
Specifying and Checking
Stateful Software Interfaces

Manuel Fähndrich maf@microsoft.com
Microsoft Research

2005 Summer School on Reliable Computing
Eugene, Oregon

Reliable ComputingStateful Software Interfaces

The world is stateful!
 API documentation is full of rules

 Governing order of operations & data
access

 Explaining resource management
 Disobeying a rule causes bad

behavior
 Unexpected exceptions
 Failed runtime checks
 Leaked resources

 Rules are informal
 Usually incomplete

(bad examples, good examples)
 Not enforced

Reliable ComputingStateful Software Interfaces

The state of the world

Existing languages too permissive
 Compilers do not catch enough bad programs

(why?)
 Cannot specify stricter usage rules

Programmers overwhelmed with complexity
 Did I cover all cases?

Do I even know all possible cases?

 Did I think through all paths?
 Did I consider all aliasing combinations?
 Did I consider all thread interactions?
 Did I handle all messages?

Reliable ComputingStateful Software Interfaces

Language-based approach
 Methodology not after-the-fact analysis

 Language provides a programming model for correct usage
 Language makes failures explicit
 Make programmers deal with failures
 Guide programmer from the beginning

 Modularity
 Programmer has to write interface specifications
 Specifications of interfaces for components, data, and functions

are part of the program

 Compiler or checkers enforce the correct usage rules
 Trade-off between expressiveness and automation
 Approach from tractable end; grow expressiveness

Reliable ComputingStateful Software Interfaces

void f(T *x) {
 if (x == NULL) {
 // now what?
 }
 T y = *x;
 …
}

Specifications reduce Complexity

Every pre-condition/invariant rules out one or more cases/paths in a
procedure
 Specify sub-ranges:

[A | B | C] possibly-null(T) vs. non-null(T)
 Make impossible paths obvious
 State (non-) aliasing assumptions
 Specify legal thread interactions

 buggy ideal
defensive

void f(T *x) {
 T y = *x;
 …
}

void f(T *!x) {
 T y = *x;
 …
}

Reliable ComputingStateful Software Interfaces

Modularity: making checking tractable

Modularity advantages
 More powerful
 Early error detection
 Robustness
 Incremental (open)

SW
Artifact ╞ P ?

Monolithic Modular

C1 ╞ P1
C3 ╞ P3

C4 ╞ P4

C7 ╞ P7

C2 ╞ P2

C6 ╞ P6C5 ╞ P5

╞ P

Modularity drawbacks
 Rigid
 Have to think ahead
 Tedious

Reliable ComputingStateful Software Interfaces

Lecture Outline

 Motivation and Context
 Reason about imperative programs
 Specify behavior
 Check code against specification

 Lecture approach
 Start with a specification problem
 Bring in technical background
 Point out limitations
 Relate to practical experience

Reliable ComputingStateful Software Interfaces

What would you like to specify today?

 Allocation/Deallocation
 Memory initialization
 Locks
 Events
 Type states
 Regions
 Reference counting
 Sharing
 Communication channels
 Deadlock freedom

Technical material
 Type systems with state

 linear types
 capability-based systems

 Programming models
 Object type-states

Reliable ComputingStateful Software Interfaces

Demo?

Reliable ComputingStateful Software Interfaces

Allocation/Deallocation
 Familiar protocol
 Rules

 free when done
 don’t use after free
 don’t free twice

 Although the world is stateful, …
 …all I ever needed to know I learned from the

functional programming community!

alloc free

use

Reliable ComputingStateful Software Interfaces

Linear Types can Change the World

 Paper by Wadler 1990
 From linear logic to linear types
 Purely functional setting

e ::= n j (e, e) j let p = e1 in e2 j e1 e2 j x.e
 Conventional types

  ::= int j  £  j int[] j  ! j unit
 Array functions

lookup : int[] ! int ! int
update : int[] ! int ! int ! int[]

 Problem: to update an array, it must be copied so as to
leave original unchanged

Reliable ComputingStateful Software Interfaces

Conventional functional array update

let x = new int[1] in
let x = update x 0 9 in
let y = update x 0 8 in
let a = lookup x 0 in
let b = lookup y 0 in
assert (a == 9) in
assert (b == 8) in
()

 Often, original array no longer needed.
 Would like to eliminate copy in those cases.

