
Specifying and Checking Stateful
Software Interfaces

(Lecture 2)
Manuel Fähndrich maf@microsoft.com

Microsoft Research

2005 Summer School on Reliable Computing
Eugene, Oregon

Reliable ComputingStateful Software Interfaces

Lecture 1 recap

 Goal: Specify and check stateful interfaces
 Techniques

 Linear type systems
 Type system based on capabilities (permissions)

 Modeling
 allocation/deallocation
 type state protocols
 locking

Reliable ComputingStateful Software Interfaces

Lecture 2

 Frame axiom
 Type-states using capabilities
 Vault: W2K driver case study
 Recursive data structures
 Unifying non-linear data structures

and linear data

Reliable ComputingStateful Software Interfaces

Lambda abstraction

 We can abstract allocation sequence

pre-heap post-heap

Reliable ComputingStateful Software Interfaces

Recall examples

 Function taking a list argument
(but not consuming it!)

 Function freeing entire list

 Application rule

Reliable ComputingStateful Software Interfaces

­

­

 Example
x : pt(x), y : pt(y)

freeAll(y);
int z = length(x);
freeAll(x);

 Modifications?

CListhyi

freeAll(y);

The frame rule

CListhxi

CListhxi

Reliable ComputingStateful Software Interfaces

Specification tasks
 Allocation/Deallocation ➾
 Memory initialization ➾
 Locks ➾
 Events
 Type states ➾
 Object states
 Regions
 Reference counting
 Sharing
 Channels
 Deadlock freedom

Let’s look again at
type-states.

Reliable ComputingStateful Software Interfaces

Type-states with capabilities

 Still one type per type-state
A

R

W

Calloc
openR

openW

promote

close

close

free

Reliable ComputingStateful Software Interfaces

Observation about type states

 A type state is just a type!
 Type = Predicate over values and heap fragments
 A physical block of memory can have different

types, thus different states/properties at different
times.

Reliable ComputingStateful Software Interfaces

Heavy notation?

 Vault programming language
 Try to make capabilities available to programmers
 Type-states as family of some base type

File@A, File@R, File@W, File@C

void openR(tracked() File file) [@A ! R];

void closeR(tracked() File file) [--@A];

Reliable ComputingStateful Software Interfaces

Case Study: Windows Drivers
 Driver handles requests from the kernel

 e.g. start, read, write, shutdown, ...
 driver exports a function for each request type
 lifetime of request  lifetime of function call

 Request is encapsulated in a data structure
 I/O Request Packet (IRP)
 Driver handles request by side-effecting IRP
 IRP ownership and lifetime are important

Reliable ComputingStateful Software Interfaces

Request often lives across calls

DRIVER

Read(Device,Irp)
on interrupt call IFun

IFun
read memory

IFun
read memory
IoCompleteRequest(Irp)

KERNEL

IoMarkIrpPending(Irp)

Reliable ComputingStateful Software Interfaces

Drivers form a stack

 Kernel sends IRP to top
driver in stack

 Driver may...
 handle IRP itself
 pass IRP down
 pass new IRP(s) down

file system driver

KERNEL

storage class driver

floppy driver

bus driver

Reliable ComputingStateful Software Interfaces

IoCompleteRequest
VOID

IoCompleteRequest(

IN PIRP Irp,

IN CCHAR PriorityBoost);

IoCompleteRequest indicates the caller has completed all processing for a given I/O request
and is returning the given IRP to the I/O Manager.

Parameters

Irp Points to the IRP to be completed.

PriorityBoost Specifies a system-defined constant by which to increment the runtime priority
of the original thread that requested the operation. This value is IO_NO_INCREMENT if the
original thread requested an operation the driver could complete quickly (so the requesting
thread is not compensated for its assumed wait on I/O) or if the IRP is completed with an error.
Otherwise, the set of PriorityBoost constants are device-type-specific. See ntddk.h or wdm.h for
these constants.

Comments

When a driver has finished all processing for a given IRP, it calls IoCompleteRequest. The
I/O Manager checks the IRP to determine whether any higher-level drivers have set up an
IoCompletion routine for the IRP. If so, each IoCompletion routine is called, in turn, until every
layered driver in the chain has completed the IRP.

When all drivers have completed a given IRP, the I/O Manger returns status to the original
requestor of the operation. Note that a higher-level driver that sets up a driver-created IRP must
supply an IoCompletion routine to release the IRP it created.

Callers of IoCompleteRequest must be running at IRQL <= DISPATCH_LEVEL.

