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Lecture 2 (recap)

 Frame axiom
 Type-states using capabilities
 Vault: W2K driver case study
 Recursive data structures
 Unifying non-linear data structures 

and linear data
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Lecture 3

 Fractional permissions
 Fugue: Type-states for objects
 Sing# and Singularity

 No more type rules!
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Read-only sharing

 Idea by John Boyland: fractional permissions
{  ! h } , ½{  ! h } ­ ½{  ! h }

 In general
   {  ! h } , k{  ! h } ­ (1-k){  ! h }

 Permission    k{  h}
 Write if k = 1
 Read-only otherwise

 Can express temporary sharing
 Useful for multiple threads
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Fugue (MSR)

 C# + annotations only
 No change in the language
 Type states for objects
 Resource/alias management
 Non-null types
 Checker at MSIL level (standard C# compiler)
 Parts of the analysis are used in FxCop

 will ship with VS2005
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Fugue Demo
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Typestates and class invariants

Relate symbolic typestate name with internal class 
properties
 Gives meaning to typestates

What do ‘open’ and ‘closed’ mean?



Reliable ComputingStateful Software Interfaces

Typestates and class invariants

Socket socket

closed

Socket socket

open

WebPageFetcher

Close Open

GetPage

[ WithProtocol(“open”,”closed”) ]

class WebPageFetcher
{

  private Socket socket;

  [Creates(“closed”)]
  public WebPageFetcher ();

  [ChangesState(“closed”,”open”)]

  public void Open (string server);

  [InState(“open”)]

  public string GetPage (string url);

  [ChangesState(“open”,”closed”)]
  public void Close ();
}
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Typestates and class invariants
[ WithProtocol(“open”,”closed”) ]

class WebPageFetcher
{

  [Null(WhenEnclosingState=“closed”)]

  [InState(“connected”,
           WhenEnclosingState=“open”)]

  private Socket socket;

  [Creates(“closed”)]
  public WebPageFetcher ();

  [ChangesState(“closed”,”open”)]

  public void Open (string server);

  [InState(“open”)]

  public string GetPage (string url);

  [ChangesState(“open”,”closed”)]
  public void Close ();
}

null
Socket socket

closed

connected
Socket socket

open

WebPageFetcher

Close Open

GetPage
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 Named predicate over object state
 connected, open, closed, etc…

 Pack and unpack
 Transitions between abstract named predicate and 

field knowledge
 Interpreted and abstract views

x.state == open      x.socket.state == connected

Typestates are predicates
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null
Socket socket

-

connected
Socket socket

-

closed

open

Pack and unpack
Packed view Unpacked view

Unpack

Pack

Unpack = apply definition         Pack = prove predicate
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Abstract vs. interpreted typestate

In what contexts are pack and unpack allowed?
 No unpack or pack:

 Completely abstract object view.
 By name matching

 Unpack allowed
 Object invariant visible anywhere

 Pack allowed
 State changes allowed anywhere

Prototype design
 Unpack anywhere
 Pack within scope of class
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Reasoning about objects

 Frame stack and subclass state
 Up- and down-casts
 Object extensions (subclassing)

 Open state model. By default, every predicate on a 
frame means true.

 Sliding method semantics
 Example: Caching WebPageFetcher
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Modeling object state
Inheritance hierarchy Frame stack

object

A B

C D E

object

A

D

Subclasses
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Modeling object state
Typestate
 One per class frame
 Single symbolic state

for unknown subclasses

Each frame
 Packed, or
 Unpacked

Frame stack

object

A

D
f : Null
g : Bound

Subclasses

open

open

closed

closed
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Motivation for frame stacks

 Characterize complete object state
 Including unknown subclasses
 Needed for casts
 Modularity

 Invariants do not span frames
 Extensibility : subclasses can interpret typestate individually

 State changes
 How to change state of entire object?
 Code can only directly manipulate concrete frames
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Up- and down-casts

F

open

open

closed

closed

object

A

D

open

open

closed

closed

closed

down-cast to F
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Typestate and subclassing
class CacheWebPageFetcher
 : WebPageFetcher

{

  [Null(WhenEnclosingState=“closed”)]

  [NotNull(WhenEnclosingState=“open”)]

  private Hashtable cache;