Reliable ComputingStateful Software Interfaces

Conventional type rules

Rules of the form: A ` e : 
where A ::= x :  j A,A

 Key feature:
Assumption x: can be used 0, 1, or many times

Reliable ComputingStateful Software Interfaces

Enter linear types

 Linear types:  ::= .. j  ­  j int[]² j  (
 Judgments: A ` e : 
 Key feature: Each assumption x: used exactly once

Reliable ComputingStateful Software Interfaces

Linear arrays

 Array functions
lookup : int[]² ! int (int ­ int[]²

update : int[]² ! int (int (int[]²

Reliable ComputingStateful Software Interfaces

Linear functional array update
let x0 = new int[1] in
let x1 = update x0 0 9 in
let y = update x1 0 8 in
let (a,x2) = lookup x1 0 in
…
 Does not type check. Why?

 No need to copy if everything is used once only!
 update function can actually update array in place.

Reliable ComputingStateful Software Interfaces

Observations on Linearity

 Value of linear type is like a coin
 You can spend it, but you can spend it only once

 Single threading of arrays
 Similar to store threading in denotational semantics

 Advantages
 No leaks : if program type check, no left-overs
 Memory can be reused

 Does it address our resource management
specification problem?

Reliable ComputingStateful Software Interfaces

Modeling with linear types
 File protocol

open : string ! File²

read : File² ! File²

close : File² ! unit

A

R

W

C
alloc

openR

openW

promote

close

close

free

 Resource protocol
alloc : unit ! T²

use : T² ! T²

free : T² ! unit

More complicated protocols?

Reliable ComputingStateful Software Interfaces

Type-state modeling
 Complex file protocol

alloc : unit ! AFile²

openR : AFile² ! RFile²

openW : AFile² ! WFile²

read: RFile² ! RFile²

write : WFile² ! WFile²

close: (WFile² ! CFile²) Æ (RFile² ! CFile²)
free : CFile² ! unit

 Observations
 One type per type-state
 DFA’s easy, NFA’s require union types and ways to recover

type information through dynamic tests

A

R

W

C
alloc

openR

openW

promote

close

close

free

Reliable ComputingStateful Software Interfaces

Summary so far

 Problem of checking
 Resource management
 Type state rules

…reduced to type checking.

¢ ` p : 

Reliable ComputingStateful Software Interfaces

Problems with Linear Types

 Use = Consume
 Style (single threading)
 What if I do want to use things multiple times?

 explicit copy
 Single pointer invariant
 Can we use linear types for all data structures?

 As long as they are trees!

Reliable ComputingStateful Software Interfaces

Non-linear types for non-trees
 Two environments or explicit copy and destroy
 Assume explicit duplication

 Non-linear values can be duplicated for free
(no runtime cost)

 let (x,y) = copy e1 in e2

 Requires that e1 has non-linear type

 When is a type non-linear?
 Wadler says: if top-level constructor is non-linear

 What about a type like: int[]² £ int[]²

 a non-linear pair of linear arrays
 cannot be duplicated without actual runtime copy
 linear type systems disallow such types

Reliable ComputingStateful Software Interfaces

Temporary non-linear access
 let! (x) y = e1 in e2

 Like let y = e1 in e2, but x given non-linear type in e1, then
reverts to linear type in e2

 ! : operator stripping of circles (recursively)
 Assume: lookup : int[] ! int ! int

let x = new int[2] in
let! (x) a = lookup x 0 in
let! (x) b = lookup x 1 in …

Example:

Reliable ComputingStateful Software Interfaces

Modeling with linear types
 Allocation/Deallocation ➾
 Memory initialization
 Locks
 Events
 Type states ➾
 Object states
 Regions
 Reference counting
 Sharing
 Channels
 Deadlock freedom

