Checking Type Safety of Foreign Function Calls

Michael Furr and Jeffrey S. Foster

Introduction

* Many languages contain a foreign function
interface (FFI)

= OCaml, Java, SML, Haskell, COM, SOM, ...

= Allows access to functions written in other languages

* Lots of reasons to use them
= Pre-existing library (e.g., system routines)
= Suitability of language for particular problem

= Performance of other language

Checking Type Safety of Foreign Function Calls

Dangers of FFls

* Unfortunately, FFls are often easy to misuse

= Little or no checking done at language boundary

* Goal: Enforce safety of multi-lingual programs
= Are types respected by the interface?
- Is an integer on one side and integer on the other?
= Are resources used correctly?

- Are GC invariants respected?

Checking Type Safety of Foreign Function Calls

Our Approach

Today

Checking Safety of OCaml’s FFl to C [PLDI 2005]

* OCaml: Strongly-typed, mostly-functional, GC

» C:Type-unsafe, imperative, explicit alloc/free

* FFlis lightweight and fairly typical
= Most of the work done by C “glue” code

- Macros and functions to manipulate OCaml data

* Ideas apply to other systems

Checking Type Safety of Foreign Function Calls

* Static (compile-time) analysis tool

= Finds FFl errors in multi-lingual OCaml/C programs

* Key design point: Only as complex as necessary
= FFl glue code is messy
- ..but not all that complicated (to avoid mistakes!)

= We can use fairly simple analysis in surprising places

- E.g., to track values of integers precisely

Checking Type Safety of Foreign Function Calls

The OCaml FFI

* OCaml:

external ml_foo : int -> int list -> unit = “c_foo”

e C:

value c_foo(value int arg, value int list arg);

= value can be either a primitive (int, unit) or a pointer
to the ML heap (int list)

= Linker checks for presence of symbol

- No other checks

Checking Type Safety of Foreign Function Calls

The value type

* value represents both primitives and pointers:

typedef long value;

= “Conflating” foreign types together common design
- E.g., most classes have type jobject in JNI
= Manipulated using macros and functions

= No checking that value is used correctly...

Checking Type Safety of Foreign Function Calls

Physical Representations of Data

typet =
A of int A tag=0 |int
| B
B
| C of int *int E
| D

C tag=1 |int | int

Checking Type Safety of Foreign Function Calls

Accessing Primitives

» Unboxed data (e.g., int) has low bit set to |
= 0:int =B = unit

= Enables GC to distinguish pointers

* Val_int() and Int_val() perform shifting ops
= Can you guess which is which?

= Worse: Can apply either to a pointer

- Since value is a typedef of long

Checking Type Safety of Foreign Function Calls

Example: “Pattern Matching”

Accessing Structured Blocks

* Field(x, i) — read ith field of x
= Expands to *((value *) x + i)
* Tag val() — read tag in header

= Tag of a tuple or record not in sum is 0

- Notice overlapping physical representation

¢ Both can be misused

= Apply to a primitive, access outside of block

* Use Is_long() to distinguish unboxed/boxed data

Checking Type Safety of Foreign Function Calls 10

t t =
if (Is_long(x)) { yf\eof int
B
if (Int_val(x) == 0) : C of int * int
/* B */ | D
if (Int_val(x) == 1)
/* D */
} else {
if (Tag_val(x) == 0)
/* A */
if (Tag_val(x) == 1)
/* C */

}

Checking Type Safety of Foreign Function Calls

Overlap of Physical Representations

* Our goal: Track OCaml types through C code

= But C code can see physical overlap of OCaml data

(™ Lo [m]im]m]

- Could be int * int * int

- Could be Foo of type t' = Foo of int * int *int | ...

00...001

- Could be 0 :int or unit or Bar of type t” = Bar | ...

