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The world is stateful!
 API documentation is full of rules

 Governing order of operations & data 
access

 Explaining resource management
 Disobeying a rule causes bad 

behavior
 Unexpected exceptions
 Failed runtime checks
 Leaked resources

 Rules are informal
 Usually incomplete

(bad examples, good examples)
 Not enforced
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The state of the world

Existing languages too permissive
 Compilers do not catch enough bad programs

(why?)
 Cannot specify stricter usage rules

Programmers overwhelmed with complexity
 Did I cover all cases?

Do I even know all possible cases?

 Did I think through all paths?
 Did I consider all aliasing combinations?
 Did I consider all thread interactions?
 Did I handle all messages?
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Language-based approach
 Methodology not after-the-fact analysis

 Language provides a programming model for correct usage
 Language makes failures explicit
 Make programmers deal with failures
 Guide programmer from the beginning

 Modularity
 Programmer has to write interface specifications
 Specifications of interfaces for components, data, and functions 

are part of the program

 Compiler or checkers enforce the correct usage rules
 Trade-off between expressiveness and automation
 Approach from tractable end; grow expressiveness
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void f(T *x) {
  if (x == NULL) {
    // now what?
  }
  T y = *x;
  …
}

Specifications reduce Complexity

Every pre-condition/invariant rules out one or more cases/paths in a 
procedure
 Specify sub-ranges:

[ A | B | C ]       possibly-null(T) vs. non-null(T)
 Make impossible paths obvious
 State (non-) aliasing assumptions
 Specify legal thread interactions

        buggy                                                                           ideal
defensive

void f(T *x) {
  T y = *x;
  …
}

void f(T *!x) {
  T y = *x;
  …
}
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Modularity: making checking tractable

Modularity advantages
 More powerful
 Early error detection
 Robustness
 Incremental (open)

SW
Artifact ╞ P ?

Monolithic Modular

C1 ╞ P1
C3 ╞ P3

C4 ╞ P4

C7 ╞ P7

C2 ╞ P2

C6 ╞ P6C5 ╞ P5

╞ P

Modularity drawbacks
 Rigid
 Have to think ahead
 Tedious
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Lecture Outline

 Motivation and Context
 Reason about imperative programs
 Specify behavior
 Check code against specification

 Lecture approach
 Start with a specification problem
 Bring in technical background
 Point out limitations
 Relate to practical experience
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What would you like to specify today?

 Allocation/Deallocation
 Memory initialization
 Locks
 Events
 Type states
 Regions
 Reference counting
 Sharing
 Communication channels
 Deadlock freedom

Technical material
 Type systems with state

 linear types
 capability-based systems

 Programming models
 Object type-states
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Demo?
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Allocation/Deallocation
 Familiar protocol
 Rules

 free when done
 don’t use after free
 don’t free twice

 Although the world is stateful, …
    …all I ever needed to know I learned from the

functional programming community!

alloc free

use
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Linear Types can Change the World

 Paper by Wadler 1990
 From linear logic to linear types
 Purely functional setting

e ::= n j (e, e) j let p = e1 in e2 j e1 e2 j x.e
 Conventional types

     ::= int j  £  j int[] j  ! j unit
 Array functions

lookup : int[] ! int ! int
update : int[] ! int ! int ! int[]

 Problem: to update an array, it must be copied so as to 
leave original unchanged
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Conventional functional array update

let x = new int[1] in
let x = update x 0 9 in
let y = update x 0 8 in
let a = lookup x 0 in
let b = lookup y 0 in
assert (a == 9) in
assert (b == 8) in
()

 Often, original array no longer needed.
 Would like to eliminate copy in those cases.
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Conventional type rules

Rules of the form:  A ` e : 
where A ::= x :  j A,A

 Key feature:
Assumption x: can be used 0, 1, or many times
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Enter linear types

 Linear types:     ::= .. j  ­  j int[]² j  ( 
 Judgments:  A ` e : 
 Key feature: Each assumption x: used exactly once
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Linear arrays

 Array functions
lookup : int[]² ! int ( int ­ int[]²

update : int[]² ! int ( int ( int[]²
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Linear functional array update
let x0 = new int[1] in
let x1 = update x0 0 9 in
let y = update x1 0 8 in
let (a,x2) = lookup x1 0 in
…
 Does not type check. Why?

 No need to copy if everything is used once only!
 update function can actually update array in place.



Reliable ComputingStateful Software Interfaces

Observations on Linearity

 Value of linear type is like a coin
 You can spend it, but you can spend it only once

 Single threading of arrays
 Similar to store threading in denotational semantics

 Advantages
 No leaks : if program type check, no left-overs
 Memory can be reused

 Does it address our resource management 
specification problem?
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Modeling with linear types
 File protocol

open : string ! File²

read           : File² ! File²

close : File²  ! unit

A

R

W

C
alloc

openR

openW

promote

close

close

free

 Resource protocol
alloc : unit ! T²

use  : T² ! T²

free : T²  ! unit

More complicated protocols?
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Type-state modeling
 Complex file protocol

alloc : unit ! AFile²

openR      : AFile² ! RFile²

openW : AFile²  ! WFile²

read: RFile² ! RFile²

write      : WFile² ! WFile²

close: ( WFile²  ! CFile² ) Æ (RFile² ! CFile² )
free : CFile²  ! unit

 Observations
 One type per type-state
 DFA’s easy, NFA’s require union types and ways to recover 

type information through dynamic tests

A

R

W

C
alloc

openR

openW

promote

close

close

free
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Summary so far

 Problem of checking
 Resource management
 Type state rules

…reduced to type checking.

