in analysis times)

• For more details, see
– Rehof + Fahndrich, POPL’01



56

Security via Type Qualifiers:
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Introduction

• That’s all the theory behind this system
– More complicated system:  flow-sensitive qualifiers
– Not going to cover that here

• (Haven’t applied it to security)

• Suppose we want to apply this to a language
like C
– It doesn’t quite look like MinML!
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Local Variables in C

• The first (easiest) problem:  C doesn’t use ref
– It has malloc for memory on the heap
– But local variables on the stack are also updateable:

void foo(int x) {
  int y;
  y = x + 3;
  y++;
  x = 42;
}

• The C types aren’t quite enough
– 3 : int, but can’t update 3!

Security Summer School, June 2004 114

L-Types and R-Types

• C hides important information:
– Variables behave different in l- and r-positions

• l = left-hand-side of assignment, r = rhs

– On lhs of assignment, x refers to location x
– On rhs of assignment, x refers to contents of

location x
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Mapping to MinML

• Variables will have ref types:
– x : refQ <contents type>
– Parameters as well, but r-types in fn sigs

• On rhs of assignment, add deref of variables
void foo(int x) {                foo (x:int):void =

       let x = ref x in
  int y;                 let y = ref 0 in
  y = x + 3; y := (!x) + 3;
  y++; y := (!y) + 1;
  x = 42; x := 42
}
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Multiple Files

• Most applications have multiple source code
files

• If we do inference on one file without the
others, won’t get complete information:

– Problem: In left file, we’re assuming t may have
any qualifier (we make a fresh variable)

extern int t;

x = t;

$tainted int t = 0;
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Multiple Files:  Solution #1

• Don’t analyze programs with multiple files!

• Can use CIL merger from Necula to turn a
multi-file app into a single-file app
– E.g., I have a merged version of the linux kernel,

470432 lines

• Problem:  Want to present results to user
– Hard to map information back to original source
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Multiple Files:  Solution #2

• Make conservative assumptions about missing
files
– E.g., anything globally exposed may be tainted

• Problem:  Very conservative
– Going to be hard to infer useful types
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Multiple Files:  Solution #3

• Give tool all files at same time
– Whole-program analysis

• Include files that give types to library
functions
– In CQual, we have prelude.cq

• Unify (or just equate) types of globals

• Problem:  Analysis really needs to scale
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Structures (or Records):  Scalability Issues

• One problem:  Recursion
– Do we allow qualifiers on different levels to differ?

struct list {
    int elt;
    struct list *next;

}
– Our choice:  no (we don’t want to do shape analysis)

x

intQ2

refQ3refQ1



61

Security Summer School, June 2004 121

Structures:  Scalability Issues

• Natural design point:  All instances of the
same struct share the same qualifiers

• This is what we used to do
– Worked pretty well, especially for format-string

vulnerabilities
– Scales well to large programs (linear in program

size)

• Fell down for user/kernel pointers
– Not precise enough
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Structures:  Scalability Issues

• Second problem:  Multiple Instances
– Naïvely, each time we see

struct inode x;

   we’d like to make a copy of the type struct inode
with fresh qualifiers

– Structure types in C programs are often long
• struct inode in the Linux kernel has 41 fields!
• Often contain lots of nested structs

– This won’t scale!
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Multiple Structure Instances

• Instantiate struct types lazily
– When we see

struct inode x;

   we make an empty record type for x with a pointer
to type struct inode

– Each time we access a field f of x, we add fresh
qualifiers for f to x’s type (if not already there)

– When two instances of the same struct meet, we
unify their records

• This is a heuristic we’ve found is acceptable
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Subtyping Under Pointer Types

• Recall we argued that an updateable
reference behaves like an object with get and
set operations

• Results in this rule:

• What if we can’t write through reference?

Q ≤ Q’    qt ≤ qt’   qt’ ≤ qt

refQ qt ≤ refQ’ qt’



63

Security Summer School, June 2004 125

Subtyping Under Pointer Types

• C has a type qualifier const
– If you declare const int *x, then *x = … not allowed

• So const pointers don’t have “get” method
– Can treat ref as covariant

Q ≤ Q’    qt ≤ qt’   const ≤ Q’
refQ qt ≤ refQ’ qt’
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Subtyping Under Pointer Types

• Turns out this is very useful
– We’re tracking taintedness of strings
– Many functions read strings without changing their

contents
– Lots of use of const + opportunity to add it
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Presenting Inference Results
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Type Casts
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Experiment: Format String Vulnerabilities

• Analyzed 10 popular unix daemon programs
– Annotations shared across applications

