
Specifying and Checking Stateful
Software Interfaces

(Lecture 3)
Manuel Fähndrich maf@microsoft.com

Microsoft Research

2005 Summer School on Reliable Computing
Eugene, Oregon

Reliable ComputingStateful Software Interfaces

Lecture 2 (recap)

 Frame axiom
 Type-states using capabilities
 Vault: W2K driver case study
 Recursive data structures
 Unifying non-linear data structures

and linear data

Reliable ComputingStateful Software Interfaces

Lecture 3

 Fractional permissions
 Fugue: Type-states for objects
 Sing# and Singularity

 No more type rules!

Reliable ComputingStateful Software Interfaces

Read-only sharing

 Idea by John Boyland: fractional permissions
{  ! h } , ½{  ! h } ­ ½{  ! h }

 In general
 {  ! h } , k{  ! h } ­ (1-k){  ! h }

 Permission k{  h}
 Write if k = 1
 Read-only otherwise

 Can express temporary sharing
 Useful for multiple threads

Reliable ComputingStateful Software Interfaces

Fugue (MSR)

 C# + annotations only
 No change in the language
 Type states for objects
 Resource/alias management
 Non-null types
 Checker at MSIL level (standard C# compiler)
 Parts of the analysis are used in FxCop

 will ship with VS2005

Reliable ComputingStateful Software Interfaces

Fugue Demo

Reliable ComputingStateful Software Interfaces

Typestates and class invariants

Relate symbolic typestate name with internal class
properties
 Gives meaning to typestates

What do ‘open’ and ‘closed’ mean?

Reliable ComputingStateful Software Interfaces

Typestates and class invariants

Socket socket

closed

Socket socket

open

WebPageFetcher

Close Open

GetPage

[WithProtocol(“open”,”closed”)]

class WebPageFetcher
{

 private Socket socket;

 [Creates(“closed”)]
 public WebPageFetcher ();

 [ChangesState(“closed”,”open”)]

 public void Open (string server);

 [InState(“open”)]

 public string GetPage (string url);

 [ChangesState(“open”,”closed”)]
 public void Close ();
}

Reliable ComputingStateful Software Interfaces

Typestates and class invariants
[WithProtocol(“open”,”closed”)]

class WebPageFetcher
{

 [Null(WhenEnclosingState=“closed”)]

 [InState(“connected”,
 WhenEnclosingState=“open”)]

 private Socket socket;

 [Creates(“closed”)]
 public WebPageFetcher ();

 [ChangesState(“closed”,”open”)]

 public void Open (string server);

 [InState(“open”)]

 public string GetPage (string url);

 [ChangesState(“open”,”closed”)]
 public void Close ();
}

null
Socket socket

closed

connected
Socket socket

open

WebPageFetcher

Close Open

GetPage

Reliable ComputingStateful Software Interfaces

 Named predicate over object state
 connected, open, closed, etc…

 Pack and unpack
 Transitions between abstract named predicate and

field knowledge
 Interpreted and abstract views

x.state == open  x.socket.state == connected

Typestates are predicates

Reliable ComputingStateful Software Interfaces

null
Socket socket

-

connected
Socket socket

-

closed

open

Pack and unpack
Packed view Unpacked view

Unpack

Pack

Unpack = apply definition Pack = prove predicate

Reliable ComputingStateful Software Interfaces

Abstract vs. interpreted typestate

In what contexts are pack and unpack allowed?
 No unpack or pack:

 Completely abstract object view.
 By name matching

 Unpack allowed
 Object invariant visible anywhere

 Pack allowed
 State changes allowed anywhere

Prototype design
 Unpack anywhere
 Pack within scope of class

Reliable ComputingStateful Software Interfaces

Reasoning about objects

 Frame stack and subclass state
 Up- and down-casts
 Object extensions (subclassing)

 Open state model. By default, every predicate on a
frame means true.

 Sliding method semantics
 Example: Caching WebPageFetcher

Reliable ComputingStateful Software Interfaces

Modeling object state
Inheritance hierarchy Frame stack

object

A B

C D E

object

A

D

Subclasses

Reliable ComputingStateful Software Interfaces

Modeling object state
Typestate
 One per class frame
 Single symbolic state

for unknown subclasses

Each frame
 Packed, or
 Unpacked

Frame stack

object

A

D
f : Null
g : Bound

Subclasses

open

open

closed

closed

Reliable ComputingStateful Software Interfaces

Motivation for frame stacks

 Characterize complete object state
 Including unknown subclasses
 Needed for casts
 Modularity

 Invariants do not span frames
 Extensibility : subclasses can interpret typestate individually

 State changes
 How to change state of entire object?
 Code can only directly manipulate concrete frames

Reliable ComputingStateful Software Interfaces

Up- and down-casts

F

open

open

closed

closed

object

A

D

open

open

closed

closed

closed

down-cast to F

Reliable ComputingStateful Software Interfaces

Typestate and subclassing
class CacheWebPageFetcher
 : WebPageFetcher

{

 [Null(WhenEnclosingState=“closed”)]

