
Specifying and Checking
Stateful Software Interfaces

Manuel Fähndrich maf@microsoft.com
Microsoft Research

2005 Summer School on Reliable Computing
Eugene, Oregon

Reliable ComputingStateful Software Interfaces

The world is stateful!
 API documentation is full of rules

 Governing order of operations & data
access

 Explaining resource management
 Disobeying a rule causes bad

behavior
 Unexpected exceptions
 Failed runtime checks
 Leaked resources

 Rules are informal
 Usually incomplete

(bad examples, good examples)
 Not enforced

Reliable ComputingStateful Software Interfaces

The state of the world

Existing languages too permissive
 Compilers do not catch enough bad programs

(why?)
 Cannot specify stricter usage rules

Programmers overwhelmed with complexity
 Did I cover all cases?

Do I even know all possible cases?

 Did I think through all paths?
 Did I consider all aliasing combinations?
 Did I consider all thread interactions?
 Did I handle all messages?

Reliable ComputingStateful Software Interfaces

Language-based approach
 Methodology not after-the-fact analysis

 Language provides a programming model for correct usage
 Language makes failures explicit
 Make programmers deal with failures
 Guide programmer from the beginning

 Modularity
 Programmer has to write interface specifications
 Specifications of interfaces for components, data, and functions

are part of the program

 Compiler or checkers enforce the correct usage rules
 Trade-off between expressiveness and automation
 Approach from tractable end; grow expressiveness

Reliable ComputingStateful Software Interfaces

void f(T *x) {
 if (x == NULL) {
 // now what?
 }
 T y = *x;
 …
}

Specifications reduce Complexity

Every pre-condition/invariant rules out one or more cases/paths in a
procedure
 Specify sub-ranges:

[A | B | C] possibly-null(T) vs. non-null(T)
 Make impossible paths obvious
 State (non-) aliasing assumptions
 Specify legal thread interactions

 buggy ideal
defensive

void f(T *x) {
 T y = *x;
 …
}

void f(T *!x) {
 T y = *x;
 …
}

Reliable ComputingStateful Software Interfaces

Modularity: making checking tractable

Modularity advantages
 More powerful
 Early error detection
 Robustness
 Incremental (open)

SW
Artifact ╞ P ?

Monolithic Modular

C1 ╞ P1
C3 ╞ P3

C4 ╞ P4

C7 ╞ P7

C2 ╞ P2

C6 ╞ P6C5 ╞ P5

╞ P

Modularity drawbacks
 Rigid
 Have to think ahead
 Tedious

Reliable ComputingStateful Software Interfaces

Lecture Outline

 Motivation and Context
 Reason about imperative programs
 Specify behavior
 Check code against specification

 Lecture approach
 Start with a specification problem
 Bring in technical background
 Point out limitations
 Relate to practical experience

Reliable ComputingStateful Software Interfaces

What would you like to specify today?

 Allocation/Deallocation
 Memory initialization
 Locks
 Events
 Type states
 Regions
 Reference counting
 Sharing
 Communication channels
 Deadlock freedom

Technical material
 Type systems with state

 linear types
 capability-based systems

 Programming models
 Object type-states

Reliable ComputingStateful Software Interfaces

Demo?

Reliable ComputingStateful Software Interfaces

Allocation/Deallocation
 Familiar protocol
 Rules

 free when done
 don’t use after free
 don’t free twice

 Although the world is stateful, …
 …all I ever needed to know I learned from the

functional programming community!

alloc free

use

Reliable ComputingStateful Software Interfaces

Linear Types can Change the World

 Paper by Wadler 1990
 From linear logic to linear types
 Purely functional setting

e ::= n j (e, e) j let p = e1 in e2 j e1 e2 j x.e
 Conventional types

 ::= int j £ j int[] j ! j unit
 Array functions

lookup : int[] ! int ! int
update : int[] ! int ! int ! int[]

 Problem: to update an array, it must be copied so as to
leave original unchanged

Reliable ComputingStateful Software Interfaces

Conventional functional array update

let x = new int[1] in
let x = update x 0 9 in
let y = update x 0 8 in
let a = lookup x 0 in
let b = lookup y 0 in
assert (a == 9) in
assert (b == 8) in
()

 Often, original array no longer needed.
 Would like to eliminate copy in those cases.

