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Lecture 1 recap

 Goal: Specify and check stateful interfaces
 Techniques

 Linear type systems
 Type system based on capabilities (permissions)

 Modeling
 allocation/deallocation
 type state protocols
 locking
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Lecture 2

 Frame axiom
 Type-states using capabilities
 Vault: W2K driver case study
 Recursive data structures
 Unifying non-linear data structures 

and linear data
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Lambda abstraction

 We can abstract allocation sequence

pre-heap post-heap
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Recall examples

 Function taking a list argument
(but not consuming it!)

 Function freeing entire list

 Application rule
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­

­

 Example
x : pt(x), y : pt(y)

freeAll(y);
int z = length(x);
freeAll(x);

 Modifications?

CListhyi

freeAll(y);

The frame rule

CListhxi

CListhxi
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Specification tasks
 Allocation/Deallocation ➾
 Memory initialization  ➾
 Locks  ➾ 
 Events
 Type states ➾
 Object states
 Regions
 Reference counting
 Sharing
 Channels
 Deadlock freedom

Let’s look again at
type-states.
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Type-states with capabilities

 Still one type per type-state
A

R

W

Calloc
openR

openW

promote

close

close

free
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Observation about type states

 A type state is just a type!
 Type = Predicate over values and heap fragments
 A physical block of memory can have different 

types, thus different states/properties at different 
times.
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Heavy notation?

 Vault programming language
 Try to make capabilities available to programmers
 Type-states as family of some base type

File@A, File@R, File@W, File@C

void openR( tracked() File file ) [ @A ! R ];
 

void closeR( tracked() File file ) [ --@A ];
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Case Study: Windows Drivers
 Driver handles requests from the kernel

 e.g. start, read, write, shutdown, ...
 driver exports a function for each request type
 lifetime of request  lifetime of function call

 Request is encapsulated in a data structure
 I/O Request Packet (IRP)
 Driver handles request by side-effecting IRP
 IRP ownership and lifetime are important
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Request often lives across calls

DRIVER

Read(Device,Irp)
on interrupt call IFun

IFun
read memory

IFun
read memory
IoCompleteRequest(Irp)

KERNEL

IoMarkIrpPending(Irp)
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Drivers form a stack

 Kernel sends IRP to top 
driver in stack

 Driver may...
 handle IRP itself
 pass IRP down
 pass new IRP(s) down

file system driver

KERNEL

storage class driver

floppy driver

bus driver
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IoCompleteRequest
VOID 

IoCompleteRequest( 

IN PIRP Irp, 

IN CCHAR PriorityBoost ); 

IoCompleteRequest indicates the caller has completed all processing for a given I/O request 
and is returning the given IRP to the I/O Manager.

Parameters

Irp Points to the IRP to be completed. 

PriorityBoost Specifies a system-defined constant by which to increment the runtime priority 
of the original thread that requested the operation. This value is IO_NO_INCREMENT if the 
original thread requested an operation the driver could complete quickly (so the requesting 
thread is not compensated for its assumed wait on I/O) or if the IRP is completed with an error. 
Otherwise, the set of PriorityBoost constants are device-type-specific. See ntddk.h or wdm.h for 
these constants. 

Comments

When a driver has finished all processing for a given IRP, it calls IoCompleteRequest. The 
I/O Manager checks the IRP to determine whether any higher-level drivers have set up an 
IoCompletion routine for the IRP. If so, each IoCompletion routine is called, in turn, until every 
layered driver in the chain has completed the IRP.

When all drivers have completed a given IRP, the I/O Manger returns status to the original 
requestor of the operation. Note that a higher-level driver that sets up a driver-created IRP must 
supply an IoCompletion routine to release the IRP it created. 

Callers of IoCompleteRequest must be running at IRQL <= DISPATCH_LEVEL.

See Also

IoSetCompletionRoutine 

IRP Ownership

“IoCompleteRequest indicates the caller has 
completed all processing for a given I/O request 
and is returning the given IRP to the I/O Manager.”
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IRP Ownership
IoCompleteRequest

VOID 

IoCompleteRequest( 

IN PIRP Irp, 

IN CCHAR PriorityBoost ); 

IoCompleteRequest indicates the caller has completed all processing for a given I/O request 
and is returning the given IRP to the I/O Manager.

