Specifying and Checking Stateful Software Interfaces

Manuel Fähndrich maf@microsoft.com Microsoft Research

2005 Summer School on Reliable Computing Eugene, Oregon

The world is stateful!

- API documentation is full of rules
 - Governing order of operations & data access
 - Explaining resource management
- Disobeying a rule causes bad behavior
 - Unexpected exceptions
 - Failed runtime checks
 - Leaked resources
- Rules are informal
 - Usually incomplete (bad examples, good examples)
 - Not enforced

The state of the world

Existing languages too permissive

- Compilers do not catch enough bad programs (why?)
- Cannot specify stricter usage rules

Programmers overwhelmed with complexity

Did I cover all cases?

Do I even know all possible cases?

- Did I think through all paths?
- Did I consider all aliasing combinations?
- Did I consider all thread interactions?
- Did I handle all messages?

Language-based approach

- Methodology not after-the-fact analysis
 - Language provides a programming model for correct usage
 - Language makes failures explicit
 - Make programmers deal with failures
 - Guide programmer from the beginning
- Modularity
 - Programmer has to write interface specifications
 - Specifications of interfaces for components, data, and functions are part of the program
- Compiler or checkers enforce the correct usage rules
 - Trade-off between expressiveness and automation
 - Approach from tractable end; grow expressiveness

Specifications reduce Complexity

Every pre-condition/invariant rules out one or more cases/paths in a procedure

- Specify sub-ranges:
 - [A | B | C] possibly-null(T) vs. non-null(T)
- Make impossible paths obvious
- State (non-) aliasing assumptions
- Specify legal thread interactions

void f(T *!x) {
 T y = *x;
 ...
}

defensive

Modularity: making checking tractable

Modularity advantages

- More powerful
- Early error detection
- Robustness
- Incremental (open)

Modularity drawbacks

- Rigid
- Have to think ahead
- Tedious

Lecture Outline

- Motivation and Context
 - Reason about imperative programs
 - Specify behavior
 - Check code against specification
- Lecture approach
 - Start with a specification problem
 - Bring in technical background
 - Point out limitations
 - Relate to practical experience

What would you like to specify today?

- Allocation/Deallocation
- Memory initialization
- Locks
- Events
- Type states
- Regions
- Reference counting
- Sharing
- Communication channels
- Deadlock freedom

Technical material

- Type systems with state
 - linear types
 - capability-based systems
- Programming models
- Object type-states

Demo?

Allocation/Deallocation

- Familiar protocol
- Rules
 - free when done
 - don't use after free
 - don't free twice

Although the world is stateful, ...

...all I ever needed to know I learned from the functional programming community!

Linear Types can Change the World

- Paper by Wadler 1990
 - From linear logic to linear types
 - Purely functional setting

e ::= n j (e, e) j let p = e_1 in e_2 j e_1 e_2 j $\lambda x.e$

Conventional types

 τ ::= int j τ £ τ j int[] j τ ! τ j unit

Array functions

lookup : int[] ! int ! int

update : int[] ! int ! int ! int[]

 Problem: to update an array, it must be copied so as to leave original unchanged

Conventional functional array update

- let x = new int[1] in
- let x = update x 0 9 in
- let y = update x 0 8 in
- let a = lookup x 0 in
- let b = lookup y 0 in

```
assert (a == 9) in
```

```
assert (b == 8) in
```

()

- Often, original array no longer needed.
- Would like to eliminate copy in those cases.