See Also

IoSetCompletionRoutine

IRP Ownership

“IoCompleteRequest indicates the caller has
completed all processing for a given I/O request
and is returning the given IRP to the I/O Manager.”

Reliable ComputingStateful Software Interfaces

IRP Ownership
IoCompleteRequest

VOID

IoCompleteRequest(

IN PIRP Irp,

IN CCHAR PriorityBoost);

IoCompleteRequest indicates the caller has completed all processing for a given I/O request
and is returning the given IRP to the I/O Manager.

Parameters

Irp Points to the IRP to be completed.

PriorityBoost Specifies a system-defined constant by which to increment the runtime priority
of the original thread that requested the operation. This value is IO_NO_INCREMENT if the
original thread requested an operation the driver could complete quickly (so the requesting
thread is not compensated for its assumed wait on I/O) or if the IRP is completed with an error.
Otherwise, the set of PriorityBoost constants are device-type-specific. See ntddk.h or wdm.h for
these constants.

Comments

When a driver has finished all processing for a given IRP, it calls IoCompleteRequest. The
I/O Manager checks the IRP to determine whether any higher-level drivers have set up an
IoCompletion routine for the IRP. If so, each IoCompletion routine is called, in turn, until every
layered driver in the chain has completed the IRP.

When all drivers have completed a given IRP, the I/O Manger returns status to the original
requestor of the operation. Note that a higher-level driver that sets up a driver-created IRP must
supply an IoCompletion routine to release the IRP it created.

Callers of IoCompleteRequest must be running at IRQL <= DISPATCH_LEVEL.

See Also

IoSetCompletionRoutine

void IoCompleteRequest(tracked(I) IRP Irp, CHAR Boost) [-I];

Reliable ComputingStateful Software Interfaces

IRP Ownership
IoCallDriver

NTSTATUS

IoCallDriver(

IN PDEVICE_OBJECT DeviceObject,

IN OUT PIRP Irp);

IoCallDriver sends an IRP to the next-lower-level driver after the caller has set up the I/O
stack location in the IRP for that driver.

Parameters

DeviceObject Points to the next-lower driver's device object, representing the target device
for the requested I/O operation.

Irp Points to the IRP.

Return Value

IoCallDriver returns the NTSTATUS value that a lower driver set in the I/O status block for
the given request or STATUS_PENDING if the request was queued for additional processing.

Comments

IoCallDriver assigns the DeviceObject input parameter to the device object field of the IRP
stack location for the next lower driver.

An IRP passed in a call to IoCallDriver becomes inaccessible to the higher-level driver, unless
the higher-level driver has set up its IoCompletion routine for the IRP with
IoSetCompletionRoutine. If it does, the IRP input to the driver-supplied IoCompletion routine
has its I/O status block set by the lower driver(s) and all lower-level driver(s)' I/O stack locations
filled with zeros.

Drivers must not use IoCallDriver to pass power IRPs (IRP_MJ_POWER). Use PoCallDriver
instead.

Callers of IoCallDriver must be running at IRQL <= DISPATCH_LEVEL.

See Also

IoAllocateIrp, IoBuildAsynchronousFsdRequest, IoBuildDeviceIoControlRequest,
IoBuildSynchronousFsdRequest, IoSetCompletionRoutine, PoCallDriver

“An IRP passed in a call to IoCallDriver becomes
inaccessible to the higher-level driver, …”

Reliable ComputingStateful Software Interfaces

IRP Ownership
IoCallDriver

NTSTATUS

IoCallDriver(

IN PDEVICE_OBJECT DeviceObject,

IN OUT PIRP Irp);

IoCallDriver sends an IRP to the next-lower-level driver after the caller has set up the I/O
stack location in the IRP for that driver.

Parameters

DeviceObject Points to the next-lower driver's device object, representing the target device
for the requested I/O operation.

Irp Points to the IRP.

Return Value

IoCallDriver returns the NTSTATUS value that a lower driver set in the I/O status block for
the given request or STATUS_PENDING if the request was queued for additional processing.

Comments

IoCallDriver assigns the DeviceObject input parameter to the device object field of the IRP
stack location for the next lower driver.

An IRP passed in a call to IoCallDriver becomes inaccessible to the higher-level driver, unless
the higher-level driver has set up its IoCompletion routine for the IRP with
IoSetCompletionRoutine. If it does, the IRP input to the driver-supplied IoCompletion routine
has its I/O status block set by the lower driver(s) and all lower-level driver(s)' I/O stack locations
filled with zeros.

Drivers must not use IoCallDriver to pass power IRPs (IRP_MJ_POWER). Use PoCallDriver
instead.

