
Checking Type Safety of Foreign Function Calls

Michael Furr and Jeffrey S. Foster

Checking Type Safety of Foreign Function Calls 2

Introduction

• Many languages contain a foreign function
interface (FFI)
■ OCaml, Java, SML, Haskell, COM, SOM, ...

■ Allows access to functions written in other languages

• Lots of reasons to use them
■ Pre-existing library (e.g., system routines)

■ Suitability of language for particular problem

■ Performance of other language

Checking Type Safety of Foreign Function Calls 3

Dangers of FFIs

• Unfortunately, FFIs are often easy to misuse
■ Little or no checking done at language boundary

• Goal: Enforce safety of multi-lingual programs
■ Are types respected by the interface?

- Is an integer on one side and integer on the other?

■ Are resources used correctly?

- Are GC invariants respected?

Checking Type Safety of Foreign Function Calls 4

Today

Checking Safety of OCaml’s FFI to C [PLDI 2005]

• OCaml: Strongly-typed, mostly-functional, GC

• C: Type-unsafe, imperative, explicit alloc/free

• FFI is lightweight and fairly typical
■ Most of the work done by C “glue” code

- Macros and functions to manipulate OCaml data

• Ideas apply to other systems

Checking Type Safety of Foreign Function Calls 5

Our Approach

• Static (compile-time) analysis tool
■ Finds FFI errors in multi-lingual OCaml/C programs

• Key design point: Only as complex as necessary
■ FFI glue code is messy

- ...but not all that complicated (to avoid mistakes!)

■ We can use fairly simple analysis in surprising places

- E.g., to track values of integers precisely

Checking Type Safety of Foreign Function Calls 6

The OCaml FFI

• OCaml:
external ml_foo : int -> int list -> unit = “c_foo”

• C:
value c_foo(value int_arg, value int_list_arg);

■ value can be either a primitive (int, unit) or a pointer
to the ML heap (int list)

■ Linker checks for presence of symbol

- No other checks

Checking Type Safety of Foreign Function Calls 7

The value type

• value represents both primitives and pointers:

typedef long value;

■ “Conflating” foreign types together common design

- E.g., most classes have type jobject in JNI

■ Manipulated using macros and functions

■ No checking that value is used correctly...

Checking Type Safety of Foreign Function Calls 8

Physical Representations of Data

type t =

 A of int

| B

| C of int * int

| D

0

1

A

B

C

D

tag=0 int

tag=1 int int

Checking Type Safety of Foreign Function Calls 9

Accessing Primitives

• Unboxed data (e.g., int) has low bit set to 1
■ 0 : int = B = unit

■ Enables GC to distinguish pointers

• Val_int() and Int_val() perform shifting ops
■ Can you guess which is which?

■ Worse: Can apply either to a pointer

- Since value is a typedef of long

Checking Type Safety of Foreign Function Calls 10

Accessing Structured Blocks

• Field(x, i) – read ith field of x
■ Expands to *((value *) x + i)

• Tag_val() – read tag in header
■ Tag of a tuple or record not in sum is 0

- Notice overlapping physical representation

• Both can be misused
■ Apply to a primitive, access outside of block

• Use Is_long() to distinguish unboxed/boxed data

Checking Type Safety of Foreign Function Calls 11

Example: “Pattern Matching”

type t =
 A of int
| B
| C of int * int
| D

if (Is_long(x)) {

 if (Int_val(x) == 0)
 /* B */
 if (Int_val(x) == 1)
 /* D */

} else {

 if (Tag_val(x) == 0)
 /* A */
 if (Tag_val(x) == 1)
 /* C */

}
Checking Type Safety of Foreign Function Calls 12

Overlap of Physical Representations

• Our goal: Track OCaml types through C code
■ But C code can see physical overlap of OCaml data

- Could be int * int * int

- Could be Foo of type t’ = Foo of int * int * int | ...

- Could be 0 : int or unit or Bar of type t’’ = Bar | ...

tag=0 int int int

00...001

Checking Type Safety of Foreign Function Calls 13

Representational Types

• Representational type (C, S) models such data
■ C = # of nullary constructors, 0 if none

■ S = arg types of other constructors, 0 if none

• Examples:

■ int ⇒ (∞, 0)

■ int * int ⇒ (0, (∞,0)*(∞,0))

■ type t = A of int | B | C of int * int | D

 ⇒ (2, (∞,0) + (∞,0)*(∞,0))

Checking Type Safety of Foreign Function Calls

Original Type Systems

14

records and tuples. In order to model these operations, we use an
iterative flow-sensitive dataflow analysis to track offset and tag in-
formation precisely within a function body. Our dataflow analysis
is fairly simple, which turns out to be sufficient in practice because
most programs use the FFI in a simple way, in part to avoid making
mistakes. In our system, the results of dataflow analysis (e.g., where
a pointer points in a structured block) inform unification (e.g., what
the type of that element in the block is). We have proven that a re-
stricted version of our type system is sound (Section 4), modulo
certain features of C such as out-of-bounds array accesses or type
casting.
Finally, recall that OCaml is a garbage-collected language. To

avoid memory corruption problems, before a C program calls
OCaml (which might invoke the garbage collector), it must no-
tify the OCaml runtime system of any pointers it has to the OCaml
heap. This is easy to forget to do, especially when the OCaml run-
time is called indirectly. Our type system includes effects to track
functions that may invoke the OCaml garbage collector and ensure
that pointers to the OCaml heap are registered as necessary.
Most programs include “helper” C functions that take OCaml

values, but are not called directly from OCaml. Thus we construct
an inference system that can infer types for functions that have no
declared OCaml types and can also check functions with annotated
types from the FFI. To test our ideas, we have implemented our in-
ference system and applied it to a small set of 11 benchmarks. Our
implementation takes as input a program written in C and OCaml
and performs type inference over both languages to compute multi-
lingual types.
In our experiments we have found 24 outright bugs in FFI code,

as well as 22 examples of questionable coding practice. Our results
suggest that multi-lingual type inference is a beneficial addition to
an FFI system.
In summary, the contributions of this work are as follows:

• We develop a multi-lingual type inference system for a foreign
function interface. Our system mutually embeds the type sys-
tem of each language within the other. Using this information,
we are able to track type information across foreign function
calls.

• Our type system uses representational types to model the mul-
tiple physical representations of the same type. In order to be
precise enough in practice, our analysis tracks offset and tag
information flow-sensitively, and it uses effects to ensure that
garbage collector invariants are obeyed in the foreign language.
We have proven that a restricted version of our system is sound.

• We describe an implementation of our system for the OCaml
to C foreign function interface. In our experiments, we found
a number of bugs and questionable practices in a small bench-
mark suite.

2. Multi-Lingual Types

We begin by describing OCaml’s foreign function interface to C
and developing a grammar for multi-lingual types.
In a typical use of the OCaml FFI, an OCaml program invokes

a C routine, which in turn invokes a system or user library rou-
tine. The C routine contains “glue” code to manipulate structured
OCaml types and translate between the different data representa-
tions of the two languages.
Figure 1 shows the source language types used in our sys-

tem. OCaml (Figure 1a) includes unit and int types, product types
(records or tuples), and sum types. Sums are composed of type
constructors S, which may optionally take an argument. OCaml
also includes types for updatable references and functions. Other
OCaml types are not supported by our system; see Section 5.1 for
a discussion. C (Figure 1b) includes types void, int, and the type

mltype ::= unit | int | mltype ×mltype

| S + · · · + S | mltype ref

| mltype → mltype

S ::= Constr | Constr ofmltype

(a) OCaml Type Grammar

ctype :: void | int | value | ctype *

| ctype × . . .× ctype → ctype

(b) C Type Grammar

Figure 1. Source Type Languages

value, to which all OCaml data is assigned (see below). C also
includes pointer types, constructed with postfix *, and functions.
To invoke a C function called c name, an OCaml program must

contain a declaration of the form

external f : mltype = “c name”

wheremltype is an OCaml function type. Calling f will invoke the
C function declared as

value c name(value arg1, . . ., value argn);

As this example shows, all OCaml data is given the single type
value in C. However, different OCaml types have various physical
representations that must be treated differently, and there is no
protection in C from mistakenly using OCaml data at the wrong
type. As a motivating example, consider the following OCaml sum
type declaration:

type t = W of int | X | Y of int * int | Z

This type has nullary (no-argument) constructors X and Z and non-
nullary constructors W and Y.
Each nullary constructor in a sum type is numbered from 0

and is represented in memory directly as that integer. Thus to C
functions, nullary constructors look just like OCaml ints, e.g., X
and 0:int are identical. Additionally, the value of type unit is also
represented by the OCaml integer 0.
The low-order bit of such unboxed values is always set to 1 to

distinguish them from pointers. C routines use the macro Val int
to convert to such tagged integers and Int val to convert back.
There are no checks, however, to ensure that these macros are
used correctly or even at all. In particular, in the standard OCaml
distribution the type value is a typedef (alias) of long. Thus one
could mistakenly apply Int val to a boxed value (see below), or
apply Val int to a value. In fact, we found several examples of
these sorts of mistakes in our benchmarks (see Section 5.2).
Each non-nullary constructor in a sum type is also numbered

separately from 0. These constructors are represented as boxed val-
ues or pointers to structured blocks on the heap. A structured block
is an array of values preceded by a header that contains, among
other things, a tag with the constructor number. For example, the
constructor Y of our example type t is represented as

tag=1,...

