
Specifying and Checking Stateful
Software Interfaces

(Lecture 3)
Manuel Fähndrich maf@microsoft.com

Microsoft Research

2005 Summer School on Reliable Computing
Eugene, Oregon

Reliable ComputingStateful Software Interfaces

Lecture 2 (recap)

 Frame axiom
 Type-states using capabilities
 Vault: W2K driver case study
 Recursive data structures
 Unifying non-linear data structures

and linear data

Reliable ComputingStateful Software Interfaces

Lecture 3

 Fractional permissions
 Fugue: Type-states for objects
 Sing# and Singularity

 No more type rules!

Reliable ComputingStateful Software Interfaces

Read-only sharing

 Idea by John Boyland: fractional permissions
{ ! h } , ½{ ! h } ½{ ! h }

 In general
 { ! h } , k{ ! h } (1-k){ ! h }

 Permission k{ h}
 Write if k = 1
 Read-only otherwise

 Can express temporary sharing
 Useful for multiple threads

Reliable ComputingStateful Software Interfaces

Fugue (MSR)

 C# + annotations only
 No change in the language
 Type states for objects
 Resource/alias management
 Non-null types
 Checker at MSIL level (standard C# compiler)
 Parts of the analysis are used in FxCop

 will ship with VS2005

Reliable ComputingStateful Software Interfaces

Fugue Demo

Reliable ComputingStateful Software Interfaces

Typestates and class invariants

Relate symbolic typestate name with internal class
properties
 Gives meaning to typestates

What do ‘open’ and ‘closed’ mean?

Reliable ComputingStateful Software Interfaces

Typestates and class invariants

Socket socket

closed

Socket socket

open

WebPageFetcher

Close Open

GetPage

[WithProtocol(“open”,”closed”)]

class WebPageFetcher
{

 private Socket socket;

 [Creates(“closed”)]
 public WebPageFetcher ();

 [ChangesState(“closed”,”open”)]

 public void Open (string server);

 [InState(“open”)]

 public string GetPage (string url);

 [ChangesState(“open”,”closed”)]
 public void Close ();
}

Reliable ComputingStateful Software Interfaces

Typestates and class invariants
[WithProtocol(“open”,”closed”)]

class WebPageFetcher
{

 [Null(WhenEnclosingState=“closed”)]

 [InState(“connected”,
 WhenEnclosingState=“open”)]

 private Socket socket;

 [Creates(“closed”)]
 public WebPageFetcher ();

 [ChangesState(“closed”,”open”)]

 public void Open (string server);

 [InState(“open”)]

 public string GetPage (string url);

 [ChangesState(“open”,”closed”)]
 public void Close ();
}

null
Socket socket

closed

connected
Socket socket

open

WebPageFetcher

Close Open

GetPage

Reliable ComputingStateful Software Interfaces

 Named predicate over object state
 connected, open, closed, etc…

 Pack and unpack
 Transitions between abstract named predicate and

field knowledge
 Interpreted and abstract views

x.state == open x.socket.state == connected

Typestates are predicates

Reliable ComputingStateful Software Interfaces

null
Socket socket

-

connected
Socket socket

-

closed

open

Pack and unpack
Packed view Unpacked view

Unpack

Pack

Unpack = apply definition Pack = prove predicate

Reliable ComputingStateful Software Interfaces

Abstract vs. interpreted typestate

In what contexts are pack and unpack allowed?
 No unpack or pack:

 Completely abstract object view.
 By name matching

 Unpack allowed
 Object invariant visible anywhere

 Pack allowed
 State changes allowed anywhere

Prototype design
 Unpack anywhere
 Pack within scope of class

Reliable ComputingStateful Software Interfaces

Reasoning about objects

 Frame stack and subclass state
 Up- and down-casts
 Object extensions (subclassing)

 Open state model. By default, every predicate on a
frame means true.

 Sliding method semantics
 Example: Caching WebPageFetcher

Reliable ComputingStateful Software Interfaces

Modeling object state
Inheritance hierarchy Frame stack

object

A B

C D E

object

A

D

Subclasses

Reliable ComputingStateful Software Interfaces

Modeling object state
Typestate
 One per class frame
 Single symbolic state

for unknown subclasses

Each frame
 Packed, or
 Unpacked

Frame stack

object

A

D
f : Null
g : Bound

Subclasses

open

open

closed

closed

Reliable ComputingStateful Software Interfaces

Motivation for frame stacks

 Characterize complete object state
 Including unknown subclasses
 Needed for casts
 Modularity

 Invariants do not span frames
 Extensibility : subclasses can interpret typestate individually

 State changes
 How to change state of entire object?
 Code can only directly manipulate concrete frames

Reliable ComputingStateful Software Interfaces

Up- and down-casts

F

open

open

closed

closed

object

A

D

open

open

closed

closed

closed

down-cast to F

Reliable ComputingStateful Software Interfaces

Typestate and subclassing
class CacheWebPageFetcher
 : WebPageFetcher

{

 [Null(WhenEnclosingState=“closed”)]