Parameters

Irp Points to the IRP to be completed. 

PriorityBoost Specifies a system-defined constant by which to increment the runtime priority 
of the original thread that requested the operation. This value is IO_NO_INCREMENT if the 
original thread requested an operation the driver could complete quickly (so the requesting 
thread is not compensated for its assumed wait on I/O) or if the IRP is completed with an error. 
Otherwise, the set of PriorityBoost constants are device-type-specific. See ntddk.h or wdm.h for 
these constants. 

Comments

When a driver has finished all processing for a given IRP, it calls IoCompleteRequest. The 
I/O Manager checks the IRP to determine whether any higher-level drivers have set up an 
IoCompletion routine for the IRP. If so, each IoCompletion routine is called, in turn, until every 
layered driver in the chain has completed the IRP.

When all drivers have completed a given IRP, the I/O Manger returns status to the original 
requestor of the operation. Note that a higher-level driver that sets up a driver-created IRP must 
supply an IoCompletion routine to release the IRP it created. 

Callers of IoCompleteRequest must be running at IRQL <= DISPATCH_LEVEL.

See Also

IoSetCompletionRoutine 

void IoCompleteRequest( tracked(I) IRP Irp, CHAR Boost) [ -I ];
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IRP Ownership
IoCallDriver

NTSTATUS 

IoCallDriver( 

IN PDEVICE_OBJECT DeviceObject, 

IN OUT PIRP Irp ); 

IoCallDriver sends an IRP to the next-lower-level driver after the caller has set up the I/O 
stack location in the IRP for that driver.

Parameters

DeviceObject  Points to the next-lower driver's device object, representing the target device 
for the requested I/O operation. 

Irp  Points to the IRP. 

Return Value

IoCallDriver returns the NTSTATUS value that a lower driver set in the I/O status block for 
the given request or STATUS_PENDING if the request was queued for additional processing.

Comments

IoCallDriver assigns the DeviceObject input parameter to the device object field of the IRP 
stack location for the next lower driver.

An IRP passed in a call to IoCallDriver becomes inaccessible to the higher-level driver, unless 
the higher-level driver has set up its IoCompletion routine for the IRP with 
IoSetCompletionRoutine. If it does, the IRP input to the driver-supplied IoCompletion routine 
has its I/O status block set by the lower driver(s) and all lower-level driver(s)' I/O stack locations 
filled with zeros.

Drivers must not use IoCallDriver to pass power IRPs (IRP_MJ_POWER). Use PoCallDriver 
instead. 

Callers of IoCallDriver must be running at IRQL <= DISPATCH_LEVEL.

See Also

IoAllocateIrp, IoBuildAsynchronousFsdRequest, IoBuildDeviceIoControlRequest, 
IoBuildSynchronousFsdRequest, IoSetCompletionRoutine, PoCallDriver 

“An IRP passed in a call to IoCallDriver becomes 
inaccessible to the higher-level driver, …”
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IRP Ownership
IoCallDriver

NTSTATUS 

IoCallDriver( 

IN PDEVICE_OBJECT DeviceObject, 

IN OUT PIRP Irp ); 

IoCallDriver sends an IRP to the next-lower-level driver after the caller has set up the I/O 
stack location in the IRP for that driver.

Parameters

DeviceObject  Points to the next-lower driver's device object, representing the target device 
for the requested I/O operation. 

Irp  Points to the IRP. 

Return Value

IoCallDriver returns the NTSTATUS value that a lower driver set in the I/O status block for 
the given request or STATUS_PENDING if the request was queued for additional processing.

Comments

IoCallDriver assigns the DeviceObject input parameter to the device object field of the IRP 
stack location for the next lower driver.

An IRP passed in a call to IoCallDriver becomes inaccessible to the higher-level driver, unless 
the higher-level driver has set up its IoCompletion routine for the IRP with 
IoSetCompletionRoutine. If it does, the IRP input to the driver-supplied IoCompletion routine 
has its I/O status block set by the lower driver(s) and all lower-level driver(s)' I/O stack locations 
filled with zeros.