Pointer

!!
int int

Products that are not part of a sum are represented as structured
blocks with tag 0.
Boxed values are manipulated using the macro Field(x,i),

which expands to *((value*)x+i), i.e., it accesses the ith element
in the structured block pointed to by x. There are no checks to
prevent a programmer from applying Field to an unboxed value
or from accessing past the end of a structured block.

Checking Type Safety of Foreign Function Calls

Multi-Lingual Type System

15

1 if(Is long(x)) {
2 switch(Int val(x)) {
3 case 0: /* X */ break;
4 case 1: /* Z */ break;
5 } } else {
6 switch(Tag val(x)) {
7 case 0: /* W */ break;
8 case 1: /* Y */ break;
9 } }

Figure 2. Code to Examine a value of Type t

ct ::= void | int | mt value | ct *

| ct × · · ·× ct →GC ct

GC ::= γ | gc | nogc

mt ::= α | mt → mt | ct custom | (Ψ, Σ)

Ψ ::= ψ | n | #
Σ ::= σ | ∅ | Π + Σ

Π ::= π | ∅ | mt ×Π

Figure 3.Multi-Lingual Type Language

Clearly a value of type t may have many different represen-
tations, depending on its constructor. OCaml provides a series
of macros for testing tags and for determining the boxedness of
a value. For example, code to examine a value of type t is
shown in Figure 2. Here, Is long() on line 1 checks whether
a value is a pointer (by examining the low-order bit). If it is un-
boxed, Int val() on line 2 is used to extract the tag, otherwise
Tag val() is used on line 6 where x is known to be boxed.
In addition to using OCaml data at the correct type, C FFI func-

tions that call the OCaml runtime must notify the garbage collec-
tor of any C pointers to the OCaml heap. To do so, C functions
use macros CAMLparam and CAMLlocal to register parameters and
locals, respectively. If a function registers any such pointers, it
must call CAMLreturn upon exiting to release the pointers. We
have found in our experiments that it is easy to forget to use these
macros, especially when functions only indirectly call the OCaml
runtime (Section 5.2).
All of the macros described above are left unchecked in part

because the correct OCaml types are not available in the C code.
Thus, our goal is to accept the kind of code presented in Figure 2
and infer the possible OCaml types for x. Since a single C value
could represent several OCaml types, a more expressive type sys-
tem is required than that of either C or OCaml. Furthermore, we
wish to only accept C code that does not violate OCaml’s garbage
collector invariants. In order to achieve these goals, we have devel-
oped a combined, multi-lingual type language, shown in Figure 3,
that integrates and generalizes the types in Figure 1.
Our grammar for C types ct embeds extended OCaml typesmt

in the type value, so that we can track OCaml type information
through C. Additionally, we augment function types with an effect
GC, discussed below. Our grammar for OCaml types mt includes
type variables α1 as well as function types and custom types (see
below).
All of the other OCaml types from Figure 1a—unit, int, prod-

ucts, sums, and references—are modeled with a representational

1α is a monomorphic type variable. Our system does not support polymor-
phic OCaml types since they seem to be uncommon in foreign functions in
practice.

type (Ψ, Σ). In this type,Ψ bounds the unboxed values of the type.
For a sum type, Ψ is an exact value n counting the number of
nullary constructors of the type. Integers have the same physical
representation as nullary constructors but could have any value, so
for this case Ψ is !. Ψ may also be a variable ψ. The Σ compo-
nent of a representational type describes its possible boxed values,
if any. Σ is a sequence of products Π, one for each non-nullary
constructor of the type. The position of each Π in the sequence
corresponds to the constructor tag number, and each Π itself con-
tains the types of the elements of the structured block. For exam-
ple, the OCaml type t presented above has representational type
(2, (!, ∅)+(!, ∅)×(!, ∅)))). Here,Ψ = 2 since t has two nullary
constructors (X and Z). Also, Σ contains two product types, the in-
teger type (!, ∅) for W, and the integer pair type (!, ∅) × (!, ∅)
for Y.
Notice in Figure 2 that our C code to examine a value of type t

does not by itself fully specify the type of x. For example, the type
could have another nullary constructor or non-nullary constructor
that is not checked for. Thus our grammars for Σ and Π include
variables σ and π that range over sums and products [21], which
we use to allow sum and product types to grow during inference.
Only when an inferred type is unified with an OCaml type can we
know its size exactly.
Our type language also annotates each function type with a

garbage collection effect GC, which can either be a variable γ,
gc if the function may invoke the OCaml runtime (and thus the
garbage collector), or nogc if it definitely will not. GC naturally
forms the two-point lattice with order nogc $ gc Note that we
reserve≤ for the total ordering over the integers and use$ for other
partial orders. Our type system ensures that all necessary variables
are registered before calling a function with effect gc.
Finally, sometimes it is useful to pass C data and pointers to

OCaml. For example, glue code for a windowing library might
return pointers representing windows or buttons to OCaml. It is
up to the programmer to assign such data appropriate (distinct)
opaque OCaml types, but there is no guarantee that different C
types will not be conflated and perhaps misused. Thus our grammar
for OCaml typesmt includes types ct custom that track the C type
of the embedded data. Our inference system checks that OCaml
code faithfully distinguishes the C types, so that it is not possible
to perform a C type cast by passing a pointer through OCaml.

3. Type System

In this section, we present our multi-lingual type inference system.
Our inference system takes as input a program written in both
OCaml and C and proceeds in two stages. We begin by analyzing
the OCaml source code and converting the source types of FFI
functions into our multi-lingual types (Section 3.1). The second
stage of inference begins with a type environment containing the
converted types and applies our type inference algorithm to the C
source code (Section 3.2) to detect any type errors (Section 3.3).

3.1 Type Inference for OCaml Source Code

The first stage of our algorithm is to translate each external func-
tion type declared in OCaml into our multi-lingual types. We only
analyze the types in the OCaml source code and not the instructions
since the OCaml type checker ensures that the OCaml source code
does not contain any type errors. We then combine the converted
types into an initial type environment ΓI , which is used during the
second stage.
We construct ΓI using the type translation Φ given in Figure 4,

which converts OCaml function types into representational types.
In this definition, we implicitly assume that mltypen is not con-
structed with→, i.e., the arity of the function is n− 1. Φ is defined
in terms of helper function ρ. The translation ρ gives unit and int

Checking Type Safety of Foreign Function Calls 16

Type Inference

• Input: A program written in OCaml and C

• Step 1: Analyze OCaml source
■ Extract types of external functions

■ Convert into representational types

• Step 2: Analyze C source
■ Infer ML types for value arguments

■ Check for consistency with results from step 1

Checking Type Safety of Foreign Function Calls 17

The Need for Flow-Sensitivity

• Recall our pattern matching code

• For inference, need to track
■ Results of conditional tests

■ Precise integer values

■ Offsets into structured blocks

if (Is_long(x)) {
 if (Int_val(x) == 0)
 ...
} else {
 if (Tag_val(x) == 0)
 ...Field(x, 0)...
}

Checking Type Safety of Foreign Function Calls 18

Dataflow Analysis

• Extend the C type value to

(C, S) value[B{I}] T

Representational
Type

boxed or
unboxed

offset value (if int)
block tag (if ptr)

(C, S) flow-insensitive (a value has one OCaml type)

B, I, T flow-sensitive (vary by program point)
	 - These may also be Top if unknown

Checking Type Safety of Foreign Function Calls

Lattices for B, I, T

19

boxed unboxed

!

⊥
0 1

!

⊥
2 ...

