
Current Techniques in
Language-based Security

Steve Zdancewic
University of Pennsylvania

Zdancewic Software Security Summer
School 2004

2

Mobile Code

Modern languages like Java and C#
have been designed for Internet
applications and extensible systems

PDAs, Cell Phones, Smart Cards, …

operating system

web browser

applet applet applet

Zdancewic Software Security Summer
School 2004

3

Applet Security Problems

Protect OS & other valuable resources.
Applets should not:

crash browser or OS
execute “rm –rf /”
be able to exhaust resources

Applets should:
be able to access some system resources
(e.g. to display a picture)
be isolated from each other

Principles of least privileges and
complete mediation apply

Zdancewic Software Security Summer
School 2004

4

Java and C# Security
Static Type Systems

Memory safety and jump safety

Run-time checks for
Array index bounds
Downcasts
Access controls

Virtual Machine / JIT compilation
Bytecode verification
Enforces encapsulation boundaries (e.g. private field)

Garbage Collected
Eliminates memory management errors

Library support
Cryptography, authentication, …

These
lectures

Zdancewic Software Security Summer
School 2004

5

Access Control for Applets

What level of granularity?
Applets can touch some parts of the file system but
not others
Applets can make network connections to some
locations but not others

Different code has different levels of
trustworthiness

www.l33t-hax0rs.com vs. www.java.sun.com

Trusted code can call untrusted code
e.g. to ask an applet to repaint its window

Untrusted code can call trusted code
e.g. the paint routine may load a font

How is the access control policy specified?

Zdancewic Software Security Summer
School 2004

6

Outline

Java Security Model (C# similar)

Stack inspection
Concrete examples

Semantics from a PL perspective
Formalizing stack inspection
Reasoning about programs that use stack
inspection
Type systems for stack inspection

Discussion & Related work
Relate stack inspection to information flow

Zdancewic Software Security Summer
School 2004

7

Java Security Model

a.class
b.class
c.class
d.class
e.class

Domain A

Domain B

Permissions

Permissions

Security PolicyVM Runtime

http://java.sun.com/j2se/1.4.2/docs/guide/security/spec/security-specTOC.fm.html

Classloader
SecurityManager

Zdancewic Software Security Summer
School 2004

8

Kinds of Permissions

java.security.Permission Class

perm = new java.io.FilePermission("/tmp/abc","read");

java.security.AllPermission
java.security.SecurityPermission
java.security.UnresolvedPermission
java.awt.AWTPermission
java.io.FilePermission
java.io.SerializablePermission
java.lang.reflect.ReflectPermission
java.lang.RuntimePermission
java.net.NetPermission
java.net.SocketPermission
…

Zdancewic Software Security Summer
School 2004

9

Code Trustworthiness

How does one decide what protection
domain the code is in?

Source (e.g. local or applet)
Digital signatures
C# calls this “evidence based”

How does one decide what permissions
a protection domain has?

Configurable – administrator file or
command line

Enforced by the classloader

Zdancewic Software Security Summer
School 2004

10

Classloader Hierarchy

ClassLoader

SecureClassLoader URLClassLoader

AppletClassLoader

Primordial
ClassLoader

Zdancewic Software Security Summer
School 2004

11

Classloader Resolution
When loading the first class of an application,
a new instance of the URLClassLoader is used.
When loading the first class of an applet, a
new instance of the AppletClassLoader is used.
When java.lang.Class.ForName is directly
called, the primordial class loader is used.
If the request to load a class is triggered by a
reference to it from an existing class, the class
loader for the existing class is asked to load
the class.