Checking Type Safety of Foreign Function Calls

Representational Types

* Representational type (C, S) models such data
= C =# of nullary constructors, 0 if none

= S = arg types of other constructors, 0 if none

* Examples:
= int = (0, 0)
= int * int = (0, (©0,0)*(®0,0))
= typet=Aofint|B| Cofint*int|D
= (2,(%0,0) + (,0%(=,0))

Checking Type Safety of Foreign Function Calls

Original Type Systems

mitype = unit | int | mltype X mitype
| S+---+ S| mitype ref
| mltype — mitype
S u= Constr | Constr of mltype
(a) OCaml Type Grammar
ctype :: void | int | value | ctype *

| ctype X ... X ctype — ctype
(b) C Type Grammar

Checking Type Safety of Foreign Function Calls 14

Multi-Lingual Type System

ct u= void|int | mt value | ct *
| ct X -+ X ct — ct
mt o | mt — mt | ct custom | (¥, X)
¥ o= Y|n|T
Y = o|0|II+X
I == 7|0|mtxII

Checking Type Safety of Foreign Function Calls

The Need for Flow-Sensitivity

Type Inference

* Input: A program written in OCaml and C

* Step |: Analyze OCaml source
= Extract types of external functions

= Convert into representational types

* Step 2: Analyze C source
= Infer ML types for value arguments
= Check for consistency with results from step |

Checking Type Safety of Foreign Function Calls 16

* Recall our pattern matching code
if (Is_long(x)) {

if (Int_val(x) == 0)
} else
if (Tag val(x) == 0)

...Field(x, 0)...
}

* For inference, need to track
= Results of conditional tests
= Precise integer values

= Offsets into structured blocks

Checking Type Safety of Foreign Function Calls

Dataflow Analysis

* Extend the C type value to boxed or
unboxed

(C, S) value[B{l}] T

Representational

offset ifi
Type value (if int)

block tag (if ptr)

(G, S) flow-insensitive (a value has one OCaml type)

B, I, T flow-sensitive (vary by program point)
- These may also be Top if unknown

Checking Type Safety of Foreign Function Calls 18

Lattices for B, I, T

B T I, T: T
AN AN
boxed unboxed 0 1 2 ..
N S S\
1 1
Checking Type Safety of Foreign Function Calls 19

Inferring Integers

value succ(value v) { v: (g, 0) value[Top{0}]{Top}
int next = Int_val(v) + [; o=0

return Val_int(next);

Checking Type Safety of Foreign Function Calls 2

Inferring Tuples

value fst(value v) { v: (y, o) value[Top{0}]{Top}

value f = Field(v, 0); =0, o=n+0,
n=o*x
return f;
Checking Type Safety of Foreign Function Calls 21

Type Rules for Expressions

* Rules construct and consume types and tags

= These rules are not flow-sensitive, since expressions
don’t have side effects

INT EXP

I,Ptn:int{T,0,n}

VAL DEREF EXp
T, P+ e: mt value{boxed, n, m}
mt = (Y, 7m0 + - + Tm + 0)

Tm = @0 X ... X Qp X T P, m;, 0, a;, 7 fresh
I, P *e: ay value{T,0, T}

Checking Type Safety of Foreign Function Calls 2

Inferring Sum Types

v: (), 0) value[Top{0}]{Top}

if (Is_long(x)) {
<«—v:..[unboxed{0}]{Top}
P2l if (Int_val(x) == 0)
1% B*
P22 if (Int_val(x) == 1)

<«—v:..[unboxed{0}]{0}

¥ D * <+—v: ...[unboxed{0}]{I}
}else {
<«—v: ...[boxed{0}]{Top}
o=n+0" if (Tag_val(x) == 0)
PEAH <«—v:..[boxed{0}]{0}
o'=n'+0o’ if (Tag_val(x) == 1)
[C ¥ <«—v:..[boxed{0}]{1}
}
Checking Type Safety of Foreign Function Calls 2

Types Rules for Statements

* In practice, only need flow-sensitive locals
= Tracking the heap is much more complicated

* Idea: Make I' both an input and an output
= Also need to track [at join points

Initial
environment ——>I, G s, T"

Output
Map from labels to environment
environments
Checking Type Safety of Foreign Function Calls 24