  [Creates(“closed”)]
  CachedWebPageFetcher ();

  [ChangesState(“closed”,”open”)]

  override void Open (string server);

  [InState(“open”)]

  override string GetPage (string url);

  [ChangesState(“open”,”closed”)]
  override void Close ();
}

Close Open

null
Hashtable cache

closed
null
Socket socket

closed

notnull
Hashtable cache

closed
connected
Socket socket

open
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GetPage method
class WebPageFetcher {

  [InState(“open”)]

  virtual string GetPage (string url) {

    … this.socket …

  }

}

class CachedWebPageFetcher :
   WebPageFetcher {

  [InState(“open”)]

  override string GetPage (string url) {

    … this.cache …

    … base.GetPage(url) …

  }

}

object

WebPageFetcher

open

open

open

this
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GetPage method
class WebPageFetcher {

  …

  [InState(“open”)]

  virtual string GetPage (string url) {

    … this.socket …

  }

}

class CachedWebPageFetcher :
   WebPageFetcher {

  …

  [InState(“open”)]

  override string GetPage (string url) {

    … this.cache …

    … base.GetPage(url) …

  }

}

object

WebPageFetcher

open

open

open

this

open CachedWebPageFetcher
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Establish new typestates

 GetPage leaves object in same typestate
 Open method must change frames from ‘closed’ 

to ‘open’
 How can a method change the typestate of all 

frames?
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Open method (client view)
class WebPageFetcher {

 …

  [ChangesState(“closed”,”open”)]

  virtual void Open (string server);

}

object

WebPageFetcher

closed

closed

closed

this
before

object

WebPageFetcher

open

open

open

this
after



Reliable ComputingStateful Software Interfaces

Open method (implementation)
class WebPageFetcher {

 …

  [ChangesState(“closed”,”open”)]

  virtual void Open (string server) {

    … this.socket = new Socket();

    …

  }

}

object

WebPageFetcher

closed

closed

X

thisbefore

object

WebPageFetcher

open

open

X

thisafter
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Open method (override)
class CachedWebPageFetcher {

 …

 [ChangesState(“closed”,”open”)]

  override void Open (string server) {

    … base.Open(server);

    … this.cache = new Hashtable(); 

  }

}

object

WebPageFetcher

closed

closed

X

thisbefore

object

WebPageFetcher

open

open

X

thisafter

closed CachedWeb… open CachedWebPageFetcher
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Sliding methods

Method signatures differ:
 Virtual call (entire object changes)
 Method specs for C.m (and non-virtual call)

 only prefix including C changes
 frames below C do not change
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Open method (override)
[ChangesState(“closed”,”open”)]

override void Open (string server) {

    … base.Open(server);

    … this.cache = new Hashtable(); 

}

object
WebPage…

closed
closed

X

this

closed CachedWeb…

open
open

X

this

closed

open
open

X

this

open
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Object type-states summary

 Break object state into class frames
 Each frame has individual type state
 Symbolic treatment of type states of subclasses
    (ECOOP04)

 Related work: Spec# object invariants
 Also frame based
 Invariants allowed to depend on base-class fields
 Requires suffix unpacking
 See Journal of Object Technology (JOT article)
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Singularity
 Research agenda: how do we build reliable software?
 Singularity OS

 Based on type safe language and IL verification
 Strong process isolation
 Communication solely by messages

But: message-based code is difficult to write
 Message not understood errors
 Deadlocks

Goal:
 Provide language and tool support for message-based 

programs and systems programming
 Compile time detection of errors
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Sing# Language
 Channel contracts

 Specify typed message passing and valid protocol sequences
 Provide efficient implementation based on pre-allocated receipt buffers

 rep structs
 Hierarchical structures safe to exchange over channels 

 Custom heaps
 Explicit, but compiler verified, resource management for endpoints and 

other exchangeable data
 Switch-receive

 asynchronous event pattern matching
 Overlays

 Type safe structural casts for arrays of scalars

 Deadlock prevention methodology
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Deadlock prevention

 … in dynamically configured communication 
networks.
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Communication model
 Inter-process communication via messages.
 Messages are exchanged over channels

 Assume synchronous

 Channels are point-to-point
 Two endpoints
 Each owned by exactly one process
 Bidirectional