Exceptions and special cases… (e.g. web
browser may reuse applet loader)

Zdancewic Software Security Summer
School 2004

12

Example Java Policy

grant codeBase “http://www.l33t-hax0rz.com/*” {
permission java.io.FilePermission(“/tmp/*”, “read,write”);

}

grant codeBase “file://$JAVA_HOME/lib/ext/*” {
permission java.security.AllPermission;

}

grant signedBy “trusted-company.com” {
permission java.net.SocketPermission(…);
permission java.io.FilePermission(“/tmp/*”, “read,write”);
…

}

Policy information stored in:
$JAVA_HOME/lib/security/java.policy
$USER_HOME/.java.policy
(or passed on command line)

Zdancewic Software Security Summer
School 2004

13

Example Trusted Code

void fileWrite(String filename, String s) {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
FilePermission fp = new FilePermission(filename,“write”);
sm.checkPermission(fp);
/* … write s to file filename (native code) … */

} else {
throw new SecurityException();

}
}

public static void main(…) {
SecurityManager sm = System.getSecurityManager();
FilePermission fp = new FilePermission(“/tmp/*”,“write,…”);
sm.enablePrivilege(fp);
UntrustedApplet.run();

}

Code in the System protection domain

Zdancewic Software Security Summer
School 2004

14

Example Client

class UntrustedApplet {
void run() {
...
s.FileWrite(“/tmp/foo.txt”, “Hello!”);
...
s.FileWrite(“/home/stevez/important.tex”, “kwijibo”);
...

}
}

Applet code obtained from
http://www.l33t-hax0rz.com/

Zdancewic Software Security Summer
School 2004

15

Stack Inspection

Stack frames are annotated with their
protection domains and any enabled
privileges.

During inspection, stack frames are
searched from most to least recent:

fail if a frame belonging to someone not
authorized for privilege is encountered
succeed if activated privilege is found in
frame

Zdancewic Software Security Summer
School 2004

16

Stack Inspection Example

main(…){
fp = new FilePermission(“/tmp/*”,“write,…”);
sm.enablePrivilege(fp);
UntrustedApplet.run();

}

P
o
licy

 D
a
ta

b
a
se

Zdancewic Software Security Summer
School 2004

17

Stack Inspection Example

main(…){
fp = new FilePermission(“/tmp/*”,“write,…”);
sm.enablePrivilege(fp);
UntrustedApplet.run();

}

fp

P
o
licy

 D
a
ta

b
a
se

Zdancewic Software Security Summer
School 2004

18

Stack Inspection Example

main(…){
fp = new FilePermission(“/tmp/*”,“write,…”);
sm.enablePrivilege(fp);
UntrustedApplet.run();

}

void run() {
…
s.FileWrite(“/tmp/foo.txt”, “Hello!”);
…

}

fp

P
o
licy

 D
a
ta

b
a
se

Zdancewic Software Security Summer
School 2004

19

Stack Inspection Example

main(…){
fp = new FilePermission(“/tmp/*”,“write,…”);
sm.enablePrivilege(fp);
UntrustedApplet.run();

}

void run() {
…
s.FileWrite(“/tmp/foo.txt”, “Hello!”);
…

}

void fileWrite(“/tmp/foo.txt”, “Hello!”) {
fp = new FilePermission(“/tmp/foo.txt”,“write”)
sm.checkPermission(fp);
/* … write s to file filename … */

fp

P
o
licy

 D
a
ta

b
a
se

Zdancewic Software Security Summer
School 2004

20

Stack Inspection Example

main(…){
fp = new FilePermission(“/tmp/*”,“write,…”);
sm.enablePrivilege(fp);
UntrustedApplet.run();

}

void run() {
…
s.FileWrite(“/tmp/foo.txt”, “Hello!”);
…

}

void fileWrite(“/tmp/foo.txt”, “Hello!”) {
fp = new FilePermission(“/tmp/foo.txt”,“write”)
sm.checkPermission(fp);
/* … write s to file filename … */

fp

P
o
licy

 D
a
ta

b
a
se

Succeed!

