Current Techniques In
Language-based Security

Steve Zdancewic

University of Pennsylvania

Mobile Code

= Modern languages like Java and C#

have been designed for Internet

applications and extensible systems

= PDASs, Cell Phones, Smart Cards, ...

applet

applet

applet

N

/

Y

web browser

operating system

Zdancewic

Software Security Summer

School 2004

Applet Security Problems

» Protect OS & other valuable resources.

= Applets should not:
= crash browser or OS
= execute “rm —rf /"
= pe able to exhaust resources

= Applets should:

= be able to access some system resources
(e.qg. to display a picture)

= be isolated from each other

= Principles of least privileges and
complete mediation apply

Zdancewic Software Security Summer
School 2004

Java and C# Security

Static Type Systems

= Memory safety and jump safety
= Run-time checks for
= Array index bounds These]

= Downcasts lectures
= Access controls

Virtual Machine / JIT compilation
= Bytecode verification
= Enforces encapsulation boundaries (e.qg. private field)

= Garbage Collected
= Eliminates memory management errors

Library support
= Cryptography, authentication, ...

Zdancewic Software Security Summer 4
School 2004

Access Control for Applets

What level of granularity?

= Applets can touch some parts of the file system but
not others

= Applets can make network connections to some
locations but not others

Different code has different levels of
trustworthiness
= www.l33t-hax0rs.com vs. www.java.sun.com

Trusted code can call untrusted code
= e.g. to ask an applet to repaint its window

Untrusted code can call trusted code
= e.qg. the paint routine may load a font

How is the access control policy specified?

Zdancewic Software Security Summer

School 2004

Outline

= Java Security Model (C# similar)

= Stack inspection
= Concrete examples

= Semantics from a PL perspective
= Formalizing stack inspection

= Reasoning about programs that use stack
inspection

= Type systems for stack inspection
= Discussion & Related work
= Relate stack inspection to information flow

Zdancewic Software Security Summer
School 2004

Java Security Model

VM Runtime Security Policy
o
. — Domain A i
a.class P 1551 i
b.class— | ;
c.class:> i §
d.class > Domain B i
e.class/////T/' :

Classloader
SecurityManager

http://java.sun.com/j2se/1.4.2/docs/guide/security/spec/security-specTOC.fm.html

Zdancewic Software Security Summer 7
School 2004

Kinds of Permissions

= java.security.Permission Class

perm = new java.io.FilePermission("/tmp/abc","read");

java.security.AllPermission
java.security.SecurityPermission
java.security.UnresolvedPermission
java.awt.AWTPermission
java.io.FilePermission
java.io.SerializablePermission
java.lang.reflect.ReflectPermission
java. lang.RuntimePermission
java.net.NetPermission
java.net.SocketPermission

Zdancewic Software Security Summer
School 2004

Code Trustworthiness

= How does one decide what protection
domain the code is Iin?
= Source (e.g. local or applet)
= Digital signatures
= C# calls this “evidence based”

= How does one decide what permissions
a protection domain has?

= Configurable — administrator file or
command line

= Enforced by the classloader

Zdancewic Software Security Summer
School 2004

Classloader Hierarchy

Primordial
ClassLoader

ClassLoader

/\.

SecureClassLoader

URLClassLoader

AppletClassLoader

Zdancewic Software Security Summer 10
School 2004

Classloader Resolution

= When loading the first class of an application,
a new instance of the URLClassLoader is used.

= When loading the first class of an applet, a
new instance of the AppletClasslLoader is used.

= When java.lang.Class.ForName is directly
called, the primordial class loader is used.

= |f the request to load a class is triggered by a
reference to it from an existing class, the class
loader for the existing class is asked to load
the class.

= Exceptions and special cases... (e.g. web
browser may reuse applet loader)

Zdancewic Software Security Summer 11
School 2004

Example Java Policy

grant codeBase “http://www.133t-hax0rz.com/*" {
permission java.io.FilePermission(“/tmp/*”, “read,write”);

}

grant codeBase “file://$JAVA HOME/lib/ext/*" {
permission java.security.AllPermission;

}

grant signedBy “trusted-company.com” {
permission java.net.SocketPermission(..);

permission java.io.FilePermission(“/tmp/*"”, “read,write”);
}
Policy information stored in:
$JAVA HOME/lib/security/java.policy
$USER HOME/.java.policy
(or passed on command line)
Zdancewic Software Security Summer 12