Conventional type rules

Rules of the form: $A \ e : \tau$ where $A ::= x : \tau j A, A$ $\frac{A \vdash e_1 : \tau_1}{A, x : \tau \vdash x : \tau}$ $A \vdash e_1 : \tau_1$ $A \vdash e_2 : \tau_2$ $A \vdash e_1 : \tau_1$ $A \vdash e_1 : \tau_1$ $A \vdash e_1 : \tau_1$ $A \vdash e_1 : \tau_2$ $A \vdash e_1 : \tau_2$ $A \vdash e_1 : \tau_2$

 Key feature: Assumption x:τ can be used 0, 1, or many times

Enter linear types

- Linear types: $\tau ::= ... j \tau \tau j int[]^2 j \tau (\tau)$
- Judgments: $A \ge \tau$
- Key feature: Each assumption x:τ used exactly once

$$\frac{A_1 \vdash e_1 : \tau_1}{A_2, x : \tau_1 \vdash e_2 : \tau_2} [\text{var}] \qquad \qquad \frac{A_2, x : \tau_1 \vdash e_2 : \tau_2}{A_1, A_2 \vdash \text{let } x = e_1 \text{in } e_2 : \tau_2} [\text{let}]$$

$$\begin{array}{ll} A_{1} \vdash e_{1} : \tau_{2} \multimap \tau_{r} & A_{1} \vdash e_{1} : \tau_{1} \otimes \tau_{2} \\ \hline A_{2} \vdash e_{2} : \tau_{2} & A_{2} \vdash e_{2} : \tau_{2} \\ \hline A_{1}, A_{2} \vdash e_{1} \ e_{2} : \tau_{r} \end{array} [\text{app}] & \begin{array}{l} A_{1} \vdash e_{1} : \tau_{1} \otimes \tau_{2} \\ \hline A_{2}, x : \tau_{1}, y : \tau_{2} \vdash e_{2} : \tau_{3} \\ \hline A_{1}, A_{2} \vdash \operatorname{let}(x, y) = e_{1} \operatorname{in} e_{2} : \tau_{3} \end{array} [\text{letp}] \end{array}$$

Linear arrays

Array functions
 lookup : int[]² ! int (int - int[]²
 update : int[]² ! int (int (int[]²

$$\frac{A, x : \tau_1 \vdash e : \tau_2}{A \vdash \lambda x.e : \tau_1 \multimap \tau_2} [\mathsf{lambda}]$$

$$\frac{x:\tau_1 \vdash e:\tau_2}{\cdot \vdash \lambda x.e:\tau_1 \to \tau_2} [\text{lambda-nl}]$$

Linear functional array update

let
$$x_0 = new int[1]$$
 in
let $x_1 = update x_0 0 9$ in
let $y = update x_1 0 8$ in
let $(a,x_2) = lookup x_1 0$ in

• Does not type check. Why? $x_1 : int[]^{\bullet} \vdash update...$ $y : int[]^{\bullet} \vdash let (a, x_2) = ...$ $\overline{x_1 : int[]^{\bullet} \vdash let y} = update x_1 08 in let (a, x_2) = ...}$

- No need to copy if everything is used once only!
- update function can actually update array in place.

Observations on Linearity

- Value of linear type is like a coin
 - You can spend it, but you can spend it only once
- Single threading of arrays
 - Similar to store threading in denotational semantics
- Advantages
 - No leaks : if program type check, no left-overs
 - Memory can be reused
- Does it address our resource management specification problem?

Modeling with linear types

 Resource protocol alloc : unit ! T² use : T² ! T² free : T² ! unit File protocol
 open : string ! File²
 read : File² ! File²
 close : File² ! unit

Type-state modeling

- Complex file protocol
 - alloc : unit ! AFile²
 - openR : AFile² ! RFile²
 - openW: AFile² ! WFile²
 - read: RFile² ! RFile²
 - write : WFile² ! WFile²
- close: (WFile² ! CFile²) Æ (RFile² ! CFile²)
 free : CFile² ! unit
 Observations
 One type per type-state
 DFA's easy, NFA's require union WES an W storecover
 - DFA's easy, NFA's require union the second se

Summary so far

- Problem of checking
 - Resource management
 - Type state rules
- ...reduced to type checking.

¢`**p**:τ

Problems with Linear Types

- Use = Consume
- Style (single threading)
- What if I do want to use things multiple times?
 - explicit copy
- Single pointer invariant
- Can we use linear types for all data structures?
 - As long as they are trees!