Zdancewic Software Security Summer
School 2004

21

Stack Inspection Example

main(…){
fp = new FilePermission(“/tmp/*”,“write,…”);
sm.enablePrivilege(fp);
UntrustedApplet.run();

}

void run() {
…
s.FileWrite(“/home/stevez/important.tex”,

“kwijibo”);
}

fp

P
o
licy

 D
a
ta

b
a
se

Zdancewic Software Security Summer
School 2004

22

Stack Inspection Example

main(…){
fp = new FilePermission(“/tmp/*”,“write,…”);
sm.enablePrivilege(fp);
UntrustedApplet.run();

}

void fileWrite(“…/important.txt”, “kwijibo”) {
fp = new FilePermission(“important.txt”,

“write”);
sm.checkPermission(fp);

fp

P
o
licy

 D
a
ta

b
a
se

void run() {
…
s.FileWrite(“/home/stevez/important.tex”,

“kwijibo”);
}

Fail

Zdancewic Software Security Summer
School 2004

23

Other Possibilities

The fileWrite method could enable
the write permission itself

Potentially dangerous, should not base the
file to write on data from the applet
… but no enforcement in Java (information
flow would help here)

A trusted piece of code could disable a
previously granted permission

Terminate the stack inspection early

Zdancewic Software Security Summer
School 2004

24

Stack Inspection Algorithm

checkPermission(T) {
// loop newest to oldest stack frame
foreach stackFrame {

if (local policy forbids access to T by class executing in
stack frame) throw ForbiddenException;

if (stackFrame has enabled privilege for T)
return; // allow access

if (stackFrame has disabled privilege for T)
throw ForbiddenException;

}

// end of stack
if (Netscape || …) throw ForbiddenException;
if (MS IE4.0 || JDK 1.2 || …) return;

}

Zdancewic Software Security Summer
School 2004

25

Two Implementations

On demand –
On a checkPermission invocation, actually
crawl down the stack, checking on the way
Used in practice

Eagerly –
Keep track of the current set of available
permissions during execution (security-
passing style Wallach & Felten)

+ more apparent (could print current perms.)
- more expensive (checkPermission occurs

infrequently)

Zdancewic Software Security Summer
School 2004

26

Stack Inspection
Stack inspection seems appealing:

Fine grained, flexible, configurable policies
Distinguishes between code of varying degrees of
trust

But…
How do we understand what the policy is?
Semantics tied to the operational behavior of the
program (defined in terms of stacks!)
How do we compare implementations
Changing the program (e.g. optimizing it) may
change the security policy
Policy is distributed throughout the software, and is
not apparent from the program interfaces.
Is it any good?

Zdancewic Software Security Summer
School 2004

27

Stack Inspection Literature

A Systematic Approach to Static Access
Control
François Pottier, Christian Skalka, Scott Smith

Stack Inspection: Theory and Variants
Cédric Fournet and Andrew D. Gordon

Understanding Java Stack Inspection
Dan S. Wallach and Edward W. Felten

Formalize Java Stack Inspection using ABLP
logic

Formalizing Stack Inspection

Steve Zdancewic
University of Pennsylvania

Zdancewic Software Security Summer
School 2004

29

Stack Inspection

Stack frames are annotated with their
protection domains and any enabled
privileges.

During inspection, stack frames are
searched from most to least recent:

fail if a frame belonging to someone not
authorized for privilege is encountered
succeed if activated privilege is found in
frame

Zdancewic Software Security Summer
School 2004

30

Stack Inspection Literature

A Systematic Approach to Static Access
Control
François Pottier, Christian Skalka, Scott Smith

Stack Inspection: Theory and Variants
Cédric Fournet and Andrew D. Gordon

Understanding Java Stack Inspection
Dan S. Wallach and Edward W. Felten

Formalize Java Stack Inspection using ABLP
logic

Zdancewic Software Security Summer
School 2004

31

Abstract Stack Inspection

Abstract permissions

p,q ∈ P Set of all permissions
R,S ⊆ P Principals (sets of

permissions)