School 2004

Example Trusted Code

Code In the System protection domain

void fileWrite(String filename, String s) {

SecurityManager sm = System.getSecurityManager();

if (sm !'= null) {
FilePermission fp = new FilePermission(filename, “write”);
sm.checkPermission(fp);
/* .. write s to file filename (native code) .. */

} else {
throw new SecurityException();

}
}

public static void main(..) {
SecurityManager sm = System.getSecurityManager();
FilePermission fp = new FilePermission(“/tmp/*”,6 “write,..”);
sm.enablePrivilege(fp);
UntrustedApplet.run();

Zdancewic Software Security Summer 13
School 2004

Example Client

Applet code obtained from
http://www.|33t-hax0rz.com/

class UntrustedApplet {
void run() {

s.FileWrite(“/tmp/foo.txt”, “Hello!”);

s.FileWrite(“/home/stevez/important.tex”, “kwijibo”);

Zdancewic Software Security Summer
School 2004

14

Stack Inspection

= Stack frames are annotated with their
protection domains and any enabled
privileges.

= During inspection, stack frames are
searched from most to least recent:

= fail if a frame belonging to someone not
authorized for privilege is encountered

= succeed if activated privilege is found in

frame

Zdancewic

Software Security Summer
School 2004

15

Stack Inspection Example

main(..){
fp = new FilePermission(“/tmp/*"”,“write,..”);

sm.enablePrivilege(fp); <j:::::;>

UntrustedApplet.run();
}

Zdancewic Software Security Summer
School 2004

asegeyeq Adljod

16

Stack Inspection Example

main(..){
fp = new FilePermission(“/tmp/*"”,“write,..”);
sm.enablePrivilege(fp); fp
UntrustedApplet.run();

}

Zdancewic Software Security Summer

School 2004

asegeyeq Adljod

17

Stack Inspection Example

volid run() {

s.FileWrite(“/tmp/foo.txt”, “Hello!”);

}m

main(..){
fp = new FilePermission(“/tmp/*"”,“write,..”);
sm.enablePrivilege(fp);
UntrustedApplet.run();

}

asegeyeq Adljod

Zdancewic Software Security Summer
School 2004

18

Stack Inspection Example

void fileWrite(“/tmp/foo.txt”, “Hello!”) {

fp = new FilePermission(“/tmp/foo.txt”, “write”)
sm.checkPermission(fp);

/* .. write s to file filename .. */

volid run() {

s.FileWrite(“/tmp/foo.txt”, “Hello!”);

}

main(..){
fp = new FilePermission(“/tmp/*"”,“write,..”);
sm.enablePrivilege(fp); fp
UntrustedApplet.run();

}

Zdancewic Software Security Summer

School 2004

asegeyeq Adljod

Stack Inspection Example

void fileWrite(“/tmp/foo.txt”, “Hello!”) {

fp = new FilePermission(“/tmp/foo.txt”, “write”)
sm.checkPermission(fp);

/* .. write s to file filename .. */

void run() {

s.FileWrite(“/tmp/foo.txt”, “Hello!”);

}m

main(..){ /L/

fp = new FilePermission(“/tmp/*",“write,..’ SUCCeed!

sm.enablePrivilege(fp);

UntrustedApplet.run();
}

Zdancewic Software Security Summer
School 2004

asegeyeq Adljod

20

Stack Inspection Example

volid run() {

s.FileWrite(“/home/stevez/important.tex”,
“kwijibo");

main(..){
fp = new FilePermission(“/tmp/*"”,“write,..”);
sm.enablePrivilege(fp);
UntrustedApplet.run();

}

asegeyeq Adljod

Zdancewic Software Security Summer
School 2004

21

Stack Inspection Example

void fileWrite(“../important.txt”, “kwijibo”) {

fp = new FilePermission(“important.txt”,
“write”);
sm.checkPermission(fp);

vold run() {

s.FileWrite(“/home/stevez/important.tex”,
“kwijibo");

Fail

main(..){
fp = new FilePermission(“/tmp/*"”,“write,..”);
sm.enablePrivilege(fp);
UntrustedApplet.run();

}

asegeyeq Adljod

Zdancewic Software Security Summer
School 2004

22

Other Possibilities

»* The fileWrite method could enable
the write permission itself

= Potentially dangerous, should not base the
file to write on data from the applet

= ... but no enforcement in Java (information
flow would help here)