B: I, T:

Checking Type Safety of Foreign Function Calls 20

Inferring Integers

value succ(value v) {

 int next = Int_val(v) + 1;

 return Val_int(next);

}

v: (ψ, σ) value[Top{0}]{Top}

σ=0

Checking Type Safety of Foreign Function Calls 21

Inferring Tuples

value fst(value v) {

 value f = Field(v, 0);

 return f;

}

v: (ψ, σ) value[Top{0}]{Top}

ψ=0, σ=π+0,
π = α * π′

Checking Type Safety of Foreign Function Calls 22

Inferring Sum Types

if (Is_long(x)) {

 if (Int_val(x) == 0)
 /* B */
 if (Int_val(x) == 1)
 /* D */

} else {

 if (Tag_val(x) == 0)
 /* A */
 if (Tag_val(x) == 1)
 /* C */

}

v: (ψ, σ) value[Top{0}]{Top}

ψ≥1
v: ...[unboxed{0}]{Top}

v: ...[unboxed{0}]{0}

v: ...[unboxed{0}]{1}
ψ≥2

v: ...[boxed{0}]{Top}

v: ...[boxed{0}]{0}

v: ...[boxed{0}]{1}

σ=π+σ′

σ′=π′+σ′′

Checking Type Safety of Foreign Function Calls

Type Rules for Expressions

• Rules construct and consume types and tags
■ These rules are not flow-sensitive, since expressions

don’t have side effects

23

3.3.3 Expressions

Figure 8 gives our type rules for expressions. These rules include
type environments Γ, which map variables to types ct{B, I, T},
and a protection set P , which contains those variables that have
been registered with the garbage collector by CAMLprotect. Our
rules for expressions prove judgments of the form Γ, P ! e :
ct{B, I, T}, meaning that in type environment Γ and protection
set P , the C expression e has type ct , boxedness B, offset I , and
value/tag T .
We discuss the rules briefly. In all of the rules, we assume that

the program is correct with respect to the standard C types, and that
full C type information is available. Thus some of the rules apply
to the same source construct but are distinguished by the C types
of the subexpressions. We also distinguish between rules based on
the flow-sensitive type of a subexpression as explained below.
The rule (INT EXP) gives an integer the appropriate type, and

(VAR EXP) is standard. (VAL DEREF EXP) extracts a field from
a structured block. To assign a type to the result, e must have a
known tag m and offset n, and we use unification to extract the
field type. Notice that the resulting B and T information is ",
since they are unknown, but the offset is 0, since we will get back
safe OCaml data. This rule, however, cannot handle the case when
records or tuples that are not part of sums are passed to functions,
because their boxedness is not checked before dereferencing. We
use (VAL DEREF TUPLE EXP) in this case, where B is ". This
rule requires that the type have one, non-nullary constructor and no
nullary constructors.
The rule (C DEREF EXP) follows a C pointer. Notice that the

resulting B and T are ". (AOP EXP) performs the operation aop
on T and T ′ in the types. (ADD VAL EXP) computes an offset
into a structured block. Notice that it must be possible to safely
dereference the resulting pointer as the offset cannot be larger than
the width of the block. While this is not strictly necessary (we could
wait until the actual dereference to enforce the size requirement),
it seems like good practice not to form invalid pointers. We use
(ADD VAL TUPLE EXP) for computing offsets into tuples that are
not part of sums. Similar to (VAL DEREF TUPLE EXP), we allowB
to be ", but add the constraint that the type have one, non-nullary
constructor and no nullary constructors. (ADD C EXP) performs
pointer arithmetic on C types other than value.
(CUSTOM EXP) casts a C pointer to a value type, and the result

is given a ct * custom value type with unknown boxedness and
tag. (VAL CAST EXP) allows a custom type to be extracted from
a value of a known pointer type ct *. Notice that this is the only
rule that allows casts from value, which are otherwise forbidden.
We omit other type casts from our formal system; they are handled
with heuristics in our implementation (Section 5.1).
(VAL INT EXP) and (INT VAL EXP) translate between C and

OCaml integers. When a C integer is turned into an OCaml integer
with Val int, we do not yet know whether the result represents an
actual int or whether it is a nullary constructor. Thus we assign it
a fresh representational type (ψ, σ), where T + 1 ≤ ψ. This con-
straint models the fact that e can only be a constructor of a sum
with at least T nullary constructors. Similar to (VAL DEREF TU-
PLE EXP), (INT VAL UNBOXED EXP) handles the case where a
value is used immediately as an integer without a boxedness test.
The (APP) rule models a function call. Technically, function

calls are not expressions in our grammar, but we put this rule
here to make the rules for statements a bit more compact. To
invoke a function, the actual types and the formal types are unified;
notice that the Bi and Ti are discarded, but we require that all
actual arguments are safe (Ii = 0). Additionally, we require that
GC′ $ GC, since if f might call the garbage collector, so might
the current function cur func.

INT EXP

Γ, P ! n : int{", 0, n}

VAR EXP
x ∈ dom(Γ)

Γ, P ! x : Γ(x)

VAL DEREF EXP
Γ, P ! e : mt value{boxed, n, m}

mt = (ψ, π0 + · · · + πm + σ)
πm = α0 × . . .× αn × π ψ, πi, σ, αi, π fresh

Γ, P ! *e : αn value{", 0,"}

VAL DEREF TUPLE EXP
Γ, P ! e : mt value{", n, T}

mt = (0, α0 × · · ·× αn × π) αi, π fresh

Γ, P ! *e : αn value{", 0,"}

C DEREF EXP
Γ, P ! e : ct *{", 0,"}
Γ, P ! *e : ct{", 0,"}

AOP EXP
Γ, P ! e1 : int{", 0, T} Γ, P ! e2 : int{", 0, T ′}

Γ, P ! e1 aop e2 : int{", 0, T aop T ′}

ADD VAL EXP
Γ, P ! e1 : mt value{boxed, n, n′}

Γ, P ! e2 : int{", 0, m} mt = (ψ, π0 + · · · + πn′ + σ)
πn′ = α0 × · · ·× αn+m × π ψ, πi, σ, αi, π fresh

Γ, P ! e1 +p e2 : mt value{boxed, n + m, n′}

ADD VAL TUPLE EXP
Γ, P ! e1 : mt value{", n, n′}

Γ, P ! e2 : int{", 0, m} mt = (0, π0 + · · · + πn′ + σ)
πn′ = α0 × · · ·× αn+m × π πi, σ, αi, π fresh

Γ, P ! e1 +p e2 : mt value{boxed, n + m, n′}

ADD C EXP
Γ, P ! e1 : ct *{", 0,"} Γ, P ! e2 : int{", 0, T}

Γ, P ! e1 +p e2 : ct *{", 0,"}

CUSTOM EXP
Γ, P ! e : ct *{", 0,"}

Γ, P ! (value)e : ct * custom value{", 0,"}

VAL CAST EXP
Γ, P ! e : mt value{B, I, T} mt = ct * custom

Γ, P ! (ct *) e : ct{", 0,"}

VAL INT EXP
Γ, P ! e : int{", 0, T} T + 1 ≤ ψ ψ, σ fresh

Γ, P ! Val int e : (ψ, σ) value{unboxed, 0, T}

INT VAL EXP
Γ, P ! e : mt value{unboxed, 0, T}

Γ, P ! Int val e : int{", 0, T}

INT VAL UNBOXED EXP
Γ, P ! e : mt value{", 0, T} mt = (ψ, ∅) ψ fresh

Γ, P ! Int val e : int{", 0, T}

APP
Γ, P ! f : ct ′

1 × · · ·× ct ′
n →GC′ ct

Γ, P ! ei : cti{Bi, 0, Ti} cti = ct ′
i i ∈ 1..n

Γ, P ! cur func : ·→GC ·
GC′ (GC gc (GC ⇒ (ValPtrs(Γ) ∩ live(Γ)) ⊆ P

Γ, P ! f(e1, . . . , en) : ct{", 0,"}

Figure 8. Type Inference for C Expressions

3.3.3 Expressions

Figure 8 gives our type rules for expressions. These rules include
type environments Γ, which map variables to types ct{B, I, T},
and a protection set P , which contains those variables that have
been registered with the garbage collector by CAMLprotect. Our
rules for expressions prove judgments of the form Γ, P ! e :
ct{B, I, T}, meaning that in type environment Γ and protection
set P , the C expression e has type ct , boxedness B, offset I , and
value/tag T .
We discuss the rules briefly. In all of the rules, we assume that

the program is correct with respect to the standard C types, and that
full C type information is available. Thus some of the rules apply
to the same source construct but are distinguished by the C types
of the subexpressions. We also distinguish between rules based on
the flow-sensitive type of a subexpression as explained below.
The rule (INT EXP) gives an integer the appropriate type, and

