Specifying and Checking
Stateful Software Interfaces

Manuel Fahndrich maf@microsoft.com
Microsoft Research

2005 Summer School on Reliable Computing
Eugene, Oregon

s

The world is stateful!

= API| documentation is full of rules

= Governing order of operations & data
access

= Explaining resource management

= Disobeying a rule causes bad
behavior

* Unexpected exceptions
= Failed runtime checks
= | eaked resources

= Rules are informal

= Usually incomplete
(bad examples, good examples)

= Not enforced

UNIX

NETWORK

PROGRAMMING
P T s and XTI |
o . Programmlng)

Ind 100% OF WHAT YOU NEED W
0 ca-tou

MICHAfL RO

Stateful Software Interfaces

Reliable Computing

The state of the world

Existing languages too permissive

= Compilers do not catch enough bad programs
(Why?)

= Cannot specify stricter usage rules

Programmers overwhelmed with complexity

= Did | cover all cases?
Do | even know all possible cases?

» Did | think through all paths?

= Did | consider all aliasing combinations?
= Did | consider all thread interactions?

= Did | handle all messages?

Stateful Software Interfaces Reliable Computing

Language-based approach

= Methodology not after-the-fact analysis
= Language provides a programming model for correct usage
= Language makes failures explicit
= Make programmers deal with failures
= Guide programmer from the beginning

= Modularity

= Programmer has to write interface specifications

= Specifications of interfaces for components, data, and functions
are part of the program

= Compiler or checkers enforce the correct usage rules
* Trade-off between expressiveness and automation
= Approach from tractable end; grow expressiveness

Stateful Software Interfaces Reliable Computing

Specifications reduce Complexity

procedure

= Specify sub-ranges:
possibly-null(T) vs. non-null(T)

[A|B|C]

= Make impossible paths obvious
= State (non-) aliasing assumptions
= Specify legal thread interactions

void f (T *x) {

voidx<£f4F *¥)YIL{ ({
T/ynsw*what?

} ..
Ty=*x;

}

buggy

void £(T *'x) {
T yv = *x;

defensive

Every pre-condition/invariant rules out one or more cases/paths in a

ideal

Stateful Software Interfaces Reliable Computing

Modularity: making checking tractable

Monolithic Modular

Modularity advantages
= More powerful
= Early error detection

Modularity drawbacks
* Rigid
= Robustness = Have to think ahead

= Incremental (open) = Tedious

Stateful Software Interfaces Reliable Computing

Lecture Outline

= Motivation and Context
» Reason about imperative programs
= Specify behavior
» Check code against specification
= Lecture approach
= Start with a specification problem
* Bring in technical background
* Point out limitations
= Relate to practical experience

Stateful Software Interfaces Reliable Computing

What would you like to specify today?

Allocation/Deallocation Technical material

Memory initialization = Type systems with state
LLocks = linear types

Events = capability-based systems
Type states * Programming models
Regions = Object type-states
Reference counting

Sharing

Communication channels
Deadlock freedom

Stateful Software Interfaces Reliable Computing

Demo?

Stateful Software Interfaces Reliable Computing

Allocation/Deallocation

= Familiar protocol
= Rules

= free when done alloc < > free
= don’t use after free

= don’t free twice

use

= Although the world is stateful, ...

...all I ever needed to know | learned from the
functional programming community!

Stateful Software Interfaces

Reliable Computing

Linear Types can Change the World

= Paper by Wadler 1990

* From linear logic to linear types

» Purely functional setting
e:=nj(e,e)jletp=e,ine,je, e,)rxe

= Conventional types

to=intjtE£t)int[]jt! t)unit

= Array functions
lookup :int[] ! int! int
update :int[] ! int ! int ! int]]

* Problem: to update an array, it must be copied so as to
leave original unchanged

Stateful Software Interfaces Reliable Computing

Conventional functional array update

let Xx = new int[1] in
let x=update x0 9 in
let y = update x0 8 in
let a = lookup x0 in
let b =lookup y O in
assert (a==9) in
assert (b ==8) in

()

= Often, original array no longer needed.
= Would like to eliminate copy in those cases.