Hide the details of classloading, etc.
Examples:
System = {fileWrite(“f1”), fileWrite(“f2”),…}
Applet = {fileWrite(“f1”)}

Zdancewic Software Security Summer
School 2004

32

λsec Syntax
Language syntax:

e,f ::= expressions
x variable
λx.e function
e f application
R{e} framed expr
enable p in e enable
test p then e else f check perm.
fail failure

v ::= x | λx.e values
o ::= v | fail outcome

Zdancewic Software Security Summer
School 2004

33

Framing a Term

Models the Classloader that marks the
(unframed) code with its protection
domain:

R`xa = x
R`λx.ea = λx.R{R`ea}
R`e fa = R`ea R`fa
R`enable p in ea = enable p in R`ea
R`test p then e else fa =
test p then R`ea else R`fa

R`faila = fail

Zdancewic Software Security Summer
School 2004

34

Example

readFile =
λfileName.System{

test fileWrite(fileName) then
… // primitive file IO (native code)
else fail

}

Applet{readFile “f2”} ⇓ fail
System{readFile “f2”} ⇓ <f2 contents>

Zdancewic Software Security Summer
School 2004

35

λsec Operational Semantics
Evaluation contexts:

E ::=
[] Hole
E e Eval. Function
v E Eval. Arg.
enable p in E Tagged frame
R{E} Frame

E models the control stack

Zdancewic Software Security Summer
School 2004

36

λsec Operational Semantics
E[(λx.e) v] → E[e{v/x}]
E[enable p in v] → E[v]
E[R{v}] → E[v]
E[fail] → fail
E[test p then e else f] → E[e]

if Stack(E) @ p
E[test p then e else f] → E[f]

if ¬(Stack(E) @ p)

e ⇓ o iff e →* o

Stack
Inspection

Zdancewic Software Security Summer
School 2004

37

Example Evaluation Context

Applet{readFile “f2”}

E = Applet{[]}
r = readfile “f2”

Zdancewic Software Security Summer
School 2004

38

Example Evaluation Context

E = Applet{[]}
r = (λfileName.System{

test fileWrite(fileName) then
… // primitive file IO (native code)
else fail
})

“f2”

Applet{readFile “f2”}

Zdancewic Software Security Summer
School 2004

39

Example Evaluation Context

Applet{readFile “f2”}

E = Applet{[]}
r = System{

test fileWrite(“f2”) then
… // primitive file IO (native code)
else fail

}

Zdancewic Software Security Summer
School 2004

40

Example Evaluation Context

Applet{System{
test fileWrite(“f2”) then
… // primitive file IO (native code)
else fail

}}

Zdancewic Software Security Summer
School 2004

41

Example Evaluation Context

Applet{System{
test fileWrite(“f2”) then
… // primitive file IO (native code)
else fail

}}

E’ = Applet{System{[]}}
r’ = test fileWrite(“f2”) then

… // primitive file IO (native code)
else fail

Zdancewic Software Security Summer
School 2004

42

Formal Stack Inspection

E’ = Applet{System{[]}}
r’ = test fileWrite(“f2”) then

… // primitive file IO (native code)
else fail

When does stack E’ allow permission
fileWrite(“f2”)?

Stack(E’) @ fileWrite(“f2”)

Zdancewic Software Security Summer
School 2004

43

Stack of an Eval. Context

Stack([]) = .
Stack(E e) = Stack(E)
Stack(v E) = Stack(E)
Stack(enable p in E) = enable(p).Stack(E)
Stack(R{E}) = R.Stack(E)

Stack(E’)
= Stack(Applet{System{[]}})
= Applet.Stack(System{[]})
= Applet.System.Stack([])
= Applet.System.