= A trusted piece of code could disable a
previously granted permission

= Terminate the stack inspection early

Zdancewic Software Security Summer 23
School 2004

Stack Inspection Algorithm

checkPermission(T) {
// loop newest to oldest stack frame
foreach stackFrame {
if (local policy forbids access to T by class executing in
stack frame) throw ForbiddenException;

if (stackFrame has enabled privilege for T)
return; // allow access

if (stackFrame has disabled privilege for T)
throw ForbiddenException;

}

// end of stack
if (Netscape || ...) throw ForbiddenException;
if (MSIE4.0 || JDK 1.2 || ...) return;

}

Zdancewic Software Security Summer
School 2004

Two Implementations

= On demand -

= On a checkPermission invocation, actually
crawl down the stack, checking on the way

= Used in practice
= Eagerly -
= Keep track of the current set of available

permissions during execution (security-
passing style Wallach & Felten)

+ more apparent (could print current perms.)

- more expensive (checkPermission occurs
infrequently)

Zdancewic Software Security Summer 25
School 2004

Stack Inspection

= Stack inspection seems appealing:
= Fine grained, flexible, configurable policies

= Distinguishes between code of varying degrees of
trust

= But...

= How do we understand what the policy is?

= Semantics tied to the operational behavior of the
program (defined in terms of stacks!)

= How do we compare implementations
= Changing the program (e.g. optimizing it) may
change the security policy

= Policy is distributed throughout the software, and is
not apparent from the program interfaces.

= |s it any good?

Zdancewic Software Security Summer 26
School 2004

Stack Inspection Literature

= A Systematic Approach to Static Access
Control
Francois Pottier, Christian Skalka, Scott Smith

= Stack Inspection: Theory and Variants
Cédric Fournet and Andrew D. Gordon

= Understanding Java Stack Inspection
Dan S. Wallach and Edward W. Felten

= Formalize Java Stack Inspection using ABLP
logic

Zdancewic Software Security Summer 27
School 2004

Formalizing Stack Inspection

Steve Zdancewic

University of Pennsylvania

Stack Inspection

= Stack frames are annotated with their
protection domains and any enabled
privileges.

= During inspection, stack frames are
searched from most to least recent:

= fail if a frame belonging to someone not
authorized for privilege is encountered

= succeed if activated privilege is found in

frame

Zdancewic

Software Security Summer
School 2004

29

Stack Inspection Literature

= A Systematic Approach to Static Access
Control
Francois Pottier, Christian Skalka, Scott Smith

= Stack Inspection: Theory and Variants
Cédric Fournet and Andrew D. Gordon

= Understanding Java Stack Inspection
Dan S. Wallach and Edward W. Felten

= Formalize Java Stack Inspection using ABLP
logic

Zdancewic Software Security Summer 30
School 2004

Abstract Stack Inspection

= Abstract permissions

p,qeP Set of all permissions
R,S € P Principals (sets of
permissions)

= Hide the detalls of classloading, etc.

= Examples:
System = {fileWrite(“f1"”), fileWrite(“f2"),...}
Applet = {fileWrite(“f1”)}

Zdancewic Software Security Summer
School 2004

31

}\.sec Syntax

* Language syntax:

e, ::=
X

AX. €
e f

R{e}
enable p 1n e

test p then e else f
fail

<
I

X | Ax.e
v | fail

expressions

variable
function

application
framed expr

enable

check perm.

failure

values
outcome

Zdancewic Software Security Summer
School 2004

32

Framing a Term

= Models the Classloader that marks the
(unframed) code with its protection
domain:

RIxT = X
RIAx.e]] = AX.R{R[e]}
Rle f] = R[e] R[f]

Rﬂenable p in e]l = enable p in R[e]

R[test p then e else f] =
test p then R[e] else R[f]

RIfail] = fail

Zdancewic Software Security Summer
School 2004

33

Example

readFile =
AfileName.System{
test fileWrite(fileName) then
. // primitive file I0 (native code)
else fail

}

Applet{readFile “f2”} U fail
System{readFile “f2”} U <f2 contents>

Zdancewic Software Security Summer 34
School 2004

}\.sec Operational Semantics

= Evaluation contexts:

E :

]
E e

v E
enable p in E

R{E}

Hole
Eval. Function
Eval. Arg.