¢ ` p : 
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Problems with Linear Types

 Use = Consume
 Style (single threading)
 What if I do want to use things multiple times?

 explicit copy
 Single pointer invariant
 Can we use linear types for all data structures?

 As long as they are trees!
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Non-linear types for non-trees
 Two environments or explicit copy and destroy
 Assume explicit duplication

 Non-linear values can be duplicated for free
(no runtime cost)

 let (x,y) = copy e1 in e2

 Requires that e1 has non-linear type

 When is a type non-linear?
 Wadler says: if top-level constructor is non-linear

 What about a type like: int[]² £ int[]²

 a non-linear pair of linear arrays
 cannot be duplicated without actual runtime copy
 linear type systems disallow such types
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Temporary non-linear access
 let! (x) y = e1 in e2

 Like let y = e1 in e2, but x given non-linear type in e1, then 
reverts to linear type in e2

 ! : operator stripping of circles (recursively)
 Assume: lookup : int[] ! int ! int

let x = new int[2] in
let! (x) a = lookup x 0 in 
let! (x) b = lookup x 1 in …

Example:
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Modeling with linear types
 Allocation/Deallocation ➾
 Memory initialization
 Locks
 Events
 Type states ➾
 Object states
 Regions
 Reference counting
 Sharing
 Channels
 Deadlock freedom
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Locking (1)
  ::= Lockh T²i non-linear type

create    : T² ! LockhT²i

acquire : Lockh T²i ! T²

release : Lockh T²i ! T² ! unit

 Model
 Lock contains and protects some linear data T²

 Acquire blocks until lock is available and returns T²

 Release releases lock and specifies new data

 Lingering errors?
 Double acquire
 Never release
 Double release
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Locking (2)

 Avoid forgetting to release 
 ::= … j RToken²

acquire : Lockh T²i ! T² ­ RToken²

release : Lockh T²i ! T²­ RToken² ! unit
 Model

 Can only release as many times as we acquired
 Won’t forget to release

(no other way to get rid of RToken)
 Can still double release though
 Release wrong lock
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Summary of Linear type systems

 Linearity controls the creation and uses of aliases 
 Each type assumption used exactly once

 Can express
 resource management
 type state protocols
 some locking

 Good for
 purely functional contexts
 single pointer invariant
 single-threading style
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Where are the Programming Languages?

 Simple, empowering technique
 Programming language: Concurrent Clean
 Problems

 Style
 To overcome, things get messy
 Dichotomy between non-linear and linear data

Linear vs. non-linear choice at birth, fixed, except for let!
 let! has problems
 No linear data in non-linear data
 No correlations (e.g., lock and release token)
 No control over non-linear data

 Big problem: World is still imperative
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Specification tasks
 Allocation/Deallocation ➾
 Memory initialization
 Locks ( ➾ )
 Events
 Type states ➾
 Object states
 Regions
 Reference counting
 Sharing
 Channels
 Deadlock freedom
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Initialization is imperative!

 TAL allocation problem (Morrisett et.al.)
 How to allocate C(5) ?

 datatype t = C of int | D

ld.w r0 = alloc 8;
st.w r0[0] = CTag;
st.w r0[4] = 5;

 at this point: need to prove that
 intermediate steps

1.
2.
3.
4.
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Singleton Type Aside

 A type denoting a single value.
  ::= s(i) j …
 i ::= n    constant int

     j     symbolic int
 Given x : s(i), we know that «x¬ = «i¬ in all 

evaluations.
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TAL allocation problem
 Allocation happens in many small steps
 Must be able to type each intermediate configuration
 Updates must be strong, i.e., they change the type
 Key insight: model after dynamic semantics

E : Var ! Loc Environment
M : Loc ! Val Store

 At type level
 Separate pointers from permissions
 Split environment assumptions into

 Non-linear type assumptions
 Linear capabilities

 Make explicit which operations
 require capabilities
 consume capabilities
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Alias Types and Capabilities

 Use singleton types for pointers
::= pt(i) j int j … non-linear types
h::= h1..ni j [] j 9[ | C].h heap block types 
 ::= 9[| C]. j … j  linear types

 Use explicit heap:     A; C ` e : ; C’
“In environment A, given a heap described by capabilities 
C, e evaluates to some value v, such that
v : , and the final heap is described by C’ ”

A ::= ¢ j x : A
C ::= ¢ j { i  h } ­ C j …

 ::= ¢ j ,
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Capability Type Rules
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Spatial Conjunction

 H : heaps
 H ² C Heap H is described by C

i j

H

5 j 7 i

H1 H2
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Capability Type Rules (2)
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Allocation revisited

r0 = alloc 8;

r0.1 = CTag;

r0.2 = 5;
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Observations

 Capability rules look similar to Hoare triples
A; C ` e : ; C’

{ P } e { Q }

 Logic of capabilities is not first order logic, but a 
specialized logic for heaps
 separation logic, logic of bunched implications
 usually restricted to be tractable
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End of Lecture 1