• One annotated header file for standard libraries
• Includes annotations for polymorphism

– Critical to practical usability

• Found several known vulnerabilities
– Including ones we didn’t know about

• User interface critical
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Results:  Format String Vulnerabilities

BugsWarnName

00openssh-2.3.0p1
00apache-1.3.12
00mars_nwe-0.99
00ipopd-4.7c
00imapd-4.7c
35cfengine-1.5.4
~22muh-2.05d
11bftpd-1.0.11
00mingetty-0.9.4
00identd-1.0.0
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Experiment:  User/kernel Vulnerabilities
(Johnson + Wagner 04)

• In the Linux kernel, the kernel and user/mode
programs share address space

– The top 1GB is reserved for the kernel
– When the kernel runs, it doesn’t need to change

VM mappings
• Just enable access to top 1GB
• When kernel returns, prevent access to top 1GB

kernel
user

user
unmapped

4GB
3GB

0
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Tradeoffs of This Memory Model

• Pros:
– Not a lot of overhead
– Kernel has direct access to user space

• Cons:
– Leaves the door open to attacks from untrusted

users
– A pain for programmers to put in checks
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An Attack

• Suppose we add two new system calls
int x;
void sys_setint(int *p) { memcpy(&x, p, sizeof(x)); }
void sys_getint(int *p) { memcpy(p, &x, sizeof(x)); }

• Suppose a user calls getint(buf)
– Well-behaved program:  buf points to user space
– Malicious program:  buf points to unmapped memory
– Malicious program:  buf points to kernel memory

• We’ve just written to kernel space!  Oops!
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Another Attack

• Can we compromise security with setint(buf)?
– What if buf points to private kernel data?

• E.g., file buffers

– Result can be read with getint
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The Solution:  copy_from_user, copy_to_user

• Our example should be written
int x;
void sys_setint(int *p) { copy_from_user(&x, p, sizeof(x)); }
void sys_getint(int *p) { copy_to_user(p, &x, sizeof(x)); }

• These perform the required safety checks
– Return number of bytes that couldn’t be copied
– from_user pads destination with 0’s if couldn’t copy
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It’s Easy to Forget These

• Pointers to kernel and user space look the same
– That’s part of the point of the design

• Linux 2.4.20 has 129 syscalls with pointers to
user space
– All 129 of those need to use copy_from/to
– The ioctl implementation passes user pointers to

device drivers (without sanitizing them first)

• The result:  Hundreds of copy_from/_to
– One (small) kernel version:  389 from, 428 to
– And there’s no checking
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User/Kernel Type Qualifiers

• We can use type qualifiers to distinguish the
two kinds of pointers
– kernel -- This pointer is under kernel control
– user -- This pointer is under user control

• Subtyping kernel < user
– It turns out copy_from/copy_to can accept

pointers to kernel space where they expect
pointers to user space
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Type Signatures

• We add signatures for the appropriate fns:
int copy_from_user(void *kernel to,
                                 void *user from, int len)
int memcpy(void *kernel to,
                    void *kernel from, int len)
int x;
void sys_setint(int *user p) {
    copy_from_user(&x, p, sizeof(x)); }
void sys_getint(int *user p) {
    memcpy(p, &x, sizeof(x)); }

Li
ve

s 
in

 k
er

ne
l

OK OK

Error
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Qualifiers and Type Structure

• Consider the following example:
void ioctl(void *user arg) {
  struct cmd { char *datap; } c;
  copy_from_user(&c, arg, sizeof©);
  c.datap[0] = 0;    // not a good idea
}

• The pointer arg comes from the user
– So datap in c also comes from the user
– We shouldn’t deference it without a check
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Well-Formedness Constraints

• Simpler example
char **user p;

• Pointer p is under user control
• Therefore so is *p

• We want a rule like:
– In type refuser (Q s), it must be that Q ≤ user
– This is a well-formedness condition on types
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Well-Formedness Constraints

• As a type rule

– We implicitly require all types to be well-formed

• But what about other qualifiers?
– Not all qualifiers have these structural constraints
– Or maybe other quals want Q ≤ Q’

|--wf (Q’ s)     Q’ ≤ Q

|--wf refQ (Q’ s)
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Well-Formedness Constraints

• Use conditional constraints

– “If Q must be  user, then Q’ must be also”

• Specify on a per-qualifier level whether to
generate this constraint
– Not hard to add to constraint resolution

|--wf (Q’ s)     Q ≤ user ==> Q’ ≤ user

|--wf refQ (Q’ s)
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Well-Formedness Constraints