Non-linear types for non-trees

- Two environments or explicit copy and destroy
- Assume explicit duplication
 - Non-linear values can be duplicated for free (no runtime cost)
 - let (x,y) = copy e₁ in e₂
 - Requires that e₁ has non-linear type
- When is a type non-linear?
 - Wadler says: if top-level constructor is non-linear
- What about a type like: int[]² £ int[]²
 - a non-linear pair of linear arrays
 - cannot be duplicated without actual runtime copy
 - linear type systems disallow such types

Temporary non-linear access

- let! (x) $y = e_1 in e_2$
- Like let y = e₁ in e₂, but x given non-linear type in e₁, then reverts to linear type in e₂

$$\begin{array}{c} A_1, x : !\tau \vdash e_1 : \tau_1 \\ A_2, x : \tau, y : \tau_1 \vdash e_2 : \tau_2 \\ \hline A_1, A_2, x : \tau \vdash \mathsf{let}\,(x) \ y = e_1 \mathsf{in}\, e_2 : \tau_2 \end{array} [\mathsf{let!}] \quad ugly \ \mathsf{side}\, de_1 = e_1 \mathsf{in}\, e_2 : \tau_2 \end{array}$$

- Example at bet stripping oft [2] dies (recursively)
- Assume: Ibetkup): ant[] 99kup in 0 in Iet! (x) b = lookup x 1 in ...

Modeling with linear types

- Allocation/Deallocation >>
- Memory initialization
- Locks
- Events
- Type states
- Object states
- Regions
- Reference counting
- Sharing
- Channels
- Deadlock freedom

Locking (1)

- τ ::= Lockh T²i non-linear type
 - create : T² ! LockhT²i
 - acquire : Lockh T²i ! T²
 - release : Lockh T²i ! T²! unit
- Model
 - Lock contains and protects some linear data T²
 - Acquire blocks until lock is available and returns T²
 - Release releases lock and specifies new data
- Lingering errors?
 - Double acquire
 - Never release
 - Double release

Locking (2)

- Avoid forgetting to release
- τ ::= ... j RToken²

acquire : Lockh T²i ! T² - RToken²

release : Lockh T²i ! T²- RToken² ! unit

- Model
 - Can only release as many times as we acquired
 - Won't forget to release (no other way to get rid of RToken)
 - Can still double release though
 - Release wrong lock

Summary of Linear type systems

- Linearity controls the creation and uses of aliases
 - Each type assumption used exactly once
- Can express
 - resource management
 - type state protocols
 - some locking
- Good for
 - purely functional contexts
 - single pointer invariant
 - single-threading style

Where are the Programming Languages?

- Simple, empowering technique
- Programming language: Concurrent Clean
- Problems
 - Style
 - To overcome, things get messy
 - Dichotomy between non-linear and linear data Linear vs. non-linear choice at birth, fixed, except for let!
 - Iet! has problems
 - No linear data in non-linear data
 - No correlations (e.g., lock and release token)
 - No control over non-linear data

• **Big problem**: World is still imperative

Specification tasks

- Allocation/Deallocation
- Memory initialization
- Locks (>>
- Events
- Type states
- Object states
- Regions
- Reference counting
- Sharing
- Channels
- Deadlock freedom

Initialization is imperative!

- TAL allocation problem (Morrisett et.al.)
- How to allocate C(5) ?
 - datatype t = C of int | D

Id.w r0 = alloc 8; st.w r0[0] = CTag; st.w r0[4] = 5;

- at this point: need to prove that
- intermediate steps

 $r_0 : \langle s(0), s(0) \rangle$ $r_0 : \langle s(\mathsf{CTag}), s(0) \rangle$ $r_0 : \langle s(\mathsf{CTag}), s(0) \rangle$ $r_0 : \langle s(\mathsf{CTag}), s(5) \rangle$ $r_0 : \langle s(\mathsf{CTag}), int \rangle$

 $r_0:t$

Singleton Type Aside

- A type denoting a single value.
- τ ::= s(i) j ...
- i ::= n constant int
 - j ρ symbolic int
- Given x : s(i), we know that «x¬ = «i¬ in all evaluations.