Tagged frame
Frame

» E models the control stack

Zdancewic

Software Security Summer 35

School 2004

}\.sec Operational Semantics

E[(AX.e) V] — E[e{v/x}]
E[enable p 1n v] — E[v]
E[R{v}] — E[V]
E[fail] — fail
E[test p then e else f] — E[e]

If Stack(E) - p
E[test p then e else f] — EIf]

if —(Stack(E) ~ p) Stack
Inspection
ello iff

e 5*¥0

Zdancewic Software Security Summer 36
School 2004

Example Evaluation Context

Applet{readFile “f2"}

Applet{[]}
readfile “f2”

Zdancewic Software Security Summer 37
School 2004

Example Evaluation Context

Applet{readFile “f2"}

E = Applet{[]}
r = (AfileName.System{
test fileWrite(fileName) then
. // primitive file I0 (native code)
else fail
})
ll.,:2"

Zdancewic Software Security Summer 38
School 2004

Example Evaluation Context

Applet{readFile “f2"}

E = Applet{[]}

r = System{
test fileWrite(“f2"”) then
. // primitive file I0 (native code)
else fail

}

Zdancewic Software Security Summer 39
School 2004

Example Evaluation Context

Applet{System{
test fileWrite(“f2"”) then

. // primitive file I0 (native code)
else fail

3}

Zdancewic Software Security Summer 40
School 2004

Example Evaluation Context

Applet{System{
test fileWrite(“f2"”) then

. // primitive file I0 (native code)
else fail

3}

E’' = Applet{System{[]}}
' = test fileWrite(“f2”) then

. // primitive file I0 (native code)
else fail

Zdancewic Software Security Summer 41
School 2004

Formal Stack Inspection

E’ = Applet{System{[]}}
' = test fileWrite(“f2”) then

. // primitive file I0 (native code)
else fail

When does stack E’ allow permission
fileWrite(“f2")?

Stack(E’) ~ fileWrite(“f2")

Zdancewic Software Security Summer 42
School 2004

Stack of an Eval. Context

Stack([]) =,

Stack(E e) = Stack(E)

Stack(v E) = Stack(E)

Stack(enable p in E) = enable(p).Stack(E)

Stack(R{E}) = R.Stack(E)
Stack(E’)

= Stack(Applet{System{[]}})
= Applet.Stack(System{[]})
= Applet.System.Stack([])

= Applet.System.

Zdancewic Software Security Summer 43
School 2004

Abstract Stack Inspection

P empty stack axiom
X—p peR . .
X.R - D protection domain check
XEp

x.enable(q) - p P70 irrelevant enable

XEP
X.enable(p) - p

check enable

Zdancewic Software Security Summer 44
School 2004

Abstract Stack Inspection

LEP empty stack enables all

peR
X.REpP

enable succeeds*

XEP
X.enable(q) £ p

iIrrelevant enable

* Enables should occur only in trusted code

Zdancewic Software Security Summer 45
School 2004

Equational Reasoning

ell iff there exists o such thate U o
Let C[] be an arbitrary program context.
Say that e = e’ Iff

for all C[], if C[e] and C[e’] are closed then
ClelU iff C[e’]V.

Zdancewic Software Security Summer 46
School 2004

Example Inequality

letx =eine = (Ax.e')e
ok = AX.X
loop = (AX.X X)(AX.X X) (note: loop 4)

f =AX.letz=xo0kinA .z
g =AX.let z=xokin A _.(x ok)

Claim: f % g

Proof:
Let C[] = @{[] A _.test p then loop else ok} ok

Zdancewic Software Security Summer 47
School 2004

Example Continued

C[f] = g{f A _.test p then loop else ok} ok
. — J{let z =
(A_.test p then loop else ok) ok

inA_.z} ok

. — @{let z = test p then loop else ok
in A_.z} ok

. — J{letz =0k Iin A _.z} ok

. — J{A_.0k} ok

. — (A_.0k) ok

. — ok

Zdancewic Software Security Summer 48
School 2004

Example Continued

Clg]l] = J{g A _.test p then loop else ok} ok
. — g{letz =

(A_.test p then loop else ok) ok

in A_.((A_.test p then loop else ok) ok)} ok
. — g{let z = test p then loop else ok

in A_. ((A_.test p then loop else ok) ok)} ok
. — g{let z = ok

in A_. ((A_.test p then loop else ok) ok)} ok

— @{A_. ((A_.test p then loop else ok) ok)} ok
— (A_. ((A_.test p then loop else ok) ok)) ok
— (A_.test p then loop else ok) ok
— test p then loop else ok
— loop — loop — loop — loop — ...