Drivers must not use IoCallDriver to pass power IRPs (IRP_MJ_POWER). Use PoCallDriver 
instead. 

Callers of IoCallDriver must be running at IRQL <= DISPATCH_LEVEL.

See Also

IoAllocateIrp, IoBuildAsynchronousFsdRequest, IoBuildDeviceIoControlRequest, 
IoBuildSynchronousFsdRequest, IoSetCompletionRoutine, PoCallDriver 

void IoCallDriver(DEVICE_OBJECT Dev, tracked(I) IRP Irp) [ -I ];
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Example: Driver request

NTSTATUS Read(DEVICE_OBJECT Dev, tracked(I) IRP Irp) [ -I ] {

if (GetRequestLength(Irp) == 0) {

NTSTATUS status = `STATUS_SUCCESS(`TransferBytes(0));

IoCompleteRequest(Irp, status);

return status;

} else 

return IoCallDriver(NextDriver,Irp);

}
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Example: Driver request

NTSTATUS Read(DEVICE_OBJECT Dev, tracked(I) IRP Irp) [ -I ] { { I }

if (GetRequestLength(Irp) == 0) { { I }

NTSTATUS status = `STATUS_SUCCESS(`TransferBytes(0)); { I }

IoCompleteRequest(Irp, status); {}

return status; {}

} else { I }

return IoCallDriver(NextDriver,Irp); {}

}
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IRP completion routines
Getting IRP ownership back
 driver A hands IRP to B and wants it back after B is done
 driver A sets “completion routine” on IRP

void IoSetCompletionRoutine(tracked(K) IRP Irp, 
    COMPLETION_ROUTINE<K> Fun) [K];

type COMPLETION_ROUTINE<key K> = 
    tracked COMPLETION_RESULT<K>(DEVICE_OBJECT Dev,
             tracked(K) IRP Irp) [-K];

tracked variant COMPLETION_RESULT<key K> [
| `MoreProcessingRequired 
| `Finished(NTSTATUS) {K} ];
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Events
type KEVENT<key R>;

KEVENT<E> KeInitializeEvent<type T> (tracked(E) T Obj) [ E ];

NTSTATUS KeSignalEvent(KEVENT<E> Event) [ -E ];

NTSTATUS KeWaitForEvent(KEVENT<E> Event) [ +E ];

fork
{E}

{E}

{E}

{}

{}
signal

wait
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Completion routine example
NTSTATUS PlugPlay(DEVICE_OBJECT Dev, tracked(R) IRP Irp) [-R] { {R}

KEVENT<R> DoneEvent = KeInitializeEvent(Irp); {R}

tracked COMPLETION_RESULT<I> 
 CompletePnP(DEVICE_OBJECT Dev, tracked(I) IRP Irp) [-I] { {I=R}

KeSignalEvent(DoneEvent); {}
return `MoreProcessingRequired; {}

}
{R}

IoSetCompletionRoutine(Irp, CompletePnP<R>); {R}
CALL_RESULT<R> result = IoCallDriver(lowerDriver, Irp); {}
KeWaitForEvent(DoneEvent); {R}
...

}
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Specification tasks
 Allocation/Deallocation ➾
 Memory initialization  ➾
 Locks ➾ 
 Events  ➾ 
 Type states ➾
 Object states
 Regions
 Reference counting
 Sharing
 Channels
 Deadlock freedom

 Non-tree data structures?
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7

Non-tree data structures?

 arbitrary finite graphs and
 a form of regular recursive graphs via existential 

abstraction over pointer names 
and heap fragments

i j
5

k
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Recursive data structures

 Consider a linear list
List² = Nil j Cons of int * List²

“Each Cons cell owns the rest of the list”

 Using capabilities:
 Use pt(0) for Nil
 Package a heap fragment with non-zero pointer
 Abstract over the pointer value
List² , 9[j CListh i ].pt()

CListhi = (=0) Ç { ListH} 

ListH = 9[ j CListhi ].h int, pt() i



Reliable ComputingStateful Software Interfaces

Linear list unpacking and packing

0

int 
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Linear list unpacking and packing