 [NotNull(WhenEnclosingState=“open”)]

 private Hashtable cache;

 [Creates(“closed”)]
 CachedWebPageFetcher ();

 [ChangesState(“closed”,”open”)]

 override void Open (string server);

 [InState(“open”)]

 override string GetPage (string url);

 [ChangesState(“open”,”closed”)]
 override void Close ();
}

Close Open

null
Hashtable cache

closed
null
Socket socket

closed

notnull
Hashtable cache

closed
connected
Socket socket

open

Reliable ComputingStateful Software Interfaces

GetPage method
class WebPageFetcher {

 [InState(“open”)]

 virtual string GetPage (string url) {

 … this.socket …

 }

}

class CachedWebPageFetcher :
 WebPageFetcher {

 [InState(“open”)]

 override string GetPage (string url) {

 … this.cache …

 … base.GetPage(url) …

 }

}

object

WebPageFetcher

open

open

open

this

Reliable ComputingStateful Software Interfaces

GetPage method
class WebPageFetcher {

 …

 [InState(“open”)]

 virtual string GetPage (string url) {

 … this.socket …

 }

}

class CachedWebPageFetcher :
 WebPageFetcher {

 …

 [InState(“open”)]

 override string GetPage (string url) {

 … this.cache …

 … base.GetPage(url) …

 }

}

object

WebPageFetcher

open

open

open

this

open CachedWebPageFetcher

Reliable ComputingStateful Software Interfaces

Establish new typestates

 GetPage leaves object in same typestate
 Open method must change frames from ‘closed’

to ‘open’
 How can a method change the typestate of all

frames?

Reliable ComputingStateful Software Interfaces

Open method (client view)
class WebPageFetcher {

 …

 [ChangesState(“closed”,”open”)]

 virtual void Open (string server);

}

object

WebPageFetcher

closed

closed

closed

this
before

object

WebPageFetcher

open

open

open

this
after

Reliable ComputingStateful Software Interfaces

Open method (implementation)
class WebPageFetcher {

 …

 [ChangesState(“closed”,”open”)]

 virtual void Open (string server) {

 … this.socket = new Socket();

 …

 }

}

object

WebPageFetcher

closed

closed

X

thisbefore

object

WebPageFetcher

open

open

X

thisafter

Reliable ComputingStateful Software Interfaces

Open method (override)
class CachedWebPageFetcher {

 …

 [ChangesState(“closed”,”open”)]

 override void Open (string server) {

 … base.Open(server);

 … this.cache = new Hashtable();

 }

}

object

WebPageFetcher

closed

closed

X

thisbefore

object

WebPageFetcher

open

open

X

thisafter

closed CachedWeb… open CachedWebPageFetcher

Reliable ComputingStateful Software Interfaces

Sliding methods

Method signatures differ:
 Virtual call (entire object changes)
 Method specs for C.m (and non-virtual call)

 only prefix including C changes
 frames below C do not change

Reliable ComputingStateful Software Interfaces

Open method (override)
[ChangesState(“closed”,”open”)]

override void Open (string server) {

 … base.Open(server);

 … this.cache = new Hashtable();

}

object
WebPage…

closed
closed

X

this

closed CachedWeb…

open
open

X

this

closed

open
open

X

this

open

Reliable ComputingStateful Software Interfaces

Object type-states summary

 Break object state into class frames
 Each frame has individual type state
 Symbolic treatment of type states of subclasses
 (ECOOP04)

 Related work: Spec# object invariants
 Also frame based
 Invariants allowed to depend on base-class fields
 Requires suffix unpacking
 See Journal of Object Technology (JOT article)

Reliable ComputingStateful Software Interfaces

Singularity
 Research agenda: how do we build reliable software?
 Singularity OS

 Based on type safe language and IL verification
 Strong process isolation
 Communication solely by messages

But: message-based code is difficult to write
 Message not understood errors
 Deadlocks

Goal:
 Provide language and tool support for message-based

programs and systems programming
 Compile time detection of errors

Reliable ComputingStateful Software Interfaces

Sing# Language
 Channel contracts

 Specify typed message passing and valid protocol sequences
 Provide efficient implementation based on pre-allocated receipt buffers

 rep structs
 Hierarchical structures safe to exchange over channels

 Custom heaps
 Explicit, but compiler verified, resource management for endpoints and

other exchangeable data
 Switch-receive

 asynchronous event pattern matching
 Overlays

 Type safe structural casts for arrays of scalars

 Deadlock prevention methodology

Reliable ComputingStateful Software Interfaces

Deadlock prevention

 … in dynamically configured communication
networks.