 [NotNull(WhenEnclosingState=“open”)]

 private Hashtable cache;

 [Creates(“closed”)]
 CachedWebPageFetcher ();

 [ChangesState(“closed”,”open”)]

 override void Open (string server);

 [InState(“open”)]

 override string GetPage (string url);

 [ChangesState(“open”,”closed”)]
 override void Close ();
}

Close Open

null
Hashtable cache

closed
null
Socket socket

closed

notnull
Hashtable cache

closed
connected
Socket socket

open

Reliable ComputingStateful Software Interfaces

GetPage method
class WebPageFetcher {

 [InState(“open”)]

 virtual string GetPage (string url) {

 … this.socket …

 }

}

class CachedWebPageFetcher :
 WebPageFetcher {

 [InState(“open”)]

 override string GetPage (string url) {

 … this.cache …

 … base.GetPage(url) …

 }

}

object

WebPageFetcher

open

open

open

this

Reliable ComputingStateful Software Interfaces

GetPage method
class WebPageFetcher {

 …

 [InState(“open”)]

 virtual string GetPage (string url) {

 … this.socket …

 }

}

class CachedWebPageFetcher :
 WebPageFetcher {

 …

 [InState(“open”)]

 override string GetPage (string url) {

 … this.cache …

 … base.GetPage(url) …

 }

}

object

WebPageFetcher

open

open

open

this

open CachedWebPageFetcher

Reliable ComputingStateful Software Interfaces

Establish new typestates

 GetPage leaves object in same typestate
 Open method must change frames from ‘closed’

to ‘open’
 How can a method change the typestate of all

frames?

Reliable ComputingStateful Software Interfaces

Open method (client view)
class WebPageFetcher {

 …

 [ChangesState(“closed”,”open”)]

 virtual void Open (string server);

}

object

WebPageFetcher

closed

closed

closed

this
before

object

WebPageFetcher

open

open

open

this
after

Reliable ComputingStateful Software Interfaces

Open method (implementation)
class WebPageFetcher {

 …

 [ChangesState(“closed”,”open”)]

 virtual void Open (string server) {

 … this.socket = new Socket();

 …

 }

}

object

WebPageFetcher

closed

closed

X

thisbefore

object

WebPageFetcher

open

open

X

thisafter

Reliable ComputingStateful Software Interfaces

Open method (override)
class CachedWebPageFetcher {

 …

 [ChangesState(“closed”,”open”)]

 override void Open (string server) {

 … base.Open(server);

 … this.cache = new Hashtable();

 }

}

object

WebPageFetcher

closed

closed

X

thisbefore

object

WebPageFetcher

open

open

X

thisafter

closed CachedWeb… open CachedWebPageFetcher

Reliable ComputingStateful Software Interfaces

Sliding methods

Method signatures differ:
 Virtual call (entire object changes)
 Method specs for C.m (and non-virtual call)

 only prefix including C changes
 frames below C do not change

Reliable ComputingStateful Software Interfaces

Open method (override)
[ChangesState(“closed”,”open”)]

override void Open (string server) {

 … base.Open(server);

 … this.cache = new Hashtable();

}

object
WebPage…

closed
closed

X

this

closed CachedWeb…

open
open

X

this

closed

open
open

X

this

open

Reliable ComputingStateful Software Interfaces

Object type-states summary

 Break object state into class frames
 Each frame has individual type state
 Symbolic treatment of type states of subclasses
 (ECOOP04)

 Related work: Spec# object invariants
 Also frame based
 Invariants allowed to depend on base-class fields
 Requires suffix unpacking
 See Journal of Object Technology (JOT article)

Reliable ComputingStateful Software Interfaces

Singularity
 Research agenda: how do we build reliable software?
 Singularity OS

 Based on type safe language and IL verification
 Strong process isolation
 Communication solely by messages

But: message-based code is difficult to write
 Message not understood errors
 Deadlocks

Goal:
 Provide language and tool support for message-based

programs and systems programming
 Compile time detection of errors

Reliable ComputingStateful Software Interfaces

Sing# Language
 Channel contracts

 Specify typed message passing and valid protocol sequences
 Provide efficient implementation based on pre-allocated receipt buffers

 rep structs
 Hierarchical structures safe to exchange over channels

 Custom heaps
 Explicit, but compiler verified, resource management for endpoints and

other exchangeable data
 Switch-receive

 asynchronous event pattern matching
 Overlays

 Type safe structural casts for arrays of scalars

 Deadlock prevention methodology

Reliable ComputingStateful Software Interfaces

Deadlock prevention

 … in dynamically configured communication
networks.