Zdancewic Software Security Summer
School 2004

44

Abstract Stack Inspection

. @ p empty stack axiom

x @ p p ∈ R
x.R @ p

x @ p
x.enable(q) @ p

protection domain check

p ≠ q irrelevant enable

x e p
x.enable(p) @ p

check enable

Zdancewic Software Security Summer
School 2004

45

Abstract Stack Inspection

. e p empty stack enables all

p ∈ R
x.R e p enable succeeds*

x e p
x.enable(q) e p irrelevant enable

* Enables should occur only in trusted code

Zdancewic Software Security Summer
School 2004

46

Equational Reasoning

e⇓ iff there exists o such that e ⇓ o

Let C[] be an arbitrary program context.

Say that e � e’ iff
for all C[], if C[e] and C[e’] are closed then

C[e]⇓ iff C[e’]⇓.

Zdancewic Software Security Summer
School 2004

47

Example Inequality

let x = e in e’ = (λx.e’) e
ok = λx.x
loop = (λx.x x)(λx.x x) (note: loop ⇓)
f = λx. let z = x ok in λ_.z
g = λx. let z = x ok in λ_.(x ok)

Claim: f � g

Proof:
Let C[] = ∅{[] λ_.test p then loop else ok} ok

Zdancewic Software Security Summer
School 2004

48

Example Continued

C[f] = ∅{f λ_.test p then loop else ok} ok
• → ∅{let z =

(λ_.test p then loop else ok) ok
in λ_.z} ok

• → ∅{let z = test p then loop else ok
in λ_.z} ok

• → ∅{let z = ok in λ_.z} ok
• → ∅{λ_.ok} ok
• → (λ_.ok) ok
• → ok

Zdancewic Software Security Summer
School 2004

49

Example Continued

C[g] = ∅{g λ_.test p then loop else ok} ok
• → ∅{let z =

(λ_.test p then loop else ok) ok
in λ_.((λ_.test p then loop else ok) ok)} ok

• → ∅{let z = test p then loop else ok
in λ_. ((λ_.test p then loop else ok) ok)} ok

• → ∅{let z = ok
in λ_. ((λ_.test p then loop else ok) ok)} ok

• → ∅{λ_. ((λ_.test p then loop else ok) ok)} ok
• → (λ_. ((λ_.test p then loop else ok) ok)) ok
• → (λ_.test p then loop else ok) ok
• → test p then loop else ok
• → loop → loop → loop → loop → …

Zdancewic Software Security Summer
School 2004

50

Example Applications

Eliminate redundant annotations:

λx.R{λy.R{e}} � λx.λy.R{e}

Decrease stack inspection costs:

e � test p then (enable p in e) else e

Zdancewic Software Security Summer
School 2004

51

Axiomatic Equivalence

Can give a sound set of equations ≡ that
characterize �. Example axioms:

• ≡ is a congruence (preserved by contexts)
• (λx.e) v ≡ e{v/x} (beta equivalence)
• x ∉ fv(v) ⇒ λx.v ≡ v
• enable p in o ≡ o
• enable p in (enable q in e) ≡

enable q in (enable p in e)
• R ⊇ S ⇒ R{S{e}} ≡ S{e}
• R{S{enable p in e}} ≡

R∪{p}{S{enable p in e}}
• … many, many more ≡ Implies �

Zdancewic Software Security Summer
School 2004

52

Example: Tail Calls

Ordinary evaluation:
R{(λx.S{e}) v} → R{S{e{v/x}}}

Tail-call eliminated evaluation:
R{(λx.S{e}) v} → S{e{v/x}}

Not sound in general!

But OK in special cases.

Zdancewic Software Security Summer
School 2004

53

Example: Tail Calls

Suppose R ⊇ S. Then:

R{(λx.S{e}) v}
≡ R{S{e{v/x}}}
≡ S{e{v/x}}
≡ S{e}{v/x}

(λx.S{e}) v

In particular, code within a protection
domain can safely make tail calls to

other code in that domain.