Reliable ComputingStateful Software Interfaces

Conventional type rules

Rules of the form: A ` e :
where A ::= x : j A,A

 Key feature:
Assumption x: can be used 0, 1, or many times

Reliable ComputingStateful Software Interfaces

Enter linear types

 Linear types: ::= .. j j int[]² j (
 Judgments: A ` e :
 Key feature: Each assumption x: used exactly once

Reliable ComputingStateful Software Interfaces

Linear arrays

 Array functions
lookup : int[]² ! int (int int[]²

update : int[]² ! int (int (int[]²

Reliable ComputingStateful Software Interfaces

Linear functional array update
let x0 = new int[1] in
let x1 = update x0 0 9 in
let y = update x1 0 8 in
let (a,x2) = lookup x1 0 in
…
 Does not type check. Why?

 No need to copy if everything is used once only!
 update function can actually update array in place.

Reliable ComputingStateful Software Interfaces

Observations on Linearity

 Value of linear type is like a coin
 You can spend it, but you can spend it only once

 Single threading of arrays
 Similar to store threading in denotational semantics

 Advantages
 No leaks : if program type check, no left-overs
 Memory can be reused

 Does it address our resource management
specification problem?

Reliable ComputingStateful Software Interfaces

Modeling with linear types
 File protocol

open : string ! File²

read : File² ! File²

close : File² ! unit

A

R

W

C
alloc

openR

openW

promote

close

close

free

 Resource protocol
alloc : unit ! T²

use : T² ! T²

free : T² ! unit

More complicated protocols?

Reliable ComputingStateful Software Interfaces

Type-state modeling
 Complex file protocol

alloc : unit ! AFile²

openR : AFile² ! RFile²

openW : AFile² ! WFile²

read: RFile² ! RFile²

write : WFile² ! WFile²

close: (WFile² ! CFile²) Æ (RFile² ! CFile²)
free : CFile² ! unit

 Observations
 One type per type-state
 DFA’s easy, NFA’s require union types and ways to recover

type information through dynamic tests

A

R

W

C
alloc

openR

openW

promote

close

close

free

Reliable ComputingStateful Software Interfaces

Summary so far

 Problem of checking
 Resource management
 Type state rules

…reduced to type checking.

¢ ` p :

Reliable ComputingStateful Software Interfaces

Problems with Linear Types

 Use = Consume
 Style (single threading)
 What if I do want to use things multiple times?

 explicit copy
 Single pointer invariant
 Can we use linear types for all data structures?

 As long as they are trees!

Reliable ComputingStateful Software Interfaces

Non-linear types for non-trees
 Two environments or explicit copy and destroy
 Assume explicit duplication

 Non-linear values can be duplicated for free
(no runtime cost)

 let (x,y) = copy e1 in e2

 Requires that e1 has non-linear type

 When is a type non-linear?
 Wadler says: if top-level constructor is non-linear

 What about a type like: int[]² £ int[]²

 a non-linear pair of linear arrays
 cannot be duplicated without actual runtime copy
 linear type systems disallow such types

Reliable ComputingStateful Software Interfaces

Temporary non-linear access
 let! (x) y = e1 in e2

 Like let y = e1 in e2, but x given non-linear type in e1, then
reverts to linear type in e2

 ! : operator stripping of circles (recursively)
 Assume: lookup : int[] ! int ! int

let x = new int[2] in
let! (x) a = lookup x 0 in
let! (x) b = lookup x 1 in …

Example:

Reliable ComputingStateful Software Interfaces

Modeling with linear types
 Allocation/Deallocation ➾
 Memory initialization
 Locks
 Events
 Type states ➾
 Object states
 Regions
 Reference counting
 Sharing
 Channels
 Deadlock freedom