0

int 
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Linear list unpacking and packing

0

int 
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Linear list unpacking and packing

0

int 
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Linear list unpacking and packing

0

int

1

int 
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Linear list unpacking and packing

0

int

1

int 
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Linear list unpacking and packing

0

int

1

int

2

int 

…
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Packing and Unpacking
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Summary of Capability Type Systems

 Capabilities are single-threaded in type system
(heap is single-threaded in dynamic semantics)
 Linear treatment of capabilities

 Splitting and joining of heap fragments
 Relaxed single pointer requirement

 Single heap fragment invariant
 Natural imperative programming style

 Can use pointers as often as we like
 as long as we can prove suitable capability is present

 Explicit treatment of dangling pointers



Reliable ComputingStateful Software Interfaces

Programming languages

 Based on capabilities or similar concepts
 Vault resource management and type states
 Fugue object type states
 Sing# resource management and channels
 Cyclonesafe C replacement with regions
 Clay low-level memory management (GC)
 ATS low-level memory management
 …
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PL Characteristics

 Dichotomy between precisely tracked data and 
non-linear data   (exception Clay)

 Surface specification language vs. internal 
specification language
 Has to be concise, otherwise it’s a calculus
 Difficult to find good trade-off between expressiveness 

and conciseness
 How much is inferred, how much is explicit?

 Coercions, Instantiations, Proof terms
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Arbitrary data structures?

 Arbitrary graphs are difficult to express, 
but not impossible
 O’Hearn et.al. have done specifications and hand 

proofs of complicated graph algorithms
 graph copying and freeing

 But automated systems with such expressive power 
are still under development
 Clay (Hawblitzel et. al) and ATS (Xi et.al.) come close.

 Different domains require different expressiveness
 Specifying and checking copying GC
 Application program dealing with sockets and files
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Non-linear data structures

 Mere mortals need way to express data structures 
with less detailed capability specifications
 Who owns the observer in the view-observer pattern?
 Who owns call-back closures on GUI elements?

 Where is the permission?
 How is it threaded to place of use?

 Require some way to abstract over individual 
permissions

 Necessary evil
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Specifications
 Allocation/Deallocation ➾
 Memory initialization  ➾
 Locks ➾ 
 Events  ➾ 
 Type states ➾
 Object states
 Regions
 Reference counting
 Sharing
 Channels
 Deadlock freedom

 Use  Consume  ➾
 Non-tree data structures  ➾
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Regions

 Rather than handling individual capabilities for 
individual objects, need a mechanism to abstract 
over the capabilities for a set of objects.

 Well-known abstraction: Regions
 A region is a named subset of the heap
 Objects are individually allocated from a region
 A region is deallocated as a whole

 Common lifetime for all objects within region

  BT denotes an object of type T in region 
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Regions

 A region has type pt(), where  { Region} 

 An object in a region has type BT
 Can define specialized type rules
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Region example in Vault
void main() { {}

tracked(R) region reg = Region.create(); {R}
R:point pt = new(reg) point {x=4, y=2}; {R}
int y; {R}
if (pt.x > 0) { {R}

Region.delete(reg); {}
y = 0; {}

} else { { R }
y = pt.x; { R }
Region.delete(reg); {}

} {}   post condition!
}



Reliable ComputingStateful Software Interfaces

Bug 1: Dangling reference
void main() { {}

tracked(R) region reg = Region.create(); {R}
R:point pt = new(reg) point {x=4, y=2}; {R}
int y; {R}
if (pt.x > 0) { {R}

Region.delete(reg); {}
y = 0; {}

} else { {R}
Region.delete(reg); {}

y = pt.x; bug! R  {}
} {}

}
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Bug 2: Memory leak
void main() { {}

tracked(R) region reg = Region.create(); {R}

R:point pt = new(reg) point {x=4, y=2}; {R}

int y; {R}

if (pt.x > 0) { {R}

y = 0; {R}

} else { {R}

y = pt.x; {R}

} {R}

} {R} bug! leaking key R
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Discussion of Regions

 Different objects in region can have the same 
type
R:point x; R:point y; …

 Non-region pointers and pointers into regions 
have distinct types
 pt()  with  { T}     vs.    BT

 Decision for what kind of object is used is done at 
allocation, and fixed throughout
 Can’t do incremental initialization e.g.