Callers of IoCallDriver must be running at IRQL <= DISPATCH_LEVEL.

See Also

IoAllocateIrp, IoBuildAsynchronousFsdRequest, IoBuildDeviceIoControlRequest,
IoBuildSynchronousFsdRequest, IoSetCompletionRoutine, PoCallDriver

void IoCallDriver(DEVICE_OBJECT Dev, tracked(I) IRP Irp) [-I];

Reliable ComputingStateful Software Interfaces

Example: Driver request

NTSTATUS Read(DEVICE_OBJECT Dev, tracked(I) IRP Irp) [-I] {

if (GetRequestLength(Irp) == 0) {

NTSTATUS status = `STATUS_SUCCESS(`TransferBytes(0));

IoCompleteRequest(Irp, status);

return status;

} else

return IoCallDriver(NextDriver,Irp);

}

Reliable ComputingStateful Software Interfaces

Example: Driver request

NTSTATUS Read(DEVICE_OBJECT Dev, tracked(I) IRP Irp) [-I] { { I }

if (GetRequestLength(Irp) == 0) { { I }

NTSTATUS status = `STATUS_SUCCESS(`TransferBytes(0)); { I }

IoCompleteRequest(Irp, status); {}

return status; {}

} else { I }

return IoCallDriver(NextDriver,Irp); {}

}

Reliable ComputingStateful Software Interfaces

IRP completion routines
Getting IRP ownership back
 driver A hands IRP to B and wants it back after B is done
 driver A sets “completion routine” on IRP

void IoSetCompletionRoutine(tracked(K) IRP Irp,
 COMPLETION_ROUTINE<K> Fun) [K];

type COMPLETION_ROUTINE<key K> =
 tracked COMPLETION_RESULT<K>(DEVICE_OBJECT Dev,
 tracked(K) IRP Irp) [-K];

tracked variant COMPLETION_RESULT<key K> [
| `MoreProcessingRequired
| `Finished(NTSTATUS) {K}];

Reliable ComputingStateful Software Interfaces

Events
type KEVENT<key R>;

KEVENT<E> KeInitializeEvent<type T> (tracked(E) T Obj) [E];

NTSTATUS KeSignalEvent(KEVENT<E> Event) [-E];

NTSTATUS KeWaitForEvent(KEVENT<E> Event) [+E];

fork
{E}

{E}

{E}

{}

{}
signal

wait

Reliable ComputingStateful Software Interfaces

Completion routine example
NTSTATUS PlugPlay(DEVICE_OBJECT Dev, tracked(R) IRP Irp) [-R] { {R}

KEVENT<R> DoneEvent = KeInitializeEvent(Irp); {R}

tracked COMPLETION_RESULT<I>
 CompletePnP(DEVICE_OBJECT Dev, tracked(I) IRP Irp) [-I] { {I=R}

KeSignalEvent(DoneEvent); {}
return `MoreProcessingRequired; {}

}
{R}

IoSetCompletionRoutine(Irp, CompletePnP<R>); {R}
CALL_RESULT<R> result = IoCallDriver(lowerDriver, Irp); {}
KeWaitForEvent(DoneEvent); {R}
...

}

Reliable ComputingStateful Software Interfaces

Specification tasks
 Allocation/Deallocation ➾
 Memory initialization ➾
 Locks ➾
 Events ➾
 Type states ➾
 Object states
 Regions
 Reference counting
 Sharing
 Channels
 Deadlock freedom

 Non-tree data structures?

Reliable ComputingStateful Software Interfaces

7

Non-tree data structures?

 arbitrary finite graphs and
 a form of regular recursive graphs via existential

abstraction over pointer names
and heap fragments

i j
5

k

Reliable ComputingStateful Software Interfaces

Recursive data structures

 Consider a linear list
List² = Nil j Cons of int * List²

“Each Cons cell owns the rest of the list”

 Using capabilities:
 Use pt(0) for Nil
 Package a heap fragment with non-zero pointer
 Abstract over the pointer value
List² , 9[j CListh i].pt()

CListhi = (=0) Ç { ListH}

ListH = 9[ j CListhi].h int, pt() i

Reliable ComputingStateful Software Interfaces

Linear list unpacking and packing

0

int 

Reliable ComputingStateful Software Interfaces

Linear list unpacking and packing

0

int 

Reliable ComputingStateful Software Interfaces

Linear list unpacking and packing

0

int 

Reliable ComputingStateful Software Interfaces

Linear list unpacking and packing

0

int 

Reliable ComputingStateful Software Interfaces

Linear list unpacking and packing

0

int

1

int 

Reliable ComputingStateful Software Interfaces

Linear list unpacking and packing

0

int

1

int 

Reliable ComputingStateful Software Interfaces

Linear list unpacking and packing

0

int

1

int

2

int 

…

Reliable ComputingStateful Software Interfaces

Packing and Unpacking

Reliable ComputingStateful Software Interfaces

Summary of Capability Type Systems

 Capabilities are single-threaded in type system
(heap is single-threaded in dynamic semantics)
 Linear treatment of capabilities