(VAR EXP) is standard. (VAL DEREF EXP) extracts a field from
a structured block. To assign a type to the result, e must have a
known tag m and offset n, and we use unification to extract the
field type. Notice that the resulting B and T information is ",
since they are unknown, but the offset is 0, since we will get back
safe OCaml data. This rule, however, cannot handle the case when
records or tuples that are not part of sums are passed to functions,
because their boxedness is not checked before dereferencing. We
use (VAL DEREF TUPLE EXP) in this case, where B is ". This
rule requires that the type have one, non-nullary constructor and no
nullary constructors.
The rule (C DEREF EXP) follows a C pointer. Notice that the

resulting B and T are ". (AOP EXP) performs the operation aop
on T and T ′ in the types. (ADD VAL EXP) computes an offset
into a structured block. Notice that it must be possible to safely
dereference the resulting pointer as the offset cannot be larger than
the width of the block. While this is not strictly necessary (we could
wait until the actual dereference to enforce the size requirement),
it seems like good practice not to form invalid pointers. We use
(ADD VAL TUPLE EXP) for computing offsets into tuples that are
not part of sums. Similar to (VAL DEREF TUPLE EXP), we allowB
to be ", but add the constraint that the type have one, non-nullary
constructor and no nullary constructors. (ADD C EXP) performs
pointer arithmetic on C types other than value.
(CUSTOM EXP) casts a C pointer to a value type, and the result

is given a ct * custom value type with unknown boxedness and
tag. (VAL CAST EXP) allows a custom type to be extracted from
a value of a known pointer type ct *. Notice that this is the only
rule that allows casts from value, which are otherwise forbidden.
We omit other type casts from our formal system; they are handled
with heuristics in our implementation (Section 5.1).
(VAL INT EXP) and (INT VAL EXP) translate between C and

OCaml integers. When a C integer is turned into an OCaml integer
with Val int, we do not yet know whether the result represents an
actual int or whether it is a nullary constructor. Thus we assign it
a fresh representational type (ψ, σ), where T + 1 ≤ ψ. This con-
straint models the fact that e can only be a constructor of a sum
with at least T nullary constructors. Similar to (VAL DEREF TU-
PLE EXP), (INT VAL UNBOXED EXP) handles the case where a
value is used immediately as an integer without a boxedness test.
The (APP) rule models a function call. Technically, function

calls are not expressions in our grammar, but we put this rule
here to make the rules for statements a bit more compact. To
invoke a function, the actual types and the formal types are unified;
notice that the Bi and Ti are discarded, but we require that all
actual arguments are safe (Ii = 0). Additionally, we require that
GC′ $ GC, since if f might call the garbage collector, so might
the current function cur func.

INT EXP

Γ, P ! n : int{", 0, n}

VAR EXP
x ∈ dom(Γ)

Γ, P ! x : Γ(x)

VAL DEREF EXP
Γ, P ! e : mt value{boxed, n, m}

mt = (ψ, π0 + · · · + πm + σ)
πm = α0 × . . .× αn × π ψ, πi, σ, αi, π fresh

Γ, P ! *e : αn value{", 0,"}

VAL DEREF TUPLE EXP
Γ, P ! e : mt value{", n, T}

mt = (0, α0 × · · ·× αn × π) αi, π fresh

Γ, P ! *e : αn value{", 0,"}

C DEREF EXP
Γ, P ! e : ct *{", 0,"}
Γ, P ! *e : ct{", 0,"}

AOP EXP
Γ, P ! e1 : int{", 0, T} Γ, P ! e2 : int{", 0, T ′}

Γ, P ! e1 aop e2 : int{", 0, T aop T ′}

ADD VAL EXP
Γ, P ! e1 : mt value{boxed, n, n′}

Γ, P ! e2 : int{", 0, m} mt = (ψ, π0 + · · · + πn′ + σ)
πn′ = α0 × · · ·× αn+m × π ψ, πi, σ, αi, π fresh

Γ, P ! e1 +p e2 : mt value{boxed, n + m, n′}

ADD VAL TUPLE EXP
Γ, P ! e1 : mt value{", n, n′}

Γ, P ! e2 : int{", 0, m} mt = (0, π0 + · · · + πn′ + σ)
πn′ = α0 × · · ·× αn+m × π πi, σ, αi, π fresh

Γ, P ! e1 +p e2 : mt value{boxed, n + m, n′}

ADD C EXP
Γ, P ! e1 : ct *{", 0,"} Γ, P ! e2 : int{", 0, T}

Γ, P ! e1 +p e2 : ct *{", 0,"}

CUSTOM EXP
Γ, P ! e : ct *{", 0,"}

Γ, P ! (value)e : ct * custom value{", 0,"}

VAL CAST EXP
Γ, P ! e : mt value{B, I, T} mt = ct * custom

Γ, P ! (ct *) e : ct{", 0,"}

VAL INT EXP
Γ, P ! e : int{", 0, T} T + 1 ≤ ψ ψ, σ fresh

Γ, P ! Val int e : (ψ, σ) value{unboxed, 0, T}

INT VAL EXP
Γ, P ! e : mt value{unboxed, 0, T}

Γ, P ! Int val e : int{", 0, T}

INT VAL UNBOXED EXP
Γ, P ! e : mt value{", 0, T} mt = (ψ, ∅) ψ fresh

Γ, P ! Int val e : int{", 0, T}

APP
Γ, P ! f : ct ′

1 × · · ·× ct ′
n →GC′ ct

Γ, P ! ei : cti{Bi, 0, Ti} cti = ct ′
i i ∈ 1..n

Γ, P ! cur func : ·→GC ·
GC′ (GC gc (GC ⇒ (ValPtrs(Γ) ∩ live(Γ)) ⊆ P

Γ, P ! f(e1, . . . , en) : ct{", 0,"}

Figure 8. Type Inference for C Expressions

Checking Type Safety of Foreign Function Calls

Types Rules for Statements

• In practice, only need flow-sensitive locals
■ Tracking the heap is much more complicated

• Idea: Make Γ both an input and an output
■ Also need to track Γ at join points

Γ, G ⊢ s, Γ'

24

Initial
environment

Map from labels to
environments

Output
environment

Checking Type Safety of Foreign Function Calls

Types Rules for Statements (cont’d)

25

SEQ STMT

Γ, G, P ! s1, Γ′ Γ′, G, P ! s2, Γ′′

Γ, G, P ! s1 ; s2, Γ′′

LBL STMT
G(L), G, P ! s, Γ′ Γ " G(L)

Γ, G, P ! L: s, Γ′

GOTO STMT
G := G[L #→ G(L) % Γ]

Γ, G, P ! goto L, reset(Γ)

RET STMT
Γ, P ! e : ct{B, 0, T}

Γ ! cur func : ·→GC ct ′

ct = ct ′ P = ∅
Γ, G, P ! return e, reset(Γ)

CAMLRET STMT
Γ, P ! e : ct{B, 0, T}

Γ, P ! cur func : ·→GC ct ′

ct = ct ′ P '= ∅
Γ, G, P ! CAMLreturn(e), reset(Γ)

LSET STMT
Γ, P ! *(e1 +p n) : ct{(, 0,(}

Γ, P ! e2 : ct ′{B, 0, T}
ct = ct ′

Γ, G, P ! *(e1 +p n) := e2, Γ

VSET STMT
Γ, P ! e : ct{B, I, T}

Γ, G, P ! x := e, Γ[x #→ ct{B, I, T}]

VAR DECL
Γ, P ! e : ct{B, I, T} ct = η(ctype)

Γ, P ! ctype x = e, Γ[x #→ ct{B, I, T}]

CAMLPROTECT DECL
Γ, P ! x : ct{B, I, T}

P := P ∪ {x}
Γ, G, P ! CAMLprotect(x), Γ

IF STMT
Γ, P ! e : int{(, 0, T} G := G[L #→ G(L) % Γ]

Γ, G, P ! if e then L, Γ

IF UNBOXED STMT
Γ, P ! x : mt value{B, 0, T}

Γ′ = Γ[x #→ mt value{unboxed, 0, T}]
G := G[L #→ G(L) % Γ′]

Γ, G, P ! if unboxed(x) then L, Γ[x #→ mt value{boxed, 0, T}]

IF SUM TAG STMT
Γ, P ! x : mt value{boxed, 0, T}

mt = (ψ, π0 + · · · + πn + σ)
Γ′ = Γ[x #→ mt value{boxed, 0, n}]

G := G[L #→ G(L) % Γ′] ψ, πi, σ fresh

Γ, G, P ! if sum tag(x) == n then L, Γ

IF INT TAG STMT
Γ, P ! x : mt value{unboxed, 0, T} mt = (ψ, σ)
n + 1 ≤ ψ Γ′ = Γ[x #→ mt value{unboxed, 0, n}]

G := G[L #→ G(L) % Γ′] ψ, σ fresh

Γ, G, P ! if int tag(x) == n then L, Γ

FUN DECL
ct = η(ctype1)× . . .× η(ctypen) →γ η(ctype)

f ∈ dom(Γ) ⇒ ct = Γ(f) γ fresh

Γ ! function ctype f(ctype1 x, . . . , ctypen x), Γ′[f #→ ct]

FUN DEFN
Γ0 = Γ[xi #→ η(ctypei){(, 0,(}, cur func #→ Γ(f)]

Γi−1, P ! di, Γi i ∈ 1..m P := ∅ P, G fresh

∀L ∈ body of f, G(L) := reset(Γm) Γm, G, P ! s, Γ′

Γ ! function ctype f(ctype1 x1, . . . , ctypen xn) d1 . . . dm; s, Γ

Figure 9. Type Inference for C Statements

Finally, we are left with constraints GC ! GC′. These atomic
subtyping constraints can be solved via graph reachability. Intu-
itively, we can think of the constraint GC ! GC′ as an edge from
GC to GC′. Such edges form a call graph, i.e., there is an edge
from GC to GC′ if the function with effect GC is called by the
function with effect GC′. To determine whether a function with
effect variable γ may call the garbage collector, we simply check
whether there is a path from gc to γ in this graph, and using this
information we ensure that any conditional constraints from (APP)
are satisfied for gc functions.