Reliable ComputingStateful Software Interfaces

Communication model
 Inter-process communication via messages.
 Messages are exchanged over channels

 Assume synchronous

 Channels are point-to-point
 Two endpoints
 Each owned by exactly one process
 Bidirectional

 Endpoints can be sent over a channel
 Processes can fork, partitioning their endpoints

Reliable ComputingStateful Software Interfaces

Communication model explained

Kernel

Kernel Kernel Name
Server

I

III

II

create channel Kernel

IV

fork

Reliable ComputingStateful Software Interfaces

P1

Kernel creates a process
I

III IV

II

Kernel Name
Server Kernel Name

Server

Kernel Name
Server

send a over b

a

b

Kernel Name
Server

fork

Reliable ComputingStateful Software Interfaces

P1

2 processes connect
I

III IV

II

Kernel Name
Server

P2 P1

Kernel Name
Server

P2

P1

Kernel Name
Server

P2
P1

Kernel Name
Server

P2

Reliable ComputingStateful Software Interfaces

Operational semantics
 At each step of the configuration, each process chooses

one of three actions:
1. Create channel
2. Fork
3. Communicate

(by selecting a non-empty subset of its endpoints)

 Deadlock:
 Every process wants to communicate,

but no channel has both endpoints selected.

Reliable ComputingStateful Software Interfaces

P2

P3

P4

A dead lock

P1

Reliable ComputingStateful Software Interfaces

Basic idea: Obstructions
Configuration invariant:

At any point during execution,
for each cycle C in the graph,
 there exists at least one process that witnesses C

 Witness process is responsible for breaking cycle
 A process witnesses a cycle via an obstruction,

ie., a pair of endpoints local to a process connected by a path.

Reliable ComputingStateful Software Interfaces

P3

Breaking the cycle

Selection Strategy:
A process P wanting to

communicate must select
at least one endpoint a.

If a is obstructed with b, P
must also select b.

P1

P2P4

Reliable ComputingStateful Software Interfaces

Instrumented Semantics
 Configurations contain a set of obstructions

O  E x E
 Actions operate on obstructions

 Create channel
 Adds obstruction between new endpoints

 Fork
 Can split obstructed endpoints

 Move a over b
 Sender closure: Add (d, e) if (a,d) and (b,e)
 Receiver closure: Add (a, f) if (c, f)
 Add (a,c) or (d, b) for all (d,a)

Reliable ComputingStateful Software Interfaces

Create Channel

P P

Reliable ComputingStateful Software Interfaces

P2P1

Fork

P

Reliable ComputingStateful Software Interfaces

P

b

P

b

d

Q

c

a

Send a over b (simple)

Q

c

a

d

Reliable ComputingStateful Software Interfaces

Q

P

b

d

e

P
e

d

Q

c

a

Send a over b (2)

c

a

b

Sender closure

Reliable ComputingStateful Software Interfaces

Q

f

Q

f

P

b

P

c

a

Send a over b (3)

c

a

b

Receiver closure

Reliable ComputingStateful Software Interfaces

Type system

 Based on linear treatment of endpoints
 Tracking of obstructions
 Enforcing selection strategy at receives

 Status:
 Still experimenting with expressiveness

Reliable ComputingStateful Software Interfaces

Soundness

 Preservation:
 Every step in the configuration maintains obstruction

invariant: every cycle is covered by an obstruction
 Progress:

 If all processes want to communicate, the endpoint
selection strategy guarantees the existence of an
enabled channel

Reliable ComputingStateful Software Interfaces

Summary: deadlock prevention

 Surprising result
 a modular type system, reasoning only locally,

guarantees global dead-lock freedom
 Novelty:

 not based on some locking order
 network is dynamically changing
 Network allowed to be cyclic (has to be)

Reliable ComputingStateful Software Interfaces

Conclusion
 World is stateful, need ways to deal with changing state
 Type systems based on spatial logics can express many

important rules
 Resource management, type states, locking, etc.
 Type systems advantage over first-order logics:

 Higher-order
 Abstraction over predicates

 Methodology not after-the-fact analysis
 Language provides a programming model for correct usage
 Language makes failures explicit
 Make programmers deal with failures
 Guide programmer from the beginning

 Programming languages based on such ideas
 Under development in research community

 Cyclone, Clay, Sing#, …

Reliable ComputingStateful Software Interfaces

Open Research Questions

 Sweet spot in domain of spatial logics
 Expressive but amenable to automation
 Combination with traditional theories (arithmetic)

 Finding good abstractions for
combining linear and non-linear data

 Dealing with complicated, cross-module heap
invariants
 e.g. Subject-Observer pattern
 abstraction gets in the way

 Programming Language design

Reliable ComputingStateful Software Interfaces

Backups

Reliable ComputingStateful Software Interfaces

Clay (Chris Hawblitzel et.al.)
 Explicit memory capabilities and Presburger arithmetic
 Type Mem(i,)
 Explicit embedding of Mem in data, function args, return
 Explicit proof terms

 Coercion functions for proof terms
 Case study: copying GC
 (ATS by Xi is similar in style)

Reliable ComputingStateful Software Interfaces

Cyclone (Morrisett, Jim, Grossman)

 C replacement, very close to C
 Regions, ref counted and unique pointers
 Region lifetimes are stack like

 Provides many useful lifetime constraints
 Very nice syntax and defaults