Zdancewic Software Security Summer 49
School 2004

Example Applications

Eliminate redundant annotations:

AX.R{Ay.R{e}} = AX.Ay.R{e}

Decrease stack inspection costs:

e =~ test p then (enable p in e) else e

Zdancewic Software Security Summer
School 2004

50

Axiomatic Equivalence

Can give a sound set of equations = that

characterize =.

Example axioms:

®* =|s a congruence (preserved by contexts)
(Ax.e) v=e{v/x} (beta equivalence)

X¢ fv(v) = AX.v=v
enablepino=o0

enable p in (enable qin e)
enable q in (enable p in e)
R2>S = R{S{e}} =5S{e}
R{S{enablepine}} =
Ru{p}{S{enablepine}}
... Many, many more

Zdancewic Software Security Summer

School 2004

= Implies =

51

Example: Tail Calls

Ordinary evaluation:
R{(Ax.5{e}) v} — R{S{e{v/x}}}

Tail-call eliminated evaluation:
R{(Ax.S{e}) v} — S{e{v/x}}

Not sound in general!

But OK in special cases.

Zdancewic Software Security Summer
School 2004

52

Example: Tail Calls

Suppose R o S. Then:

R{(Ax.S{e}) v}
= R{S{e{v/x}}}
= S{e{v/x}}
= S{e}{v/x}

(Ax.S{e}) v

In particular, code within a protection
domain can safely make tail calls to
other code in that domain.

Zdancewic Software Security Summer 53
School 2004

Example: Higher-order Code

main = System [Ah.(h ok ok)]

fileHandler =
System[is.Ac.A .c (readFile s)]

leak = Applet[[As.output s]

main(A .Applet{fileHandler “f2"” leak})

Zdancewic Software Security Summer 54
School 2004

Example: Higher-order Code

main(A .Applet{fileHanler “f2” leak})
—*System{Applet{fileHandler “f2"” leak} okS}
—*System{Applet{System{System{

A .System{leak (readFile “f2")}}}} okS}
—*System{A .System{leak (readFile “f2")} okS}
—* System{System{leak <f2 contents>}}

—* System{System{Applet{output <f2 contents>}}}
—* System{System{Applet{ok}}}
—* ok

Zdancewic Software Security Summer 55
School 2004

Next Time

= Static analysis for stack inspection
= Type system for stack inspection

= Connections to information-flow

analysis

Zdancewic

Software Security Summer
School 2004

56

Stack Inspection:
Translation & Static Analysis

Steve Zdancewic

University of Pennsylvania

Types for Stack Inspection

= Want to do static checking of A_.. code
= Statically detect security failures.
= Eliminate redundant checks.

= Example of nonstandard type system for
enforcing security properties.

= Type system based on work by Pottier,
Skalka, and Smith:

= “A Systematic Approach to Static Access
Control”

= Explain the type system by taking a
detour through “security-passing” style.

= See Wallach’s & Felten’s

Zdancewic Software Security Summer 58
School 2004

}\.sec Syntax

* Language syntax:

e, ::=
X

AX. €
e f

R{e}

enable p 1n e

test p then e else f
let x = e in f

= Restrict the use of “fail”
source language

expressions

variable
function

application
framed expr

enable

check perm.
local decl.

in the

Zdancewic Software Security Summer
School 2004

59

Adding Static Checking

= New expression form:

check p then e
= Operationally, equivalent to:

test p then e else fail

= But, the type system will ensure
that the check always succeeds.

Zdancewic Software Security Summer
School 2004

60

Security-passing Style

= Basic idea: Convert the “stack-crawling”

form of stack inspection into a

“permission-set passing style”

= Compute the set of current permissions at
any point in the code.

= Make the set of permissions explicit as an
extra parameter to functions (hence
“security-passing style)

= Target language is untyped lambda
calculus with a primitive datatype of
sets.

Zdancewic Software Security Summer
School 2004

61

YAFOSI

Yet another formalization of stack inspection:

Compute the set T of permissions granted by

stack x given starting with static permissions R
and dynamic permissions S.

Change to J;;x for the “Ieaa

privileges” version
puilt).

Compute
the order the s

P, P, x—T peT
XHFPp

Zdancewic Software Security Summer 62
School 2004

“Eager” Stack Inspection

R:S:. S Bottom of the stack

RESARGXET New prot. Domain.