4. Soundness

We now sketch a proof of soundness for a slightly simplified ver-
sion of our multi-lingual type system that omits function calls,
casting operations, and CAMLprotect and CAMLreturn. Full de-
tails are presented in a companion technical report [10]. We be-
lieve these features can be added without difficulty, though with
more tedium. Thus our proof focuses on checking the sequence of
statements that forms the body of a function, with branches but no
function calls.
The first step is to extend our grammar for expressions to in-

clude C locations l, OCaml integers {n}, and OCaml locations
{l + n} (a pointer on the OCaml heap with base address l and
offset n). We write {l + −1} for the location of the type tag in
the header block. We define the syntactic values v to be these three
forms plus C integers n. As is standard, in our soundness proof we
overload Γ so that in addition to containing types for variables, it
contains types for C locations and OCaml locations. We also add
the empty statement () to our grammar for statements.

Our operational semantics uses three stores to model updatable
references: SC maps C locations to values, SML maps OCaml
locations to values, and V maps local variables to values. In order to
model branches, we also include a statement store D, which maps
labels L, to statements s. Due to lack of space, we omit our small-
step operational semantics, which define a reduction relation of the
form

〈SC , SML, V, s〉 → 〈S′
C , S′

ML, V ′, s′〉

Here, a statement s in state SC , SML, and V , reduces to a new
statement s′ and yields new stores S′

C , S
′
ML, and V ′. We define

→∗ as the reflexive, transitive closure of→.
To show soundness, we require that upon entering a function,

the stores are compatible with the current type environment:

DEFINITION 1 (Compatibility). Γ is said to be compatible with SC ,

SML, and V (written Γ ∼ 〈SC , SML, V 〉) if

1. dom(Γ) = dom(SC) ∪ dom(SML) ∪ dom(V)

2. For all l ∈ SC there exists ct such that Γ ! l : ct *{(, 0,(} and
Γ ! SC(l) : ct{(, 0,(}.

3. For all {l + n} ∈ SML there exist Ψ, Σ, j, k, m, Π0, . . . , Πj ,

mt0, . . . ,mtk such that

• Γ ! {l + n} : (Ψ, Σ) value{boxed, n, m}
• Σ = Π0 + · · · + Πj , m ≤ j
• Πm = mt0 × · · ·×mtk , n ≤ k
• Γ ! SML({l + n}) : mtn value{(, 0,(}
• SML({l +−1}) = m

4. For all x ∈ V , Γ ! V (x) : Γ(x)

SEQ STMT

Γ, G, P ! s1, Γ′ Γ′, G, P ! s2, Γ′′

Γ, G, P ! s1 ; s2, Γ′′

LBL STMT
G(L), G, P ! s, Γ′ Γ " G(L)

Γ, G, P ! L: s, Γ′

GOTO STMT
G := G[L #→ G(L) % Γ]

Γ, G, P ! goto L, reset(Γ)

RET STMT
Γ, P ! e : ct{B, 0, T}

Γ ! cur func : ·→GC ct ′

ct = ct ′ P = ∅
Γ, G, P ! return e, reset(Γ)

CAMLRET STMT
Γ, P ! e : ct{B, 0, T}

Γ, P ! cur func : ·→GC ct ′

ct = ct ′ P '= ∅
Γ, G, P ! CAMLreturn(e), reset(Γ)

LSET STMT
Γ, P ! *(e1 +p n) : ct{(, 0,(}

Γ, P ! e2 : ct ′{B, 0, T}
ct = ct ′

Γ, G, P ! *(e1 +p n) := e2, Γ

VSET STMT
Γ, P ! e : ct{B, I, T}

Γ, G, P ! x := e, Γ[x #→ ct{B, I, T}]

VAR DECL
Γ, P ! e : ct{B, I, T} ct = η(ctype)

Γ, P ! ctype x = e, Γ[x #→ ct{B, I, T}]

CAMLPROTECT DECL
Γ, P ! x : ct{B, I, T}

P := P ∪ {x}
Γ, G, P ! CAMLprotect(x), Γ

IF STMT
Γ, P ! e : int{(, 0, T} G := G[L #→ G(L) % Γ]

Γ, G, P ! if e then L, Γ

IF UNBOXED STMT
Γ, P ! x : mt value{B, 0, T}

Γ′ = Γ[x #→ mt value{unboxed, 0, T}]
G := G[L #→ G(L) % Γ′]

Γ, G, P ! if unboxed(x) then L, Γ[x #→ mt value{boxed, 0, T}]

IF SUM TAG STMT
Γ, P ! x : mt value{boxed, 0, T}

mt = (ψ, π0 + · · · + πn + σ)
Γ′ = Γ[x #→ mt value{boxed, 0, n}]

G := G[L #→ G(L) % Γ′] ψ, πi, σ fresh

Γ, G, P ! if sum tag(x) == n then L, Γ

IF INT TAG STMT
Γ, P ! x : mt value{unboxed, 0, T} mt = (ψ, σ)
n + 1 ≤ ψ Γ′ = Γ[x #→ mt value{unboxed, 0, n}]

G := G[L #→ G(L) % Γ′] ψ, σ fresh

Γ, G, P ! if int tag(x) == n then L, Γ

FUN DECL
ct = η(ctype1)× . . .× η(ctypen) →γ η(ctype)

f ∈ dom(Γ) ⇒ ct = Γ(f) γ fresh

Γ ! function ctype f(ctype1 x, . . . , ctypen x), Γ′[f #→ ct]

FUN DEFN
Γ0 = Γ[xi #→ η(ctypei){(, 0,(}, cur func #→ Γ(f)]

Γi−1, P ! di, Γi i ∈ 1..m P := ∅ P, G fresh

∀L ∈ body of f, G(L) := reset(Γm) Γm, G, P ! s, Γ′

Γ ! function ctype f(ctype1 x1, . . . , ctypen xn) d1 . . . dm; s, Γ

Figure 9. Type Inference for C Statements

Finally, we are left with constraints GC ! GC′. These atomic
subtyping constraints can be solved via graph reachability. Intu-
itively, we can think of the constraint GC ! GC′ as an edge from
GC to GC′. Such edges form a call graph, i.e., there is an edge
from GC to GC′ if the function with effect GC is called by the
function with effect GC′. To determine whether a function with
effect variable γ may call the garbage collector, we simply check
whether there is a path from gc to γ in this graph, and using this
information we ensure that any conditional constraints from (APP)
are satisfied for gc functions.

4. Soundness

We now sketch a proof of soundness for a slightly simplified ver-
sion of our multi-lingual type system that omits function calls,
casting operations, and CAMLprotect and CAMLreturn. Full de-
tails are presented in a companion technical report [10]. We be-
lieve these features can be added without difficulty, though with
more tedium. Thus our proof focuses on checking the sequence of
statements that forms the body of a function, with branches but no
function calls.
The first step is to extend our grammar for expressions to in-

clude C locations l, OCaml integers {n}, and OCaml locations
{l + n} (a pointer on the OCaml heap with base address l and
offset n). We write {l + −1} for the location of the type tag in
the header block. We define the syntactic values v to be these three
forms plus C integers n. As is standard, in our soundness proof we
overload Γ so that in addition to containing types for variables, it
contains types for C locations and OCaml locations. We also add
the empty statement () to our grammar for statements.