 Splitting and joining of heap fragments
 Relaxed single pointer requirement

 Single heap fragment invariant
 Natural imperative programming style

 Can use pointers as often as we like
 as long as we can prove suitable capability is present

 Explicit treatment of dangling pointers

Reliable ComputingStateful Software Interfaces

Programming languages

 Based on capabilities or similar concepts
 Vault resource management and type states
 Fugue object type states
 Sing# resource management and channels
 Cyclonesafe C replacement with regions
 Clay low-level memory management (GC)
 ATS low-level memory management
 …

Reliable ComputingStateful Software Interfaces

PL Characteristics

 Dichotomy between precisely tracked data and
non-linear data (exception Clay)

 Surface specification language vs. internal
specification language
 Has to be concise, otherwise it’s a calculus
 Difficult to find good trade-off between expressiveness

and conciseness
 How much is inferred, how much is explicit?

 Coercions, Instantiations, Proof terms

Reliable ComputingStateful Software Interfaces

Arbitrary data structures?

 Arbitrary graphs are difficult to express,
but not impossible
 O’Hearn et.al. have done specifications and hand

proofs of complicated graph algorithms
 graph copying and freeing

 But automated systems with such expressive power
are still under development
 Clay (Hawblitzel et. al) and ATS (Xi et.al.) come close.

 Different domains require different expressiveness
 Specifying and checking copying GC
 Application program dealing with sockets and files

Reliable ComputingStateful Software Interfaces

Non-linear data structures

 Mere mortals need way to express data structures
with less detailed capability specifications
 Who owns the observer in the view-observer pattern?
 Who owns call-back closures on GUI elements?

 Where is the permission?
 How is it threaded to place of use?

 Require some way to abstract over individual
permissions

 Necessary evil

Reliable ComputingStateful Software Interfaces

Specifications
 Allocation/Deallocation ➾
 Memory initialization ➾
 Locks ➾
 Events ➾
 Type states ➾
 Object states
 Regions
 Reference counting
 Sharing
 Channels
 Deadlock freedom

 Use  Consume ➾
 Non-tree data structures ➾

Reliable ComputingStateful Software Interfaces

Regions

 Rather than handling individual capabilities for
individual objects, need a mechanism to abstract
over the capabilities for a set of objects.

 Well-known abstraction: Regions
 A region is a named subset of the heap
 Objects are individually allocated from a region
 A region is deallocated as a whole

 Common lifetime for all objects within region

 BT denotes an object of type T in region 

Reliable ComputingStateful Software Interfaces

Regions

 A region has type pt(), where { Region}

 An object in a region has type BT
 Can define specialized type rules

Reliable ComputingStateful Software Interfaces

Region example in Vault
void main() { {}

tracked(R) region reg = Region.create(); {R}
R:point pt = new(reg) point {x=4, y=2}; {R}
int y; {R}
if (pt.x > 0) { {R}

Region.delete(reg); {}
y = 0; {}

} else { { R }
y = pt.x; { R }
Region.delete(reg); {}

} {} post condition!
}

Reliable ComputingStateful Software Interfaces

Bug 1: Dangling reference
void main() { {}

tracked(R) region reg = Region.create(); {R}
R:point pt = new(reg) point {x=4, y=2}; {R}
int y; {R}
if (pt.x > 0) { {R}

Region.delete(reg); {}
y = 0; {}

} else { {R}
Region.delete(reg); {}

y = pt.x; bug! R  {}
} {}

}

Reliable ComputingStateful Software Interfaces

Bug 2: Memory leak
void main() { {}

tracked(R) region reg = Region.create(); {R}

R:point pt = new(reg) point {x=4, y=2}; {R}

int y; {R}

if (pt.x > 0) { {R}

y = 0; {R}

} else { {R}

y = pt.x; {R}

} {R}

} {R} bug! leaking key R

Reliable ComputingStateful Software Interfaces

Discussion of Regions

 Different objects in region can have the same
type
R:point x; R:point y; …

 Non-region pointers and pointers into regions
have distinct types
 pt() with { T} vs. BT

 Decision for what kind of object is used is done at
allocation, and fixed throughout
 Can’t do incremental initialization e.g.