Reliable ComputingStateful Software Interfaces

Locking (1)
  ::= Lockh T²i non-linear type

create : T² ! LockhT²i

acquire : Lockh T²i ! T²

release : Lockh T²i ! T² ! unit

 Model
 Lock contains and protects some linear data T²

 Acquire blocks until lock is available and returns T²

 Release releases lock and specifies new data

 Lingering errors?
 Double acquire
 Never release
 Double release

Reliable ComputingStateful Software Interfaces

Locking (2)

 Avoid forgetting to release
 ::= … j RToken²

acquire : Lockh T²i ! T² ­ RToken²

release : Lockh T²i ! T²­ RToken² ! unit
 Model

 Can only release as many times as we acquired
 Won’t forget to release

(no other way to get rid of RToken)
 Can still double release though
 Release wrong lock

Reliable ComputingStateful Software Interfaces

Summary of Linear type systems

 Linearity controls the creation and uses of aliases
 Each type assumption used exactly once

 Can express
 resource management
 type state protocols
 some locking

 Good for
 purely functional contexts
 single pointer invariant
 single-threading style

Reliable ComputingStateful Software Interfaces

Where are the Programming Languages?

 Simple, empowering technique
 Programming language: Concurrent Clean
 Problems

 Style
 To overcome, things get messy
 Dichotomy between non-linear and linear data

Linear vs. non-linear choice at birth, fixed, except for let!
 let! has problems
 No linear data in non-linear data
 No correlations (e.g., lock and release token)
 No control over non-linear data

 Big problem: World is still imperative

Reliable ComputingStateful Software Interfaces

Specification tasks
 Allocation/Deallocation ➾
 Memory initialization
 Locks (➾)
 Events
 Type states ➾
 Object states
 Regions
 Reference counting
 Sharing
 Channels
 Deadlock freedom

Reliable ComputingStateful Software Interfaces

Initialization is imperative!

 TAL allocation problem (Morrisett et.al.)
 How to allocate C(5) ?

 datatype t = C of int | D

ld.w r0 = alloc 8;
st.w r0[0] = CTag;
st.w r0[4] = 5;

 at this point: need to prove that
 intermediate steps

1.
2.
3.
4.

Reliable ComputingStateful Software Interfaces

Singleton Type Aside

 A type denoting a single value.
  ::= s(i) j …
 i ::= n constant int

 j  symbolic int
 Given x : s(i), we know that «x¬ = «i¬ in all

evaluations.

Reliable ComputingStateful Software Interfaces

TAL allocation problem
 Allocation happens in many small steps
 Must be able to type each intermediate configuration
 Updates must be strong, i.e., they change the type
 Key insight: model after dynamic semantics

E : Var ! Loc Environment
M : Loc ! Val Store

 At type level
 Separate pointers from permissions
 Split environment assumptions into

 Non-linear type assumptions
 Linear capabilities

 Make explicit which operations
 require capabilities
 consume capabilities

Reliable ComputingStateful Software Interfaces

Alias Types and Capabilities

 Use singleton types for pointers
::= pt(i) j int j … non-linear types
h::= h1..ni j [] j 9[ | C].h heap block types
 ::= 9[| C]. j … j  linear types

 Use explicit heap: A; C ` e : ; C’
“In environment A, given a heap described by capabilities
C, e evaluates to some value v, such that
v : , and the final heap is described by C’ ”

A ::= ¢ j x : A
C ::= ¢ j { i  h } ­ C j …

 ::= ¢ j ,

Reliable ComputingStateful Software Interfaces

Capability Type Rules

Reliable ComputingStateful Software Interfaces

Spatial Conjunction

 H : heaps
 H ² C Heap H is described by C

i j

H

5 j 7 i

H1 H2

Reliable ComputingStateful Software Interfaces

Capability Type Rules (2)

Reliable ComputingStateful Software Interfaces

Allocation revisited

r0 = alloc 8;

r0.1 = CTag;

r0.2 = 5;

Reliable ComputingStateful Software Interfaces

Observations

 Capability rules look similar to Hoare triples
A; C ` e : ; C’

{ P } e { Q }

 Logic of capabilities is not first order logic, but a
specialized logic for heaps
 separation logic, logic of bunched implications
 usually restricted to be tractable

Reliable ComputingStateful Software Interfaces

End of Lecture 1