Our operational semantics uses three stores to model updatable
references: SC maps C locations to values, SML maps OCaml
locations to values, and V maps local variables to values. In order to
model branches, we also include a statement store D, which maps
labels L, to statements s. Due to lack of space, we omit our small-
step operational semantics, which define a reduction relation of the
form

〈SC , SML, V, s〉 → 〈S′
C , S′

ML, V ′, s′〉

Here, a statement s in state SC , SML, and V , reduces to a new
statement s′ and yields new stores S′

C , S
′
ML, and V ′. We define

→∗ as the reflexive, transitive closure of→.
To show soundness, we require that upon entering a function,

the stores are compatible with the current type environment:

DEFINITION 1 (Compatibility). Γ is said to be compatible with SC ,

SML, and V (written Γ ∼ 〈SC , SML, V 〉) if

1. dom(Γ) = dom(SC) ∪ dom(SML) ∪ dom(V)

2. For all l ∈ SC there exists ct such that Γ ! l : ct *{(, 0,(} and
Γ ! SC(l) : ct{(, 0,(}.

3. For all {l + n} ∈ SML there exist Ψ, Σ, j, k, m, Π0, . . . , Πj ,

mt0, . . . ,mtk such that

• Γ ! {l + n} : (Ψ, Σ) value{boxed, n, m}
• Σ = Π0 + · · · + Πj , m ≤ j
• Πm = mt0 × · · ·×mtk , n ≤ k
• Γ ! SML({l + n}) : mtn value{(, 0,(}
• SML({l +−1}) = m

4. For all x ∈ V , Γ ! V (x) : Γ(x)

SEQ STMT

Γ, G, P ! s1, Γ′ Γ′, G, P ! s2, Γ′′

Γ, G, P ! s1 ; s2, Γ′′

LBL STMT
G(L), G, P ! s, Γ′ Γ " G(L)

Γ, G, P ! L: s, Γ′

GOTO STMT
G := G[L #→ G(L) % Γ]

Γ, G, P ! goto L, reset(Γ)

RET STMT
Γ, P ! e : ct{B, 0, T}

Γ ! cur func : ·→GC ct ′

ct = ct ′ P = ∅
Γ, G, P ! return e, reset(Γ)

CAMLRET STMT
Γ, P ! e : ct{B, 0, T}

Γ, P ! cur func : ·→GC ct ′

ct = ct ′ P '= ∅
Γ, G, P ! CAMLreturn(e), reset(Γ)

LSET STMT
Γ, P ! *(e1 +p n) : ct{(, 0,(}

Γ, P ! e2 : ct ′{B, 0, T}
ct = ct ′

Γ, G, P ! *(e1 +p n) := e2, Γ

VSET STMT
Γ, P ! e : ct{B, I, T}

Γ, G, P ! x := e, Γ[x #→ ct{B, I, T}]

VAR DECL
Γ, P ! e : ct{B, I, T} ct = η(ctype)

Γ, P ! ctype x = e, Γ[x #→ ct{B, I, T}]

CAMLPROTECT DECL
Γ, P ! x : ct{B, I, T}

P := P ∪ {x}
Γ, G, P ! CAMLprotect(x), Γ

IF STMT
Γ, P ! e : int{(, 0, T} G := G[L #→ G(L) % Γ]

Γ, G, P ! if e then L, Γ

IF UNBOXED STMT
Γ, P ! x : mt value{B, 0, T}

Γ′ = Γ[x #→ mt value{unboxed, 0, T}]
G := G[L #→ G(L) % Γ′]

Γ, G, P ! if unboxed(x) then L, Γ[x #→ mt value{boxed, 0, T}]

IF SUM TAG STMT
Γ, P ! x : mt value{boxed, 0, T}

mt = (ψ, π0 + · · · + πn + σ)
Γ′ = Γ[x #→ mt value{boxed, 0, n}]

G := G[L #→ G(L) % Γ′] ψ, πi, σ fresh

Γ, G, P ! if sum tag(x) == n then L, Γ

IF INT TAG STMT
Γ, P ! x : mt value{unboxed, 0, T} mt = (ψ, σ)
n + 1 ≤ ψ Γ′ = Γ[x #→ mt value{unboxed, 0, n}]

G := G[L #→ G(L) % Γ′] ψ, σ fresh

Γ, G, P ! if int tag(x) == n then L, Γ

FUN DECL
ct = η(ctype1)× . . .× η(ctypen) →γ η(ctype)

f ∈ dom(Γ) ⇒ ct = Γ(f) γ fresh

Γ ! function ctype f(ctype1 x, . . . , ctypen x), Γ′[f #→ ct]

FUN DEFN
Γ0 = Γ[xi #→ η(ctypei){(, 0,(}, cur func #→ Γ(f)]

Γi−1, P ! di, Γi i ∈ 1..m P := ∅ P, G fresh

∀L ∈ body of f, G(L) := reset(Γm) Γm, G, P ! s, Γ′

Γ ! function ctype f(ctype1 x1, . . . , ctypen xn) d1 . . . dm; s, Γ

Figure 9. Type Inference for C Statements

Finally, we are left with constraints GC ! GC′. These atomic
subtyping constraints can be solved via graph reachability. Intu-
itively, we can think of the constraint GC ! GC′ as an edge from
GC to GC′. Such edges form a call graph, i.e., there is an edge
from GC to GC′ if the function with effect GC is called by the
function with effect GC′. To determine whether a function with
effect variable γ may call the garbage collector, we simply check
whether there is a path from gc to γ in this graph, and using this
information we ensure that any conditional constraints from (APP)
are satisfied for gc functions.

4. Soundness

We now sketch a proof of soundness for a slightly simplified ver-
sion of our multi-lingual type system that omits function calls,
casting operations, and CAMLprotect and CAMLreturn. Full de-
tails are presented in a companion technical report [10]. We be-
lieve these features can be added without difficulty, though with
more tedium. Thus our proof focuses on checking the sequence of
statements that forms the body of a function, with branches but no
function calls.
The first step is to extend our grammar for expressions to in-

clude C locations l, OCaml integers {n}, and OCaml locations
{l + n} (a pointer on the OCaml heap with base address l and
offset n). We write {l + −1} for the location of the type tag in
the header block. We define the syntactic values v to be these three
forms plus C integers n. As is standard, in our soundness proof we
overload Γ so that in addition to containing types for variables, it
contains types for C locations and OCaml locations. We also add
the empty statement () to our grammar for statements.

Our operational semantics uses three stores to model updatable
references: SC maps C locations to values, SML maps OCaml
locations to values, and V maps local variables to values. In order to
model branches, we also include a statement store D, which maps
labels L, to statements s. Due to lack of space, we omit our small-
step operational semantics, which define a reduction relation of the
form

〈SC , SML, V, s〉 → 〈S′
C , S′

ML, V ′, s′〉

Here, a statement s in state SC , SML, and V , reduces to a new
statement s′ and yields new stores S′

C , S
′
ML, and V ′. We define

→∗ as the reflexive, transitive closure of→.
To show soundness, we require that upon entering a function,

the stores are compatible with the current type environment:

DEFINITION 1 (Compatibility). Γ is said to be compatible with SC ,

SML, and V (written Γ ∼ 〈SC , SML, V 〉) if

1. dom(Γ) = dom(SC) ∪ dom(SML) ∪ dom(V)

2. For all l ∈ SC there exists ct such that Γ ! l : ct *{(, 0,(} and
Γ ! SC(l) : ct{(, 0,(}.

3. For all {l + n} ∈ SML there exist Ψ, Σ, j, k, m, Π0, . . . , Πj ,

mt0, . . . ,mtk such that

• Γ ! {l + n} : (Ψ, Σ) value{boxed, n, m}
• Σ = Π0 + · · · + Πj , m ≤ j
• Πm = mt0 × · · ·×mtk , n ≤ k
• Γ ! SML({l + n}) : mtn value{(, 0,(}
• SML({l +−1}) = m

4. For all x ∈ V , Γ ! V (x) : Γ(x)

Checking Type Safety of Foreign Function Calls

Types Rules for Statements (cont’d)

26

SEQ STMT

Γ, G, P ! s1, Γ′ Γ′, G, P ! s2, Γ′′

Γ, G, P ! s1 ; s2, Γ′′

LBL STMT
G(L), G, P ! s, Γ′ Γ " G(L)

Γ, G, P ! L: s, Γ′

GOTO STMT
G := G[L #→ G(L) % Γ]

Γ, G, P ! goto L, reset(Γ)

RET STMT
Γ, P ! e : ct{B, 0, T}

Γ ! cur func : ·→GC ct ′

ct = ct ′ P = ∅
Γ, G, P ! return e, reset(Γ)

CAMLRET STMT
Γ, P ! e : ct{B, 0, T}

Γ, P ! cur func : ·→GC ct ′

ct = ct ′ P '= ∅
Γ, G, P ! CAMLreturn(e), reset(Γ)