Types Rules for Statements (cont’d)

SEQ STMT
I,G,P+s, IV TI',G,PF sp, T
I,G,PF sy;s0,I"

LBL ST™MT
G(L),G,PF s,T' I'C G(L)

I,G,P+ L: s, T’

GOTO STMT
G:=G[L— G(L)UT]

I',G, P goto L,reset(l)

Checking Type Safety of Foreign Function Calls 2

Types Rules for Statements (cont’d)

VSET STMT
I,PFe:ct{B,I,T}

IG,P+uaz:=e'lx— ct{B,I,T}]

IF UNBOXED STMT
', Pt z:mtvalue{B,0,T}
I = I'[z + mt value{unboxed, 0, T}]
G:=G[L— G(L)uTr’]
I',G, P F if unboxed(z) then L,T'[x — mt value{boxed, 0, T}

Checking Type Safety of Foreign Function Calls 2%

Soundness

* We can prove soundness via standard subject-
reduction techniques

= Proof for restricted version of the system

» Theorem: If a program is well-typed, then it
does not get stuck

= l.e,, OCaml data is never used at the wrong type

Garbage Collection

* C FFI functions need to play nice with the GC
= Pointers from C to the OCaml heap must be registered
- Otherwise the OCaml GC may corrupt them
= Easy to forget to do, especially for indirect calls

= Difficult to find this error with testing

* When can a GC occur?

= Any time a C function calls the OCaml runtime

- E.g, to call a function, to allocate memory, etc.

Checking Type Safety of Foreign Function Calls 28

Checking Type Safety of Foreign Function Calls 27
Example
value bar(value list) { value foo(value arg) {
CAMLparam | (list); bar(arg);
CAMLlocal l (temp); return(arg);

temp = alloc_tuple(2); }
CAMLreturn(Val_unit);
}

* What'’s wrong with foo?

= Doesn't register its parameter

Checking Type Safety of Foreign Function Calls 29

Checking GC Safety

* Algorithm
= Build a call graph of the C code
» Letf beacalltofatlinei
» Let P(f) = unprotected locals and parameters at call
= Check: If path from f to function that may call GC,
require P(f) = 0

foo() » bar() » alloc_tuple()

P(foo) ={arg} error:non-empty

Checking Type Safety of Foreign Function Calls 30

Checking GC Safety with Effects

* Formally, use effects to check GC safety
= Effects “may call GC” and “will not call GC”
= Add to C function types:

ct X ---Xct—=gc ct

GC ==] gc]nogc

* Also uses standard liveness analysis

= Don’t warn about unprotected but dead locals

Checking Type Safety of Foreign Function Calls

Type Rule

APP
T,PFf:ect) x - xcth —ger ct
I,PFe;:cti{B;,0,T;} ct; = ct} i€l.n
I Pt cur_func: - —gc -
GC'CGC gcC GC = (ValPtrs(T) N live(T")) C P
I,PF f(e1,...,en): ct{T,0, T}

Checking Type Safety of Foreign Function Calls

Custom Types

» C data can be passed to OCaml opaquely
= E.g, pointers to window or button objects
= Assigned opaque type by programmer

* No guarantee types are used safely

= Could perform C type cast by going through OCaml!

* Our systems extends ML types with C types:
ct == void | int | mt value | ct *
mt = o« mt— mt| ctcustom | (¥,)

Checking Type Safety of Foreign Function Calls 33

Implementation: Phase 1, OCaml

Tool built from camlp4 preprocessor

* Analyzes OCaml source and extracts types of
foreign functions

= Concretizes any abstract types in modules

= Fully resolves all aliases

* Incrementally updates central type repository

= Seeded with types from standard library

* Result: Type environment fed into Phase 2

Checking Type Safety of Foreign Function Calls

Algorithm

» Apply type inference rules iteratively, until we
reach a fixpoint with B, I, and T facts

= Generates constraints ct = ct' and mt = mt'
- Solved with standard type unification
= Generates constraints GC < GC'

- Solved with reachability (atomic subtyping constraints/
qualifiers)

= Also generates some additional constraints (not
shown) that can be solved easily

Checking Type Safety of Foreign Function Calls

Implementation: Phase 2, C

* Second tool built using CIL

= This is the tool that issues warnings etc.