R: S:R'.XFT

R; Su({p}nR); x T

R: S; enable(p).x = T Enabled permission.

Zdancewic Software Security Summer 63
School 2004

Inspection Correspondence

Lemma: Stack(E) -~ p in the first formulation
Iff Stack(E) ~ p in the eager formulation.

Zdancewic Software Security Summer 64
School 2004

Target Language: Aset

» Language syntax:

e, ::=
X
AX. €
e f
fail
let x =

e 1n f

If pese then e else f

se
= se =
S
se U se

Se€ M Se
X

expressions
varilable
function
application
failure
local decl.
member test
set expr.

perm. set
union
Intersection

Zdancewic

Software Security Summer
School 2004

65

Translation: 7\.sec to 7\.set

e [[e]]IR = “translation of e in domain R”
* [[x]IR = X

e [[AX.e]]R = AX.As.[[e]]R

* [[e f]IR = [[e]lR [[f]IR s

e [[letx =einf]JR = letx =[[e]]Rin[[f]R

e [[enablepine]lR = lets=su({p} nR)in[[e]]lR
e [[R'{e}]IR = lets=sn R In|[[e]]R’

e [[check rthen e]]R = if re s then [[e]]R else fail

e [[test r then el else e2]]R

If re sthen [[el]]R else [[e2]]R

 Top level translation: [[e]] = [[e]llP{P/s}

Zdancewic Software Security Summer 66
School 2004

Example Translation

System
Applet

{ llf2"’ llf3"}
{’ fl"}

h = System{enable “f1” in
Applet{(Ax.

System{check “f1” then write x})

“kwijibo”} }

Zdancewic

Software Security Summer
School 2004

67

Example Translation

[[h]] = ¢+ System*)
lets =P {“f1”, “f2", “f3”} in
(* enable “f1” *)
lets=su ({“f1"} n {“f1”, “f2”, “f3”}) in
(* Applet *)
lets=s N {“f1”} In
(AX.AS.
(* System *)
lets =snn {“f1”, “f2”, “f3”} in
If “f1” € s then write x else fail)
“kwijibo” s

Zdancewic Software Security Summer 68
School 2004

“Administrative” Evaluation

(1) lets=einf >, f{R/s} If e >*R

(2) E[e]>,Ele’] if e, e

For example:
[[h]] =, *
(AX.AS.
(* System *)
lets = s {“f1”, “f2”, “f3”} in
if “f1” € s then write x else ())
“kwijibo” {“f1”}

Zdancewic Software Security Summer 69
School 2004

Stack Inspection Lemma

Lemma:

= Suppose R; S; Stack(E) ~ T.
Then there exist E' and R’ such that
for all (source) e:

[[E[e]]IR{S/s} >,* E'[[[e]IR"{T/s}]

Proof (sketch): By induction on structure
of E.

Zdancewic Software Security Summer
School 2004

70

Translation Correctness (1)

Lemma:

» [fe > e’ then there is an f such that
[[e]] >*f and [[e']]>*f

= Furthermore, iIf e>e’ Is a beta step,
then [[e]] =2* f Includes at |least one

beta step.

Proof (sketch): Induction on the
evaluation step taken. Uses the stack
Inspection lemma.

Zdancewic Software Security Summer
School 2004

71

Translation Correctness

Theorem:

fe>*v then [[e]] 2>*[[Vv]]
f e >* fail then [[e]] >* fall
-urthermore, if e diverges, so does

[ell.

Proof (sketch): Use the lemma on the

previous slide.

Zdancewic Software Security Summer

School 2004

712

Stepping Back

= Have two formulations of stack
inspection: “original” and “eager”

= Have a translation to a language that
manipulates sets of permissions
explicitly.
* |[ncludes the “administrative” reductions
that just compute sets of permissions.

= Similar computations can be done statically!