LSET STMT
Γ, P ! *(e1 +p n) : ct{(, 0,(}

Γ, P ! e2 : ct ′{B, 0, T}
ct = ct ′

Γ, G, P ! *(e1 +p n) := e2, Γ

VSET STMT
Γ, P ! e : ct{B, I, T}

Γ, G, P ! x := e, Γ[x #→ ct{B, I, T}]

VAR DECL
Γ, P ! e : ct{B, I, T} ct = η(ctype)

Γ, P ! ctype x = e, Γ[x #→ ct{B, I, T}]

CAMLPROTECT DECL
Γ, P ! x : ct{B, I, T}

P := P ∪ {x}
Γ, G, P ! CAMLprotect(x), Γ

IF STMT
Γ, P ! e : int{(, 0, T} G := G[L #→ G(L) % Γ]

Γ, G, P ! if e then L, Γ

IF UNBOXED STMT
Γ, P ! x : mt value{B, 0, T}

Γ′ = Γ[x #→ mt value{unboxed, 0, T}]
G := G[L #→ G(L) % Γ′]

Γ, G, P ! if unboxed(x) then L, Γ[x #→ mt value{boxed, 0, T}]

IF SUM TAG STMT
Γ, P ! x : mt value{boxed, 0, T}

mt = (ψ, π0 + · · · + πn + σ)
Γ′ = Γ[x #→ mt value{boxed, 0, n}]

G := G[L #→ G(L) % Γ′] ψ, πi, σ fresh

Γ, G, P ! if sum tag(x) == n then L, Γ

IF INT TAG STMT
Γ, P ! x : mt value{unboxed, 0, T} mt = (ψ, σ)
n + 1 ≤ ψ Γ′ = Γ[x #→ mt value{unboxed, 0, n}]

G := G[L #→ G(L) % Γ′] ψ, σ fresh

Γ, G, P ! if int tag(x) == n then L, Γ

FUN DECL
ct = η(ctype1)× . . .× η(ctypen) →γ η(ctype)

f ∈ dom(Γ) ⇒ ct = Γ(f) γ fresh

Γ ! function ctype f(ctype1 x, . . . , ctypen x), Γ′[f #→ ct]

FUN DEFN
Γ0 = Γ[xi #→ η(ctypei){(, 0,(}, cur func #→ Γ(f)]

Γi−1, P ! di, Γi i ∈ 1..m P := ∅ P, G fresh

∀L ∈ body of f, G(L) := reset(Γm) Γm, G, P ! s, Γ′

Γ ! function ctype f(ctype1 x1, . . . , ctypen xn) d1 . . . dm; s, Γ

Figure 9. Type Inference for C Statements

Finally, we are left with constraints GC ! GC′. These atomic
subtyping constraints can be solved via graph reachability. Intu-
itively, we can think of the constraint GC ! GC′ as an edge from
GC to GC′. Such edges form a call graph, i.e., there is an edge
from GC to GC′ if the function with effect GC is called by the
function with effect GC′. To determine whether a function with
effect variable γ may call the garbage collector, we simply check
whether there is a path from gc to γ in this graph, and using this
information we ensure that any conditional constraints from (APP)
are satisfied for gc functions.

4. Soundness

We now sketch a proof of soundness for a slightly simplified ver-
sion of our multi-lingual type system that omits function calls,
casting operations, and CAMLprotect and CAMLreturn. Full de-
tails are presented in a companion technical report [10]. We be-
lieve these features can be added without difficulty, though with
more tedium. Thus our proof focuses on checking the sequence of
statements that forms the body of a function, with branches but no
function calls.
The first step is to extend our grammar for expressions to in-

clude C locations l, OCaml integers {n}, and OCaml locations
{l + n} (a pointer on the OCaml heap with base address l and
offset n). We write {l + −1} for the location of the type tag in
the header block. We define the syntactic values v to be these three
forms plus C integers n. As is standard, in our soundness proof we
overload Γ so that in addition to containing types for variables, it
contains types for C locations and OCaml locations. We also add
the empty statement () to our grammar for statements.

Our operational semantics uses three stores to model updatable
references: SC maps C locations to values, SML maps OCaml
locations to values, and V maps local variables to values. In order to
model branches, we also include a statement store D, which maps
labels L, to statements s. Due to lack of space, we omit our small-
step operational semantics, which define a reduction relation of the
form

〈SC , SML, V, s〉 → 〈S′
C , S′

ML, V ′, s′〉

Here, a statement s in state SC , SML, and V , reduces to a new
statement s′ and yields new stores S′

C , S
′
ML, and V ′. We define

→∗ as the reflexive, transitive closure of→.
To show soundness, we require that upon entering a function,

the stores are compatible with the current type environment:

DEFINITION 1 (Compatibility). Γ is said to be compatible with SC ,

SML, and V (written Γ ∼ 〈SC , SML, V 〉) if

1. dom(Γ) = dom(SC) ∪ dom(SML) ∪ dom(V)

2. For all l ∈ SC there exists ct such that Γ ! l : ct *{(, 0,(} and
Γ ! SC(l) : ct{(, 0,(}.

3. For all {l + n} ∈ SML there exist Ψ, Σ, j, k, m, Π0, . . . , Πj ,

mt0, . . . ,mtk such that

• Γ ! {l + n} : (Ψ, Σ) value{boxed, n, m}
• Σ = Π0 + · · · + Πj , m ≤ j
• Πm = mt0 × · · ·×mtk , n ≤ k
• Γ ! SML({l + n}) : mtn value{(, 0,(}
• SML({l +−1}) = m

4. For all x ∈ V , Γ ! V (x) : Γ(x)

SEQ STMT

Γ, G, P ! s1, Γ′ Γ′, G, P ! s2, Γ′′

Γ, G, P ! s1 ; s2, Γ′′

LBL STMT
G(L), G, P ! s, Γ′ Γ " G(L)

Γ, G, P ! L: s, Γ′

GOTO STMT
G := G[L #→ G(L) % Γ]

Γ, G, P ! goto L, reset(Γ)

RET STMT
Γ, P ! e : ct{B, 0, T}

Γ ! cur func : ·→GC ct ′

ct = ct ′ P = ∅
Γ, G, P ! return e, reset(Γ)

CAMLRET STMT
Γ, P ! e : ct{B, 0, T}

Γ, P ! cur func : ·→GC ct ′

ct = ct ′ P '= ∅
Γ, G, P ! CAMLreturn(e), reset(Γ)

LSET STMT
Γ, P ! *(e1 +p n) : ct{(, 0,(}

Γ, P ! e2 : ct ′{B, 0, T}
ct = ct ′

Γ, G, P ! *(e1 +p n) := e2, Γ

VSET STMT
Γ, P ! e : ct{B, I, T}

Γ, G, P ! x := e, Γ[x #→ ct{B, I, T}]

VAR DECL
Γ, P ! e : ct{B, I, T} ct = η(ctype)

Γ, P ! ctype x = e, Γ[x #→ ct{B, I, T}]

CAMLPROTECT DECL
Γ, P ! x : ct{B, I, T}

P := P ∪ {x}
Γ, G, P ! CAMLprotect(x), Γ

IF STMT
Γ, P ! e : int{(, 0, T} G := G[L #→ G(L) % Γ]

Γ, G, P ! if e then L, Γ

IF UNBOXED STMT
Γ, P ! x : mt value{B, 0, T}

Γ′ = Γ[x #→ mt value{unboxed, 0, T}]
G := G[L #→ G(L) % Γ′]

Γ, G, P ! if unboxed(x) then L, Γ[x #→ mt value{boxed, 0, T}]

IF SUM TAG STMT
Γ, P ! x : mt value{boxed, 0, T}

mt = (ψ, π0 + · · · + πn + σ)
Γ′ = Γ[x #→ mt value{boxed, 0, n}]

G := G[L #→ G(L) % Γ′] ψ, πi, σ fresh

Γ, G, P ! if sum tag(x) == n then L, Γ

IF INT TAG STMT
Γ, P ! x : mt value{unboxed, 0, T} mt = (ψ, σ)
n + 1 ≤ ψ Γ′ = Γ[x #→ mt value{unboxed, 0, n}]

G := G[L #→ G(L) % Γ′] ψ, σ fresh

Γ, G, P ! if int tag(x) == n then L, Γ

FUN DECL
ct = η(ctype1)× . . .× η(ctypen) →γ η(ctype)

f ∈ dom(Γ) ⇒ ct = Γ(f) γ fresh

Γ ! function ctype f(ctype1 x, . . . , ctypen x), Γ′[f #→ ct]

FUN DEFN
Γ0 = Γ[xi #→ η(ctypei){(, 0,(}, cur func #→ Γ(f)]

Γi−1, P ! di, Γi i ∈ 1..m P := ∅ P, G fresh

∀L ∈ body of f, G(L) := reset(Γm) Γm, G, P ! s, Γ′

Γ ! function ctype f(ctype1 x1, . . . , ctypen xn) d1 . . . dm; s, Γ

Figure 9. Type Inference for C Statements

Finally, we are left with constraints GC ! GC′. These atomic
subtyping constraints can be solved via graph reachability. Intu-
itively, we can think of the constraint GC ! GC′ as an edge from
GC to GC′. Such edges form a call graph, i.e., there is an edge
from GC to GC′ if the function with effect GC is called by the
function with effect GC′. To determine whether a function with
effect variable γ may call the garbage collector, we simply check
whether there is a path from gc to γ in this graph, and using this
information we ensure that any conditional constraints from (APP)
are satisfied for gc functions.