Zdancewic Software Security Summer
School 2004

54

Example: Higher-order Code

main = System ` λh.(h ok ok)a

fileHandler =
System`λs.λc.λ_.c (readFile s)a

leak = Applet`λs.output sa

main(λ_.Applet{fileHandler “f2” leak})

Zdancewic Software Security Summer
School 2004

55

Example: Higher-order Code

• main(λ_.Applet{fileHanler “f2” leak})
• →* System{Applet{fileHandler “f2” leak} okS}
• →* System{Applet{System{System{

λ_.System{leak (readFile “f2”)}}}} okS}
• →* System{λ_.System{leak (readFile “f2”)} okS}
• →* System{System{leak <f2 contents>}}
• →* System{System{Applet{output <f2 contents>}}}
• →* System{System{Applet{ok}}}
• →* ok

Zdancewic Software Security Summer
School 2004

56

Next Time

Static analysis for stack inspection
Type system for stack inspection

Connections to information-flow
analysis

Stack Inspection:
Translation & Static Analysis

Steve Zdancewic
University of Pennsylvania

Zdancewic Software Security Summer
School 2004

58

Types for Stack Inspection

Want to do static checking of λsec code
Statically detect security failures.
Eliminate redundant checks.
Example of nonstandard type system for
enforcing security properties.

Type system based on work by Pottier,
Skalka, and Smith:

“A Systematic Approach to Static Access
Control”

Explain the type system by taking a
detour through “security-passing” style.

See Wallach’s & Felten’s

Zdancewic Software Security Summer
School 2004

59

λsec Syntax
Language syntax:

e,f ::= expressions
x variable
λx.e function
e f application
R{e} framed expr
enable p in e enable
test p then e else f check perm.
let x = e in f local decl.

Restrict the use of “fail” in the
source language

Zdancewic Software Security Summer
School 2004

60

Adding Static Checking

New expression form:

check p then e

Operationally, equivalent to:

test p then e else fail

But, the type system will ensure
that the check always succeeds.

Zdancewic Software Security Summer
School 2004

61

Security-passing Style

Basic idea: Convert the “stack-crawling”
form of stack inspection into a
“permission-set passing style”

Compute the set of current permissions at
any point in the code.
Make the set of permissions explicit as an
extra parameter to functions (hence
“security-passing style)

Target language is untyped lambda
calculus with a primitive datatype of
sets.

Zdancewic Software Security Summer
School 2004

62

YAFOSI

x @ p
P; P; x @ T p ∈ T

R; S; x @ T

Yet another formalization of stack inspection:

Compute the set T of permissions granted by
stack x given starting with static permissions R
and dynamic permissions S.

Computes the answer bottom to top (i.e in
the order the stack was built).

Change to ∅;∅;x for the “least
privileges” version

Zdancewic Software Security Summer
School 2004

63

“Eager” Stack Inspection

R; S; . @ S

R; S; R’.x @ T

R’; S ∩ R’; x @ T

R; S; enable(p).x @ T

R; S ∪({p}∩R); x @ T

Bottom of the stack

New prot. Domain.

Enabled permission.

Zdancewic Software Security Summer
School 2004

64

Inspection Correspondence

Lemma: Stack(E) @ p in the first formulation
iff Stack(E) @ p in the eager formulation.

Zdancewic Software Security Summer
School 2004

65

Target Language: λset
Language syntax:
e,f ::= expressions

x variable
λx.e function
e f application
fail failure
let x = e in f local decl.
if p∈se then e else f member test
se set expr.

se ::=
S perm. set
se ∪ se union
se ∩ se intersection
x

Zdancewic Software Security Summer
School 2004

66

Translation: λsec to λset

• [[e]]R = “translation of e in domain R”

• [[x]]R = x
• [[λx.e]]R = λx.λs.[[e]]R
• [[e f]]R = [[e]]R [[f]]R s
• [[let x = e in f]]R = let x = [[e]]R in [[f]R
• [[enable p in e]]R = let s = s ∪ ({p} ∩ R) in [[e]]R
• [[R’{e}]]R = let s = s ∩ R’ in [[e]]R’
• [[check r then e]]R = if r ∈ s then [[e]]R else fail
• [[test r then e1 else e2]]R