Stateful Software Interfaces Reliable Computing

Conventional type rules

Rules of the form: A e: 1
where A::=x:t]AA

A|—61:T1

Ax .11 Feor:
[var] | 62.7-2
Ax . ThHx:.T Al letx =eqines

[let]

= Key feature:
Assumption x:t can be used 0, 1, or many times

Stateful Software Interfaces Reliable Computing

Enter linear types

= Lineartypes: ti=.jt-tjint[jt(~
= Judgments: A e:t
= Key feature: Each assumption x:t used exactly once

A1|—61:7'1
A2,£Ui7'1|—6217'2

let
33;7-|—3;;7-[Var] Al,A2|—|etZE=€1in6227‘2[]
AiFe1 i1 —oT1p AiFe1: 11 ®m™
Ao Fes 1o Ao,z T,y .mkFex . T
—[app] 2T Y 2 208 letp]
A1,A>Feq ex i Tp A1, A> Flet(x,y) = erines : 13

Stateful Software Interfaces Reliable Computing

Linear arrays

= Array functions
lookup : int[]! int (int - int[]
update :int[]"! int (int (int[]’

Ax:.:m1Fe:m lambdal

AF Ax.e: T — 1

; e :
Sl S [lambda-nl]

. |—)\:U.61T1—>T2

Stateful Software Interfaces Reliable Computing

Linear functional array update

let X, = new int[1] in
~let x; = update x, 0-9.in

let y = update x, 0 8 in’
""'""|'e't"""'(‘8';"X§-~)-----=------I-oe-k-u--p-----xi----~--®~--~-i§n

= Does not type check. Why?
331 int[]®* + update...
Sint[]®* F let(a,xz0) =

xq . int[]® F Iet y = updatez71 08in let (a,acQ) = ...

= No need to copy if everything is used once only!
= update function can actually update array in place.

Stateful Software Interfaces Reliable Computing

Observations on Linearity

= Value of linear type is like a coin
= You can spend it, but you can spend it only once

» Single threading of arrays
= Similar to store threading in denotational semantics

= Advantages
* No leaks : if program type check, no left-overs
= Memory can be reused

* Does it address our resource management
specification problem?

Stateful Software Interfaces Reliable Computing

Modeling with linear types

= Resource protocol * File protocol
alloc :unit! T° open : string ! File’
use : T°!' T read . File’ ! File’
free : T° I unit close : File’ ! unit

More complicated protocols?

7N

openR close

° free
open @
—~

Stateful Software Interfaces Reliable Computing

alloc

Type-state modeling

= Complex file protocol
alloc : unit ! AFile’
openR . AFile* ! RFile’
openW: AFile* | WFile’
read: RFile* ! RFile’
write : WFile* ! WFile’

close: (WFile’ ! CFile*) &£ (RFile*! CFile*)
openR

free : CFile® ! unit

= Observations a”OC free

= One type per type-state

= DFA’s easy, NFA’s require unlonoc%a a
type information through dynamic tests

v S ‘f@?@cover

Stateful Software Interfaces Reliable Computing

Summary so far

* Problem of checking
= Resource management
* Type state rules

...reduced to type checking.

Stateful Software Interfaces Reliable Computing

Problems with Linear Types

= Use = Consume

= Style (single threading)

= What if | do want to use things multiple times®?
= explicit copy

= Single pointer invariant

= Can we use linear types for all data structures?
» As long as they are trees!

Stateful Software Interfaces Reliable Computing

Non-linear types for non-trees

= Two environments or explicit copy and destroy

= Assume explicit duplication

= Non-linear values can be duplicated for free
(no runtime cost)

= let (x,y) = copy e, ine,
= Requires that e, has non-linear type

* When is a type non-linear?
= Wadler says: if top-level constructor is non-linear

What about a type like: int[]’ £ int[]’
= a non-linear pair of linear arrays
= cannot be duplicated without actual runtime copy
* linear type systems disallow such types

Stateful Software Interfaces Reliable Computing

Temporary non-linear access

let! (x) y=e, ine,

Like let y = e, in e,, but x given non-linear type in e,, then
reverts to linear type in e,

Al,aj lrkFer i m
Ao,z . T,y .11 F e

let!| wugly side
A1,A2,5€ZT|—|et(aj)y:elinez:TQ[] ugly

Exampeeattetstrippiery oftiiioles (recursively)
Assume: IIRU): 3rt[jeqkep kp In

let! (x) b =lookup x1in ...

Stateful Software Interfaces Reliable Computing

Modeling with linear types

= Allocation/Deallocation []
= Memory initialization

= [ocks

= Events

= Type states [

= Object states

= Regions

= Reference counting
= Sharing

= Channels

» Deadlock freedom

Stateful Software Interfaces Reliable Computing

Locking (1)

1 ;= Lockh T non-linear type
create : T°!LockhTi
acquire : Lockh T ! T?
release : Lockh T ! T°! unit

= Model

= [ock contains and protects some linear data T°
= Acquire blocks until lock is available and returns T*

* Release releases lock and specifies new data
» Lingering errors?
* Double acquire

= Never release
= Double release

Stateful Software Interfaces Reliable Computing

Locking (2)

= Avoid forgetting to release
1 .= ...] RToken’
acquire : Lockh T ! T°- RToken’
release : Lockh T ! T°- RToken®! unit
* Model

= Can only release as many times as we acquired

= Won't forget to release
(no other way to get rid of RToken)

= Can still double release though
» Release wrong lock

Stateful Software Interfaces Reliable Computing

Summary of Linear type systems

* Linearity controls the creation and uses of aliases
= Each type assumption used exactly once

= Can express
" resource management
* type state protocols
= some locking

= (Good for

= purely functional contexts
* single pointer invariant
» single-threading style

Stateful Software Interfaces Reliable Computing

Where are the Programming Languages?