* Int_val(), Tag_val(), etc. recognized using syntactic
pattern matching

= Modified OCaml header file so we can track macros
through expansion

= Tests look a bit more complicated in source, but still
easy to identify the cases in practice

Checking Type Safety of Foreign Function Calls

Handling Features of C

* Warnings for global values
= Need to register them, but we don’t check for this
= Not common in practice (10 warnings)
* C has address-of operator &
= If &x taken for local x, treat like global
* Type casts handled with unsound heuristics
= Goal: Track C data embedded in OCaml
* Function pointers yield warnings
= Only added 8 warnings to benchmarks

Checking Type Safety of Foreign Function Calls 37

More Features of OCaml

* Type system does not include objects

= But neither do FFl programs we looked at

* No parametric polymorphism for FFl functions
= Allow annotation to be added by hand

= Only needed 4 times

* Polymorphic variants not handled
= Results in some false positives

Checking Type Safety of Foreign Function Calls 38

Experimental Results

Program | C loc | OCaml loc | Time (s) || Errors | Warnings | False Pos | Imprecision
apm-1.00 124 156 1.3 0 0 0 0
camlzip-1.01 139 820 1.7 0 0 0 1
ocaml-mad-0.1.0 139 38 4.2 1 0 0 0
ocaml-ssl-0.1.0 187 151 1.5 4 2 0 0
ocaml-glpk-0.1.1 305 147 1.3 4 1 0 1
27-0.5.5 572 192 2.2 0 1 0 1
ocaml-vorbis-0.1.1 1183 443 2.8 1 0 0 2
ftplib-0.12 1401 21 1.7 1 2 0 1
lablgl-1.00 1586 1357 7.5 4 5 140 20
cryptokit-1.2 2173 2315 5.4 0 0 0 1
lablgtk-2.2.0 5998 14847 61.3 9 11 74 48
Total 24 22 214 75
Note: Time includes compilation
Checking Type Safety of Foreign Function Calls 39

Warnings: Questionable Coding

* Forgetting to add unit parameter to C fn
= OCaml: external £ : int -> unit -> unit = “£”

= C: value f (value x);

* Polymorphism abuse
= OCaml: type input_channel, output channel
= OCaml: external seek : int -> ’a -> unit = “seek”

» C: value seek (value pos, value file);

Checking Type Safety of Foreign Function Calls 41

Common Errors

* Forgetting to register C pointer to ML heap
= 3 errors
* Forgetting to release a registered pointer
= 2 errors
* Remainder are type mismatches (19 errors)
= 5 errors due toVal_int instead of Int_val or reverse
= | due to forgetting that an argument was in an option
- OCaml: external £ : ?x: int -> unit = “f£”
- C:value f(value x) { int bar = Int_val(x);

= Others similar

Checking Type Safety of Foreign Function Calls 40

Imprecision and False Positives

* Tags and offsets are sometimes Top
* Globals and function pointers
* Polymorphic variants

* Pointer arithmetic disguised as long arithmetic

= (tH)v + | == (t%) (v + sizeof(t¥))

- Our system gets confused

Checking Type Safety of Foreign Function Calls 0

Future Work

* Ensure immutable data not changed by C code

= Could yield unexpected results

* Improved handling of polymorphic variants

= Will require some programmer annotations
» Check safety of unsafe code within OCaml

* Extend to other FFls

Checking Type Safety of Foreign Function Calls

43

Conclusion

* FFlIs are a useful part of a language

* FFl code is messy

= But not complicated, hence analyzable

* Our system: A multi-lingual safety checker
= The first we know of to check glue code

= Shows that FFl need not compromise safety

http://www.cs.umd.edu/~furr/saffire/

Checking Type Safety of Foreign Function Calls