Reliable ComputingStateful Software Interfaces

Communication model
 Inter-process communication via messages.
 Messages are exchanged over channels

 Assume synchronous

 Channels are point-to-point
 Two endpoints
 Each owned by exactly one process
 Bidirectional

 Endpoints can be sent over a channel
 Processes can fork, partitioning their endpoints

Reliable ComputingStateful Software Interfaces

Communication model explained

Kernel

Kernel Kernel Name
Server

I

III

II

create channel Kernel

IV

fork

Reliable ComputingStateful Software Interfaces

P1

Kernel creates a process
I

III IV

II

Kernel Name
Server Kernel Name

Server

Kernel Name
Server

send a over b

a

b

Kernel Name
Server

fork

Reliable ComputingStateful Software Interfaces

P1

2 processes connect
I

III IV

II

Kernel Name
Server

P2 P1

Kernel Name
Server

P2

P1

Kernel Name
Server

P2
P1

Kernel Name
Server

P2

Reliable ComputingStateful Software Interfaces

Operational semantics
 At each step of the configuration, each process chooses

one of three actions:
1. Create channel
2. Fork
3. Communicate

(by selecting a non-empty subset of its endpoints)

 Deadlock:
 Every process wants to communicate,

but no channel has both endpoints selected.

Reliable ComputingStateful Software Interfaces

P2

P3

P4

A dead lock

P1

Reliable ComputingStateful Software Interfaces

Basic idea: Obstructions
Configuration invariant:

At any point during execution,
for each cycle C in the graph,
 there exists at least one process that witnesses C

 Witness process is responsible for breaking cycle
 A process witnesses a cycle via an obstruction,

ie., a pair of endpoints local to a process connected by a path.

Reliable ComputingStateful Software Interfaces

P3

Breaking the cycle

Selection Strategy:
A process P wanting to

communicate must select
at least one endpoint a.

If a is obstructed with b, P
must also select b.

P1

P2P4

Reliable ComputingStateful Software Interfaces

Instrumented Semantics
 Configurations contain a set of obstructions

O E x E
 Actions operate on obstructions

 Create channel
 Adds obstruction between new endpoints

 Fork
 Can split obstructed endpoints

 Move a over b
 Sender closure: Add (d, e) if (a,d) and (b,e)
 Receiver closure: Add (a, f) if (c, f)
 Add (a,c) or (d, b) for all (d,a)

Reliable ComputingStateful Software Interfaces

Create Channel

P P

Reliable ComputingStateful Software Interfaces

P2P1

Fork

P

Reliable ComputingStateful Software Interfaces

P

b

P

b

d

Q

c

a

Send a over b (simple)

Q

c

a

d

Reliable ComputingStateful Software Interfaces

Q

P

b

d

e

P
e

d

Q

c

a

Send a over b (2)

c

a

b

Sender closure

Reliable ComputingStateful Software Interfaces

Q

f

Q

f

P

b

P

c

a

Send a over b (3)

c

a

b

Receiver closure

Reliable ComputingStateful Software Interfaces

Type system

 Based on linear treatment of endpoints
 Tracking of obstructions
 Enforcing selection strategy at receives

 Status:
 Still experimenting with expressiveness

Reliable ComputingStateful Software Interfaces

Soundness

 Preservation:
 Every step in the configuration maintains obstruction

invariant: every cycle is covered by an obstruction
 Progress:

 If all processes want to communicate, the endpoint
selection strategy guarantees the existence of an
enabled channel

Reliable ComputingStateful Software Interfaces

Summary: deadlock prevention

 Surprising result
 a modular type system, reasoning only locally,

guarantees global dead-lock freedom
 Novelty:

 not based on some locking order
 network is dynamically changing
 Network allowed to be cyclic (has to be)

Reliable ComputingStateful Software Interfaces

Conclusion
 World is stateful, need ways to deal with changing state
 Type systems based on spatial logics can express many

important rules
 Resource management, type states, locking, etc.
 Type systems advantage over first-order logics:

 Higher-order
 Abstraction over predicates

 Methodology not after-the-fact analysis
 Language provides a programming model for correct usage
 Language makes failures explicit
 Make programmers deal with failures
 Guide programmer from the beginning

 Programming languages based on such ideas
 Under development in research community

 Cyclone, Clay, Sing#, …

Reliable ComputingStateful Software Interfaces

Open Research Questions

 Sweet spot in domain of spatial logics
 Expressive but amenable to automation
 Combination with traditional theories (arithmetic)

 Finding good abstractions for
combining linear and non-linear data

 Dealing with complicated, cross-module heap
invariants
 e.g. Subject-Observer pattern
 abstraction gets in the way

 Programming Language design

Reliable ComputingStateful Software Interfaces

Backups

Reliable ComputingStateful Software Interfaces

Clay (Chris Hawblitzel et.al.)
 Explicit memory capabilities and Presburger arithmetic
 Type Mem(i,)
 Explicit embedding of Mem in data, function args, return
 Explicit proof terms

 Coercion functions for proof terms
 Case study: copying GC
 (ATS by Xi is similar in style)

Reliable ComputingStateful Software Interfaces

Cyclone (Morrisett, Jim, Grossman)

 C replacement, very close to C
 Regions, ref counted and unique pointers
 Region lifetimes are stack like

 Provides many useful lifetime constraints
 Very nice syntax and defaults