= Simple, empowering technique
= Programming language: Concurrent Clean

* Problems
= Style
* To overcome, things get messy

= Dichotomy between non-linear and linear data
Linear vs. non-linear choice at birth, fixed, except for let!

» |et! has problems

= No linear data in non-linear data

= No correlations (e.g., lock and release token)
= No control over non-linear data

= Big problem: World is still imperative

Stateful Software Interfaces Reliable Computing

Specification tasks

= Allocation/Deallocation []
= Memory initialization
= Locks (L)

= Events

= Type states [

= Object states

= Regions

= Reference counting
= Sharing

= Channels

» Deadlock freedom

Stateful Software Interfaces Reliable Computing

Initialization Is imperative!

TAL allocation problem (Morrisett et.al.)

How to allocate C(5) ?
= datatypet=Cofint|D

Id.w r0 = alloc 8;
st.w r0[0] = CTag;
st.w rO[4] =

= at this point: need to prove that e
. mtermedlate steps

1 1o (s(0), 8(0)>

, 10 (s(CTag),s(0))

5 70 (s(CTag),s(5))
To - < (CTag),mt)

t

4.

Stateful Software Interfaces Reliable Computing

Singleton Type Aside

= A type denoting a single value.

= t:=s()] ...
= |::=n constant int
] p Symbolic int
= Given x: s(i), we know that «x— = «i=in all
evaluations.

Stateful Software Interfaces Reliable Computing

TAL allocation problem

= Allocation happens in many small steps
» Must be able to type each intermediate configuration
= Updates must be strong, i.e., they change the type

= Key insight: model after dynamic semantics
E: Var! Loc Environment
M : Loc ! Val Store

= At type level

= Separate pointers from permissions

= Split environment assumptions into
= Non-linear type assumptions
= Linear capabilities
= Make explicit which operations
= require capabilities
= consume capabilities

Stateful Software Interfaces Reliable Computing

Alias Types and Capabilities

= Use singleton types for pointers
.= pt@i) jintg ... non-linear types
h::= h61 o l]1[]] 9[A | C].h heap block types
6 :=9[A|Cl.oj ...]| tlinear types

* Use explicitheap: A;C e:o;C
“In environment A, given a heap described by capabilities
C, e evaluates to some value v, such that

v : 7, and the final heap is described by C' ”
A=Cjx:t, A
C::=¢j{iHh}-Cj...

— ¢ "
Stateful Software Interfaces Reliable Computing

Capability Type Rules

A;Cl = e1 . Tl;CQ
fvar] A,x:11;,Colen 1, C3
Ax .7, Crax:.7,C A;C1 Fletx =eqines : m; C3

[let]

Co = {p+— (5(0)..5(0))} ® C1

alloc
A; Cq F alloc(n) : pt(p); Co | !
A;C1Fe:pt(z); Co
2 {’Ll—)<7']_ Tn>}® 3 [free]

A; Cq F freee : unit; C3

Stateful Software Interfaces Reliable Computing

Spatial Conjunction

* H: heaps
» H2C Heap H is described by C
H:H]_L‘UHQ
Hi = Cy
Hy = C5
H=C{®CH
C=C1®C0Cs

C1 = {i— (int, pt(h))}
Cr = {j = (int, pt(i))}

Stateful Software Interfaces Reliable Computing

Capability Type Rules (2)

A;C1Fe:pt(i); Co
Co={it— (r1.)} ® C3
A; Cl ek : Tk 02

[load]

A;Ci1Fe:pt(i); Co
A;Cot¢€ 71,03
Cz3={1— (11.70)} ® Cy
A, C1Feki=e unit, {i = (11.7—1, T, Tk41--Tn) } ® C4

Stateful Software Interfaces Reliable Computing

[store]

Allocation revisited

r, = alloc 8;
ro 1 Pt(p) C={p (s(0),s(0))}

r,.1=CTag;
ro : Pt(p) C ={pr (s(CTag),s(0))}

PETY i) 0= (o (s(CTag),int)}

ro:ptlp) C={p—1}

Stateful Software Interfaces Reliable Computing

Observations

= Capability rules look similar to Hoare triples
A;C e:.oC

{Pre{Q}

= L ogic of capabilities is not first order logic, but a
specialized logic for heaps
= separation logic, logic of bunched implications
= usually restricted to be tractable

Stateful Software Interfaces Reliable Computing

End of Lecture 1

Stateful Software Interfaces Reliable Computing