 Endpoints can be sent over a channel
 Processes can fork, partitioning their endpoints
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Communication model explained

Kernel

Kernel Kernel Name
Server

I

III

II

create channel Kernel

IV

fork
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P1

Kernel creates a process
I

III IV

II

Kernel Name
Server Kernel Name

Server

Kernel Name
Server

send a over b

a

b

Kernel Name
Server

fork
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P1

2 processes connect
I

III IV

II

Kernel Name
Server

P2 P1

Kernel Name
Server

P2

P1

Kernel Name
Server

P2
P1

Kernel Name
Server

P2



Reliable ComputingStateful Software Interfaces

Operational semantics
 At each step of the configuration, each process chooses 

one of three actions:
1. Create channel
2.   Fork
3.   Communicate

(by selecting a non-empty subset of its endpoints)

 Deadlock:
 Every process wants to communicate,

but no channel has both endpoints selected.
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P2

P3

P4

A dead lock

P1
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Basic idea: Obstructions
Configuration invariant:

At any point during execution,
for each cycle C in the graph,
 there exists at least one process that witnesses C

 Witness process is responsible for breaking cycle
 A process witnesses a cycle via an obstruction,

ie., a pair of endpoints local to a process connected by a path.
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P3

Breaking the cycle

Selection Strategy:
A process P wanting to 

communicate must select 
at least one endpoint a.

If a is obstructed with b, P 
must also select b.

P1

P2P4
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Instrumented Semantics
 Configurations contain a set of obstructions

O  E x E
 Actions operate on obstructions

 Create channel
 Adds obstruction between new endpoints

 Fork
 Can split obstructed endpoints

 Move a over b
 Sender closure: Add (d, e) if (a,d) and (b,e)
 Receiver closure: Add (a, f) if (c, f)
 Add (a,c) or (d, b) for all (d,a)
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Create Channel

P P
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P2P1

Fork

P
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P

b

P

b

d

Q

c

a

Send a over b (simple)

Q

c

a

d
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Q

P

b

d

e

P
e

d

Q

c

a

Send a over b (2)

c

a

b

Sender closure
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Q

f

Q

f

P

b

P

c

a

Send a over b (3)

c

a

b

Receiver closure
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Type system

 Based on linear treatment of endpoints
 Tracking of obstructions
 Enforcing selection strategy at receives

 Status:
 Still experimenting with expressiveness
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Soundness

 Preservation:
 Every step in the configuration maintains obstruction 

invariant: every cycle is covered by an obstruction
 Progress:

 If all processes want to communicate, the endpoint 
selection strategy guarantees the existence of an 
enabled channel
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Summary: deadlock prevention

 Surprising result
 a modular type system, reasoning only locally, 

guarantees global dead-lock freedom
 Novelty:

 not based on some locking order
 network is dynamically changing
 Network allowed to be cyclic (has to be)
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Conclusion
 World is stateful, need ways to deal with changing state
 Type systems based on spatial logics can express many 

important rules
 Resource management, type states, locking, etc.
 Type systems advantage over first-order logics:

 Higher-order
 Abstraction over predicates 

 Methodology not after-the-fact analysis
 Language provides a programming model for correct usage
 Language makes failures explicit
 Make programmers deal with failures
 Guide programmer from the beginning

 Programming languages based on such ideas
 Under development in research community

 Cyclone, Clay, Sing#, …
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Open Research Questions

 Sweet spot in domain of spatial logics
 Expressive but amenable to automation
 Combination with traditional theories (arithmetic)

 Finding good abstractions for 
combining linear and non-linear data

 Dealing with complicated, cross-module heap 
invariants
 e.g. Subject-Observer pattern
 abstraction gets in the way

 Programming Language design



Reliable ComputingStateful Software Interfaces

Backups
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Clay (Chris Hawblitzel et.al.)
 Explicit memory capabilities and Presburger arithmetic
 Type Mem(i,)
 Explicit embedding of Mem in data, function args, return
 Explicit proof terms

 Coercion functions for proof terms
 Case study: copying GC
 (ATS by Xi is similar in style)
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Cyclone (Morrisett, Jim, Grossman)

 C replacement, very close to C
 Regions, ref counted and unique pointers
 Region lifetimes are stack like

 Provides many useful lifetime constraints
 Very nice syntax and defaults