TAL allocation problem

- Allocation happens in many small steps
- Must be able to type each intermediate configuration
- Updates must be strong, i.e., they change the type
- Key insight: model after dynamic semantics
 - E : Var ! Loc Environment
 - M : Loc ! Val Store
- At type level
 - Separate pointers from permissions
 - Split environment assumptions into
 - Non-linear type assumptions
 - Linear capabilities
 - Make explicit which operations
 - require capabilities
 - consume capabilities

Alias Types and Capabilities

- Use explicit heap: A; C ` e : σ; C'
 "In environment A, given a heap described by capabilities C, e evaluates to some value v, such that v : τ, and the final heap is described by C' "
 A ::= ¢ j x : τ, A
 C ::= ¢ j { i ↦ h } C j ...

Capability Type Rules

$$\frac{A; C_1 \vdash e_1 : \tau_1; C_2}{A, x : \tau; C \vdash x : \tau; C} [var] \qquad \frac{A; C_1 \vdash e_1 : \tau_1; C_2}{A, x : \tau_1; C_2 \vdash e_2 : \tau_2; C_3} [let]$$

$$\frac{C_2 = \{\rho \mapsto \langle s(0)..s(0) \rangle\} \otimes C_1}{A; C_1 \vdash \operatorname{alloc}(n) : \operatorname{pt}(\rho); C_2} [\operatorname{alloc}]$$

$$A; C_1 \vdash e : pt(i); C_2$$
$$C_2 = \{i \mapsto \langle \tau_1 .. \tau_n \rangle\} \otimes C_3$$
$$A; C_1 \vdash \text{free } e : \text{unit}; C_3$$
[free]

Spatial Conjunction

- H : heaps
- H² C Heap H is described by C $H = H_1 \uplus H_2$ $H_1 \models C_1$

$$\begin{array}{c}
H_2 \models C_2 \\
\hline
H \models C_1 \otimes C_2
\end{array}$$

$$C = C_1 \otimes C_2$$

$$C_1 = \{i \mapsto \langle \text{int}, \text{pt}(j) \rangle\}$$

$$C_2 = \{j \mapsto \langle \text{int}, \text{pt}(i) \rangle\}$$

Capability Type Rules (2)

$$A; C_1 \vdash e : pt(i); C_2$$
$$C_2 = \{i \mapsto \langle \tau_1 .. \tau_n \rangle\} \otimes C_3$$
$$A; C_1 \vdash e.k : \tau_k; C_2$$
[load]

$$A; C_1 \vdash e : pt(i); C_2$$

$$A; C_2 \vdash e' : \tau; C_3$$

$$C_3 = \{i \mapsto \langle \tau_1 .. \tau_n \rangle\} \otimes C_4$$

$$A; C_1 \vdash e.k := e' : unit; \{i \mapsto \langle \tau_1 .. \tau_{k-1}, \tau, \tau_{k+1} .. \tau_n \rangle\} \otimes C_4$$

[store]

Stateful Software Interfaces

Allocation revisited

$$\begin{aligned} \mathsf{r}_0 &= \mathsf{alloc} \; 8; \\ r_0 : \mathsf{pt}(\rho) & C &= \{\rho \mapsto \langle s(0), s(0) \rangle \} \\ \mathsf{r}_0.1 &= \mathsf{CTag}; \\ r_0 : \mathsf{pt}(\rho) & C &= \{\rho \mapsto \langle s(CTag), s(0) \rangle \} \\ \mathsf{r}_0.2 &= 5; & r_0 : \mathsf{pt}(\rho) & C &= \{\rho \mapsto \langle s(CTag), \mathsf{int} \rangle \} \\ & r_0 : \mathsf{pt}(\rho) & C &= \{\rho \mapsto \mathsf{t}\} \end{aligned}$$

Observations

Capability rules look similar to Hoare triples
 A; C`e: σ; C'

{ P } e { Q }

- Logic of capabilities is not first order logic, but a specialized logic for heaps
 - separation logic, logic of bunched implications
 - usually restricted to be tractable

End of Lecture 1