 Component restriction of linear types:
 can’t have linear components in region types

Reliable ComputingStateful Software Interfaces

Motivating example

Dictionary example:
 map keys to resizable arrays
 sharing of cells suggests cells and contents in a region
Brefh Bint[] i

 But, resize can’t free old array
 ref<int[]�> ?

Reliable ComputingStateful Software Interfaces

Generalizing the region idea
 Goal: Uniform object model

 Birth and death as linear objects
 Switch from linear to non-linear and back
 Switch from non-linear to linear and back

 Any resource can serve as a region (a lifetime delimiter)
 Call such a resource an adopter a

 For adoptee:
 use type pt(1)

 non-linear predicate (adoption fact): {a Ta} B 1:T1

 “given cap {aTa} , can deduce 1 is a pointer to T1”

 delegates permissions

 Now aBT , 9[1 j {a Region} B 1:T1}. pt(1)

Reliable ComputingStateful Software Interfaces

Adoption (Freezing)
 Explicit act to introduce adoption fact

 {0:0} B :1 from {11}

 Abbreviation
 CBT , 9[ j C B  : T].pt()

 Linear components in non-linear objects
 T abitrary
 But, cannot access linear T’s via non-linear permission

Reliable ComputingStateful Software Interfaces

Adoption graphically

h1 h0

1 0

Before:

h0After: h1

adopt e1 by e0

Capability

{0 h0} ­ {1 h1}

{0 h0} ­ {0h0}B1:h1

1 0

h0

Reliable ComputingStateful Software Interfaces

Data lifetime model (types)

alloc pt()

 { h}

 {a ha} B :h

free pt()

 { h} { h}

 {a ha} B :h

 { h}
focus unfocus

unadoptionadoption

Reliable ComputingStateful Software Interfaces

CellCell

Example Adoption

ACellPhDi newCell(pt(D) Dict d) {

 pt(c) Cell c = new Cell;
 c.data = new int[];
 return(adopt c by d);
}

int[]

D

Dict

c

c

.1

Reliable ComputingStateful Software Interfaces

Adoption is related to let!
 Wadler 90:

 let! (x) y = e1 in e2

linear type of x is non-linear during e1.
 Problems:

 Scoped
 How to enforce escaping of components of x
 Unsound with mutability:

Consider ref<int[]�>� → ref<int[]>

Reliable ComputingStateful Software Interfaces

Restore capability for 1 {1 h1}

Focus

Revoke A

A

2
h1

1

1
 {1 h1} ({a ha}

focus e1 in e2
ha

A

2
h1

Fact to restore A

Reliable ComputingStateful Software Interfaces

CellCell

Example focus

void resize(ACellPhDi c) {
 focus c {
 free c.data;
 c.data = new int[];
 }
}

int[]

D

Dictc

.1

c

Dict

 {c Cell} ({D  Dict}

Reliable ComputingStateful Software Interfaces

Unfocus

 {1 h1} ({A hA}

 Can be seen as an implication or
coercion function

 Explicit implication allows for non-lexical scopes
 Right to unfocus can be passed up/down to other

functions
 Useful for inferring scopes locally

Reliable ComputingStateful Software Interfaces

n

Unadoption

ha

a
1Before:

After:

free a

hn

hn

n

a 1

Reliable ComputingStateful Software Interfaces

Generalizations
 Adoption facts: C B :
 Abstract over capabilities (symbolic cap G)
 Resize function does not need to know details of

adopter
 8[,G]. (G ­ (G B :Cell), pt()) ! (void, G)
 Temporary view of non-adopted pointer as

adopted
 { h} ! { h} ­ { h} B:h

 can write functions that work over adopted and non-
adopted data!

Reliable ComputingStateful Software Interfaces

Generalizations (cont)

 Can handle interior pointers
{h}

h =h T1,T2 i

Want pt(1) to 1st field of type T1

 { h} B1:T1

 Pointers to the stack

Reliable ComputingStateful Software Interfaces

Lecture 3

 Permission sharing
 Type states for objects
 Techniques for message based systems

Reliable ComputingStateful Software Interfaces

Backups

Reliable ComputingStateful Software Interfaces

Locking (3)

 Lingering problems
 Release wrong lock

 ::= … j Lockh, i j RTokenhi

 Code looks as expected:
 token not passed explicitly

T x = acquire(lock);
…
release(lock, x);

Reliable ComputingStateful Software Interfaces

Packing and unpacking of h