Reliable ComputingStateful Software Interfaces

Locking (1)
 ::= Lockh T²i non-linear type

create : T² ! LockhT²i

acquire : Lockh T²i ! T²

release : Lockh T²i ! T² ! unit

 Model
 Lock contains and protects some linear data T²

 Acquire blocks until lock is available and returns T²

 Release releases lock and specifies new data

 Lingering errors?
 Double acquire
 Never release
 Double release

Reliable ComputingStateful Software Interfaces

Locking (2)

 Avoid forgetting to release
 ::= … j RToken²

acquire : Lockh T²i ! T² RToken²

release : Lockh T²i ! T² RToken² ! unit
 Model

 Can only release as many times as we acquired
 Won’t forget to release

(no other way to get rid of RToken)
 Can still double release though
 Release wrong lock

Reliable ComputingStateful Software Interfaces

Summary of Linear type systems

 Linearity controls the creation and uses of aliases
 Each type assumption used exactly once

 Can express
 resource management
 type state protocols
 some locking

 Good for
 purely functional contexts
 single pointer invariant
 single-threading style

Reliable ComputingStateful Software Interfaces

Where are the Programming Languages?

 Simple, empowering technique
 Programming language: Concurrent Clean
 Problems

 Style
 To overcome, things get messy
 Dichotomy between non-linear and linear data

Linear vs. non-linear choice at birth, fixed, except for let!
 let! has problems
 No linear data in non-linear data
 No correlations (e.g., lock and release token)
 No control over non-linear data

 Big problem: World is still imperative

Reliable ComputingStateful Software Interfaces

Specification tasks
 Allocation/Deallocation ➾
 Memory initialization
 Locks (➾)
 Events
 Type states ➾
 Object states
 Regions
 Reference counting
 Sharing
 Channels
 Deadlock freedom

Reliable ComputingStateful Software Interfaces

Initialization is imperative!

 TAL allocation problem (Morrisett et.al.)
 How to allocate C(5) ?

 datatype t = C of int | D

ld.w r0 = alloc 8;
st.w r0[0] = CTag;
st.w r0[4] = 5;

 at this point: need to prove that
 intermediate steps

1.
2.
3.
4.

Reliable ComputingStateful Software Interfaces

Singleton Type Aside

 A type denoting a single value.
 ::= s(i) j …
 i ::= n constant int

 j symbolic int
 Given x : s(i), we know that «x¬ = «i¬ in all

evaluations.

Reliable ComputingStateful Software Interfaces

TAL allocation problem
 Allocation happens in many small steps
 Must be able to type each intermediate configuration
 Updates must be strong, i.e., they change the type
 Key insight: model after dynamic semantics

E : Var ! Loc Environment
M : Loc ! Val Store

 At type level
 Separate pointers from permissions
 Split environment assumptions into

 Non-linear type assumptions
 Linear capabilities

 Make explicit which operations
 require capabilities
 consume capabilities

Reliable ComputingStateful Software Interfaces

Alias Types and Capabilities

 Use singleton types for pointers
::= pt(i) j int j … non-linear types
h::= h1..ni j [] j 9[| C].h heap block types
 ::= 9[| C]. j … j linear types

 Use explicit heap: A; C ` e : ; C’
“In environment A, given a heap described by capabilities
C, e evaluates to some value v, such that
v : , and the final heap is described by C’ ”

A ::= ¢ j x : A
C ::= ¢ j { i h } C j …

 ::= ¢ j ,

Reliable ComputingStateful Software Interfaces

Capability Type Rules

Reliable ComputingStateful Software Interfaces

Spatial Conjunction

 H : heaps
 H ² C Heap H is described by C

i j

H

5 j 7 i

H1 H2

Reliable ComputingStateful Software Interfaces

Capability Type Rules (2)

Reliable ComputingStateful Software Interfaces

Allocation revisited

r0 = alloc 8;

r0.1 = CTag;

r0.2 = 5;

Reliable ComputingStateful Software Interfaces

Observations

 Capability rules look similar to Hoare triples
A; C ` e : ; C’

{ P } e { Q }

 Logic of capabilities is not first order logic, but a
specialized logic for heaps
 separation logic, logic of bunched implications
 usually restricted to be tractable

Reliable ComputingStateful Software Interfaces

End of Lecture 1