 Component restriction of linear types:
 can’t have linear components in region types



Reliable ComputingStateful Software Interfaces

Motivating example

Dictionary example:
 map keys to resizable arrays
 sharing of cells suggests cells and contents in a region 
Brefh Bint[] i

 But, resize can’t free old array
 ref<int[]�>    ?
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Generalizing the region idea
 Goal: Uniform object model

 Birth and death as linear objects
 Switch from linear to non-linear and back
 Switch from non-linear to linear and back

 Any resource can serve as a region (a lifetime delimiter)
 Call such a resource an adopter a

 For adoptee:
 use type pt(1)

 non-linear predicate (adoption fact):  {a Ta}  B 1:T1

 “given cap {aTa} , can deduce 1 is a pointer to T1”

 delegates permissions

 Now  aBT  , 9[1 j  {a Region} B 1:T1}. pt(1)
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Adoption (Freezing)
 Explicit act to introduce adoption fact

 {0:0}  B :1    from   {11}

 Abbreviation
 CBT , 9[ j  C B  : T].pt()

 Linear components in non-linear objects
 T abitrary
 But, cannot access linear T’s via non-linear permission
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Adoption graphically

h1 h0

1 0

Before:

h0After: h1

adopt e1 by e0

Capability

{0 h0} ­ {1 h1}

{0 h0} ­ {0h0}B1:h1 

1 0

h0
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Data lifetime model (types)

alloc pt()

 { h} 

 {a ha} B :h

free pt()

 { h}  { h}

 {a ha} B :h

 { h}
focus unfocus

unadoptionadoption
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CellCell

Example Adoption

ACellPhDi newCell( pt(D) Dict d) {

  pt(c) Cell c = new Cell;
  c.data = new int[];
  return(adopt c by d);
}

int[]

D

Dict

c

c

.1
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Adoption is related to let!
 Wadler 90:

   let! (x) y = e1 in e2

linear type of x is non-linear during e1.
 Problems:

 Scoped
 How to enforce escaping of components of x
 Unsound with mutability:

Consider ref<int[]�>�   →  ref<int[]>
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Restore capability for 1  {1 h1} 

Focus

Revoke A

A

2
h1

1

1
 {1 h1} ( {a ha}

focus e1 in e2
ha

A

2
h1

Fact to restore A
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CellCell

Example focus

void resize(ACellPhDi c) {
  focus c {
    free c.data;
    c.data = new int[];
  }
}

int[]

D

Dictc

.1

c

Dict

 {c Cell} ( {D  Dict}
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Unfocus

  {1 h1}  (  {A hA} 

 Can be seen as an implication or
coercion function

 Explicit implication allows for non-lexical scopes
 Right to unfocus can be passed up/down to other 

functions
 Useful for inferring scopes locally
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n

Unadoption

ha

a
1Before:

After:

free a

hn

hn

n

a 1
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Generalizations
 Adoption facts:  C B :
 Abstract over capabilities (symbolic cap G)
 Resize function does not need to know details of 

adopter
  8[,G]. ( G ­ (G B :Cell), pt() ) ! ( void, G )
 Temporary view of non-adopted pointer as 

adopted
  { h}    !   { h} ­ { h} B:h

 can write functions that work over adopted and non-
adopted data!
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Generalizations (cont)

 Can handle interior pointers
{h}

h =h T1,T2 i

Want pt(1) to 1st field of type T1

  { h} B1:T1

 Pointers to the stack
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Lecture 3

 Permission sharing
 Type states for objects
 Techniques for message based systems
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Backups
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Locking (3)

 Lingering problems 
 Release wrong lock

 ::= … j Lockh, i j RTokenhi

 Code looks as expected:
 token not passed explicitly

T x = acquire(lock);
…
release(lock, x);
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Packing and unpacking of h