• Similar constraints for struct types

– Again, can specify this per-qualifier

For all i,   |--wf (Qi si)     Q ≤ user ==> Qi ≤ user

|--wf structQ (Q1 s1, …, Qn sn)
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A Tricky Example

int copy_from_user(<kernel>, <user>, <size>);
int i2cdev_ioctl(struct inode *inode, struct file *file, unsigned cmd,
                          unsigned long arg) {
   …case I2C_RDWR:
         if (copy_from_user(&rdwr_arg,
                      (struct i2c_rdwr_iotcl_data *) arg,

     sizeof(rdwr_arg)))
return -EFAULT;

     for (i = 0; i < rdwr_arg.nmsgs; i++) {
 if (copy_from_user(rdwr_pa[i].buf,

         rdwr_arg.msgs[i].buf,
         rdwr_pa[i].len)) {

res = -EFAULT; break;
    } }
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A Tricky Example

int copy_from_user(<kernel>, <user>, <size>);
int i2cdev_ioctl(struct inode *inode, struct file *file, unsigned cmd,
                          unsigned long arg) {
   …case I2C_RDWR:
         if (copy_from_user(&rdwr_arg,
                      (struct i2c_rdwr_iotcl_data *) arg,

     sizeof(rdwr_arg)))
return -EFAULT;

     for (i = 0; i < rdwr_arg.nmsgs; i++) {
 if (copy_from_user(rdwr_pa[i].buf,

         rdwr_arg.msgs[i].buf,
         rdwr_pa[i].len)) {

res = -EFAULT; break;
    } }

user
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A Tricky Example

int copy_from_user(<kernel>, <user>, <size>);
int i2cdev_ioctl(struct inode *inode, struct file *file, unsigned cmd,
                          unsigned long arg) {
   …case I2C_RDWR:
         if (copy_from_user(&rdwr_arg,
                      (struct i2c_rdwr_iotcl_data *) arg,

     sizeof(rdwr_arg)))
return -EFAULT;

     for (i = 0; i < rdwr_arg.nmsgs; i++) {
 if (copy_from_user(rdwr_pa[i].buf,

         rdwr_arg.msgs[i].buf,
         rdwr_pa[i].len)) {

res = -EFAULT; break;
    } }

OKuser
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A Tricky Example

int copy_from_user(<kernel>, <user>, <size>);
int i2cdev_ioctl(struct inode *inode, struct file *file, unsigned cmd,
                          unsigned long arg) {
   …case I2C_RDWR:
         if (copy_from_user(&rdwr_arg,
                      (struct i2c_rdwr_iotcl_data *) arg,

     sizeof(rdwr_arg)))
return -EFAULT;

     for (i = 0; i < rdwr_arg.nmsgs; i++) {
 if (copy_from_user(rdwr_pa[i].buf,

         rdwr_arg.msgs[i].buf,
         rdwr_pa[i].len)) {

res = -EFAULT; break;
    } }

Bad

user OK
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Experimental Results

• Ran on two Linux kernels
– 2.4.20 -- 11 bugs found
– 2.4.23 -- 10 bugs found

• Needed to add 245 annotations
– Copy_from/to, kmalloc, kfree, …
– All Linux syscalls take user args (221 calls)

• Could have be done automagically (All begin with sys_)

• Ran both single file (unsound) and whole-kernel
– Disabled subtyping for single file analysis
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More Detailed Results

• 2.4.20, full config, single file
– 512 raw warnings, 275 unique, 7 exploitable bugs

• Unique = combine msgs for user qual from same line

• 2.4.23, full config, single file
– 571 raw warnings, 264 unique, 6 exploitable bugs

• 2.4.23, default config, single file
– 171 raw warnings, 76 unique, 1 exploitable bug

• 2.4.23, default config, whole kernel
– 227 raw warnings, 53 unique, 4 exploitable bugs
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Observations

• Quite a few false positives
– Large code base magnifies false positive rate

• Several bugs persisted through a few kernels
– 8 bugs found in 2.4.23 that persisted to 2.5.63
– An unsound tool, MECA, found 2 of 8 bugs
– ==> Soundness matters!
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Observations

• Of 11 bugs in 2.4.23…
– 9 are in device drivers
– Good place to look for bugs!
– Note:  errors found in “core” device drivers

• (4 bugs in PCMCIA subsystem)

• Lots of churn between kernel versions
– Between 2.4.20 and 2.4.23

• 7 bugs fixed
• 5 more introduced
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Conclusion

• Type qualifiers are specifications that…
– Programmers will accept

• Lightweight

– Scale to large programs
– Solve many different problems

• In the works:  ccqual, jqual, Eclipse interface