Zdancewic Software Security Summer
School 2004

73

Deriving a Type System

 Eager stack inspection judgment:

R:S: Stack(E) = T

e Statically track the current protection
domain

e Statically track the currently enabled
permissions

 Use the expression instead of Stack(E)

Zdancewic Software Security Summer 74
School 2004

Typing Judgments

Vanab
context /[Type]

R:S:;'e:t

& Current%J\ \[Term j
| ™

N

protection
domain

Current

permission
. set

Zdancewic Software Security Summer
School 2004

75

Form of types

= Only interesting (non administrative)
change during compilation was for
functions:
[[AX.e]]R = AXx.As.[[e]]R

= Source type: t->uU
* Target type: t->s->u

= The 2" argument, is always a set, so
we “specialize” the type to:
t—-{S}>u

Zdancewic Software Security Summer 76
School 2004

Types

» Types:
t:.:= types
int, string, ... base types
t—{S}>t functions
Zdancewic Software Security Summer 77

School 2004

Simple Typing Rules

Variables: R:S:T"+— x : T'(x)

Abstraction:
R:S"I'xitl—e : t2
R;S;I'— Ax.e : t1 -{S'}> t2

Zdancewic Software Security Summer 78
School 2004

More Simple Typing Rules

R;S;T'+—e : t—-{S}->t
R:S:;TT—f : ¢t

Application:
R;S;F'—ef: t
ot R;S;'—e:u
U R;S;I'')xurf : t
R;ST'Hletx=einf:t
Zdancewic Software Security Summer 79

School 2004

Typing Rules for Enable

Enable fail: RS

e :t Ppe R

R:S:]

Enable succeed:

" enablepine:t

R;Su{p};T'+e :t pe R

R;S;' - enablepine:t

Zdancewic Software Security Summer 80
School 2004

Rule for Check

Note that this typing rule requires
that the permission p is statically
known to be available.

R; Su{p}I'+e :t
R; Su{p};I' - check pthene:t

Zdancewic Software Security Summer 81
School 2004

Rule for Test

Check the first branch under assumption
that p Is present, check the else branch
under assumption that p is absent.

R; Su{p}I'+e :t
R;S-{p};T'—f :t
R;S;I' + test pthen e elsef: t

Zdancewic Software Security Summer 82
School 2004

Rule for Protection Domains

Intersect the permissions in the
static protection domain with the
current permission set.

S""SNS:I'e :t
R;S;T'+— S'{e}: t

Zdancewic Software Security Summer 83
School 2004

Weakening (Subsumption)

It Is always safe to “forget” permissions.

R:S"Te:t ScS

R:S;THe:t

Zdancewic Software Security Summer
School 2004

84

Type Safety

= Theorem:

If P:P:J — e : tthen eithere >*v ore
diverges.

= |n particular: e never fails. (i.e. check
always succeeds)

= Proof:
Preservation & Progress.

Zdancewic Software Security Summer
School 2004

85

Example: Good Code

h = System{enable “f1” In
Applet{(Ax.
System{check “f1” then write x})
“kwijibo” } }

Then P;S;3+ h:unit foranyS

Zdancewic Software Security Summer 86
School 2004

Example: Bad Code

g = System{enable “f1” in
Applet{(Ax.
System{check @ then write x})
“kwijibo” } }

Then R;S;0+ g:t isnotderivable
for any R,S, and t.

Zdancewic Software Security Summer 87
School 2004

Static vs. Dynamic Checks

Calling this function requires the
static permission p:

B:,3;3 - Ax.check pin x : int—-{p}—=>int

Only way to call it (assuming initial perms.
are empty) is to put it in the scope of a
dynamic test:
test p then ...can call it here...
else ...may not call it here...

Zdancewic Software Security Summer 88
School 2004

Expressiveness

= This type system is very simple
= No subtyping
= No polymorphism
= Not algorithmic
= Hard to do inference

= Can add all of these features...

= See Francois’ paper for a nice example.
= Uses Rémy’s row types to describe the sets
of permission.
= Uses HM(X) — Hindley Milner with constraints

= Also shows how to derive a type system for
the source language from the translation!

Zdancewic Software Security Summer 89

School 2004

Discussion

= Problem: Applets returning closures that
circumvent stack inspection.

= Possible solution:

= Values of the form: R{v} (i.e. keep track of
the protection domain of the source)

= Similarly, one could have closures capture
their current security context

» Integrity analysis (i.e. where data comes
from)
= Fournet & Gordon prove some
properties of strengthened versions of
stack inspection.

Zdancewic Software Security Summer 90
School 2004

Stack Inspection ++

= Stack inspection enforces a form of
integrity policy

= Can combine stack inspection with
iInformation-flow policies:

= Banerjee & Naumann - Using Access Control
for Secure Information Flow in a Java-like
Language (CSFW’'03)

» Tse & Zdancewic — Run-time Principals in
Information-flow Type Systems
(IEEE S&P’04)

Zdancewic Software Security Summer 91
School 2004