= if r ∈ s then [[e1]]R else [[e2]]R

• Top level translation: [[e]] = [[e]]P{P/s}

Zdancewic Software Security Summer
School 2004

67

Example Translation

System = {“f1, “f2”, “f3”}
Applet = {“f1”}

h = System{enable “f1” in
Applet{(λx.
System{check “f1” then write x})

“kwijibo”}}

Zdancewic Software Security Summer
School 2004

68

Example Translation

[[h]] = (* System *)
let s = P ∩ {“f1”, “f2”, “f3”} in
(* enable “f1” *)
let s = s ∪ ({“f1”} ∩ {“f1”, “f2”, “f3”}) in
(* Applet *)
let s = s ∩ {“f1”} in
(λx.λs.
(* System *)
let s = s ∩ {“f1”, “f2”, “f3”} in
if “f1” ∈ s then write x else fail)

“kwijibo” s

Zdancewic Software Security Summer
School 2004

69

“Administrative” Evaluation

(1) let s = e in f a f{R/s} if e * R

(2) E[e] a E[e’] if e a e’

For example:
[[h]] a*

(λx.λs.
(* System *)
let s = s ∩ {“f1”, “f2”, “f3”} in
if “f1” ∈ s then write x else ())

“kwijibo” {“f1”}

Zdancewic Software Security Summer
School 2004

70

Stack Inspection Lemma

Lemma:
Suppose R; S; Stack(E) @ T.
Then there exist E’ and R’ such that
for all (source) e:

[[E[e]]]R{S/s} a* E’[[[e]]R’{T/s}]

Proof (sketch): By induction on structure
of E.

Zdancewic Software Security Summer
School 2004

71

Translation Correctness (1)

Lemma:
If e e’ then there is an f such that

[[e]] * f and [[e’]] a* f

Furthermore, if e e’ is a beta step,
then [[e]] * f includes at least one
beta step.

Proof (sketch): Induction on the
evaluation step taken. Uses the stack
inspection lemma.

Zdancewic Software Security Summer
School 2004

72

Translation Correctness

Theorem:
If e * v then [[e]] * [[v]]
If e * fail then [[e]] * fail
Furthermore, if e diverges, so does
[[e]].

Proof (sketch): Use the lemma on the
previous slide.

Zdancewic Software Security Summer
School 2004

73

Stepping Back

Have two formulations of stack
inspection: “original” and “eager”

Have a translation to a language that
manipulates sets of permissions
explicitly.

Includes the “administrative” reductions
that just compute sets of permissions.
Similar computations can be done statically!

Zdancewic Software Security Summer
School 2004

74

• Eager stack inspection judgment:

• Statically track the current protection
domain

• Statically track the currently enabled
permissions

• Use the expression instead of Stack(E)

Deriving a Type System

R; S; Stack(E) @ T

Zdancewic Software Security Summer
School 2004

75

Typing Judgments

R;S;Γ @ e : t

Current
protection

domain Current
permission

set

Variable
context

Term

Type

Zdancewic Software Security Summer
School 2004

76

Form of types

Only interesting (non administrative)
change during compilation was for
functions:

[[λx.e]]R = λx.λs.[[e]]R

Source type: t u
Target type: t s u
The 2nd argument, is always a set, so
we “specialize” the type to:
t –{S} u

Zdancewic Software Security Summer
School 2004

77

Types

Types:

t ::= types
int, string, … base types
t –{S} t functions

Zdancewic Software Security Summer
School 2004

78

Simple Typing Rules

R;S;Γ @ x : Γ(x)

R;S;Γ @ λx.e : t1 –{S’} t2

R;S’;Γ,x:t1 @ e : t2

Abstraction:

Variables:

Zdancewic Software Security Summer
School 2004

79

More Simple Typing Rules

R;S;Γ @ e f : t’

R;S;Γ @ e : t –{S} t’

R;S;Γ @ f : tApplication:

R;S;Γ @ let x = e in f : t

R;S;Γ @ e : u

R;S;Γ,x:u @ f : t
Let:

Zdancewic Software Security Summer
School 2004

80

Typing Rules for Enable

Enable fail:
R;S;Γ @ enable p in e : t

R;S;Γ @ e : t p ∉ R

Enable succeed:

R;S;Γ @ enable p in e : t

R;S∪{p};Γ @ e : t p ∈ R

Zdancewic Software Security Summer
School 2004

81

Rule for Check

R; S∪{p};Γ @ check p then e : t

R; S∪{p};Γ @ e : t

Note that this typing rule requires
that the permission p is statically

known to be available.

Zdancewic Software Security Summer
School 2004

82

Rule for Test

R;S;Γ @ test p then e else f: t

R;S-{p};Γ @ f : t

R; S∪{p};Γ @ e : t

Check the first branch under assumption
that p is present, check the else branch
under assumption that p is absent.

Zdancewic Software Security Summer
School 2004

83

Rule for Protection Domains

R;S;Γ @ S’{e}: t

S’;S∩S’;Γ @ e : t

Intersect the permissions in the
static protection domain with the
current permission set.

Zdancewic Software Security Summer
School 2004

84

Weakening (Subsumption)

R;S;Γ @ e : t

R;S’;Γ @ e : t S’⊆ S

It is always safe to “forget” permissions.

Zdancewic Software Security Summer
School 2004

85

Type Safety

Theorem:
If P;P;∅ @ e : t then either e * v or e
diverges.

In particular: e never fails. (i.e. check
always succeeds)

Proof:
Preservation & Progress.

Zdancewic Software Security Summer
School 2004

86

Example: Good Code

h = System{enable “f1” in
Applet{(λx.
System{check “f1” then write x})

“kwijibo”}}

Then P;S;∅ @ h : unit for any S

Zdancewic Software Security Summer
School 2004

87

Example: Bad Code

g = System{enable “f1” in
Applet{(λx.
System{check “f2” then write x})

“kwijibo”}}

Then R;S;∅ @ g : t is not derivable
for any R,S, and t.

Zdancewic Software Security Summer
School 2004

88

Static vs. Dynamic Checks

∅;∅;∅ @ λx.check p in x : int –{p} int

Calling this function requires the
static permission p:

Only way to call it (assuming initial perms.
are empty) is to put it in the scope of a
dynamic test:

test p then …can call it here…
else …may not call it here…

Zdancewic Software Security Summer
School 2004

89

Expressiveness

This type system is very simple
No subtyping
No polymorphism
Not algorithmic
Hard to do inference

Can add all of these features…
See François’ paper for a nice example.

Uses Rémy’s row types to describe the sets
of permission.
Uses HM(X) – Hindley Milner with constraints
Also shows how to derive a type system for
the source language from the translation!

Zdancewic Software Security Summer
School 2004

90

Discussion

Problem: Applets returning closures that
circumvent stack inspection.
Possible solution:

Values of the form: R{v} (i.e. keep track of
the protection domain of the source)
Similarly, one could have closures capture
their current security context
Integrity analysis (i.e. where data comes
from)

Fournet & Gordon prove some
properties of strengthened versions of
stack inspection.

Zdancewic Software Security Summer
School 2004

91

Stack Inspection ++

Stack inspection enforces a form of
integrity policy
Can combine stack inspection with
information-flow policies:

Banerjee & Naumann – Using Access Control
for Secure Information Flow in a Java-like
Language (CSFW’03)
Tse & Zdancewic – Run-time Principals in
Information-flow Type Systems
(IEEE S&P’04)