4. Soundness

We now sketch a proof of soundness for a slightly simplified ver-
sion of our multi-lingual type system that omits function calls,
casting operations, and CAMLprotect and CAMLreturn. Full de-
tails are presented in a companion technical report [10]. We be-
lieve these features can be added without difficulty, though with
more tedium. Thus our proof focuses on checking the sequence of
statements that forms the body of a function, with branches but no
function calls.
The first step is to extend our grammar for expressions to in-

clude C locations l, OCaml integers {n}, and OCaml locations
{l + n} (a pointer on the OCaml heap with base address l and
offset n). We write {l + −1} for the location of the type tag in
the header block. We define the syntactic values v to be these three
forms plus C integers n. As is standard, in our soundness proof we
overload Γ so that in addition to containing types for variables, it
contains types for C locations and OCaml locations. We also add
the empty statement () to our grammar for statements.

Our operational semantics uses three stores to model updatable
references: SC maps C locations to values, SML maps OCaml
locations to values, and V maps local variables to values. In order to
model branches, we also include a statement store D, which maps
labels L, to statements s. Due to lack of space, we omit our small-
step operational semantics, which define a reduction relation of the
form

〈SC , SML, V, s〉 → 〈S′
C , S′

ML, V ′, s′〉

Here, a statement s in state SC , SML, and V , reduces to a new
statement s′ and yields new stores S′

C , S
′
ML, and V ′. We define

→∗ as the reflexive, transitive closure of→.
To show soundness, we require that upon entering a function,

the stores are compatible with the current type environment:

DEFINITION 1 (Compatibility). Γ is said to be compatible with SC ,

SML, and V (written Γ ∼ 〈SC , SML, V 〉) if

1. dom(Γ) = dom(SC) ∪ dom(SML) ∪ dom(V)

2. For all l ∈ SC there exists ct such that Γ ! l : ct *{(, 0,(} and
Γ ! SC(l) : ct{(, 0,(}.

3. For all {l + n} ∈ SML there exist Ψ, Σ, j, k, m, Π0, . . . , Πj ,

mt0, . . . ,mtk such that

• Γ ! {l + n} : (Ψ, Σ) value{boxed, n, m}
• Σ = Π0 + · · · + Πj , m ≤ j
• Πm = mt0 × · · ·×mtk , n ≤ k
• Γ ! SML({l + n}) : mtn value{(, 0,(}
• SML({l +−1}) = m

4. For all x ∈ V , Γ ! V (x) : Γ(x)

Checking Type Safety of Foreign Function Calls 27

Soundness

• We can prove soundness via standard subject-
reduction techniques
■ Proof for restricted version of the system

• Theorem: If a program is well-typed, then it
does not get stuck
■ I.e., OCaml data is never used at the wrong type

Checking Type Safety of Foreign Function Calls 28

Garbage Collection

• C FFI functions need to play nice with the GC
■ Pointers from C to the OCaml heap must be registered

- Otherwise the OCaml GC may corrupt them

■ Easy to forget to do, especially for indirect calls

■ Difficult to find this error with testing

• When can a GC occur?
■ Any time a C function calls the OCaml runtime

- E.g., to call a function, to allocate memory, etc.

Checking Type Safety of Foreign Function Calls 29

Example

• What’s wrong with foo?
■ Doesn’t register its parameter

value bar(value list) {
 CAMLparam1(list);

 CAMLlocal1(temp);
 temp = alloc_tuple(2);
 CAMLreturn(Val_unit);
}

value foo(value arg) {
 bar(arg);

 return(arg);
}

Checking Type Safety of Foreign Function Calls 30

Checking GC Safety

• Algorithm
■ Build a call graph of the C code

■ Let fi be a call to f at line i

■ Let P(fi) = unprotected locals and parameters at call

■ Check: If path from f to function that may call GC,
require P(fi) = 0

foo() bar() alloc_tuple()

P(foo) = { arg } error: non-empty

Checking Type Safety of Foreign Function Calls 31

Checking GC Safety with Effects

• Formally, use effects to check GC safety
■ Effects “may call GC” and “will not call GC”

■ Add to C function types:

• Also uses standard liveness analysis
■ Don’t warn about unprotected but dead locals

ct ::= void | int | mt value | ct *

| ct × · · ·× ct →GC ct

GC ::= γ | gc | nogc

mt ::= α | mt → mt | ct custom | (Ψ, Σ)

Ψ ::= ψ | n | #
Σ ::= σ | ∅ | Π + Σ

Π ::= π | ∅ | mt ×Π

Figure 3: Multi-Lingual Type Language

Our goal is to accept this kind of code and infer the pos-
sible OCaml types for x. Figure 3 contains our combined,
multi-lingual type language that integrates and generalizes
the types in Figure 1.

Our grammar for C types ct embeds extended OCaml
types mt in the type value, so that we can track OCaml
type information through C. Additionally, we augment func-
tion types with an effect GC, discussed below.

Our grammar for OCaml types mt includes type variables
α as well as function types and custom types (see below).
Note that α is a monomorphic type variable, and our sys-
tem does not support polymorphic OCaml types, since they
seem to be uncommon in foreign functions in practice (see
Section 5.1).

All of the other OCaml types from Figure 1a—unit, in-
teger, products, sums, and references—are modeled with a
representational type (Ψ, Σ). In this type, Ψ bounds the
unboxed values of the type. For a sum type, Ψ is an ex-
act value n counting the number of nullary constructors of
the type. Integers have the same physical representation
but could have any value, so for this case Ψ is !. Ψ may
also be a variable ψ. The Σ component of a representa-
tional type describes the boxed values, if any. Σ is a se-
quence of products Π, one for each non-nullary constructor
of the type. The position of each Π in the sequence cor-
responds to the constructor tag number, and each Π itself
contains the types of the elements of the structured block.
For example, the OCaml type t has representational type
(2, (!, ∅) + (!, ∅)× (!, ∅)))).

Notice in Figure 2 that our code to examine a value of
type t does not by itself fully specify the type of x. For
example, the type could have another nullary constructor or
non-nullary constructor that simply is not checked for. Thus
our grammars for Σ and Π include variables σ and π that
range over sums and products [19], which we use to allow
sum and product types to grow during inference. Only when
an inferred type is unified with an OCaml type can we know
its size exactly.

In addition to using OCaml data at the correct type, C
FFI functions that call the OCaml runtime must notify the
garbage collector of any C pointers to the OCaml heap. To
do so, C functions use macros CAMLparam and CAMLlocal to
register parameters and locals, respectively. If a function
registers any such pointers, it must call CAMLreturn upon
exiting to release the pointers. It is easy to forget to use
these macros, especially when functions only indirectly call
the OCaml runtime, as we have found in our experiments
(Section 5.2). Thus in our type language, we annotate each
function type with a garbage collection effect GC, either a

Φ(external mltype1 → · · · → mltypen) =
ρ(mltype1) value× · · ·× ρ(mltypen−1) value→g

ρ(mltypen) value
g fresh

ρ(unit) = (1, ∅)
ρ(int) = (#, ∅)

ρ(mltype ref) = (0, ρ(mltype))
ρ(mltype1 → mltype2) = ρ(mltype1) → ρ(mltype2)

ρ(L1 | L2 of mltype) = (1, ρ(mltype))
ρ(mltype1 ×mltype2) = (0, ρ(mltype1)× ρ(mltype2))

Figure 4: Translation Rules for OCaml Types

variable γ, gc if the function may invoke the garbage collec-
tor, or nogc if it definitely will not. GC naturally forms the
two-point lattice with order nogc $ gc (note we reserve ≤
for the total ordering over the integers and use $ for par-
tial orders over any other lattice). Our type system ensures
that all necessary variables are registered before calling a
function with effect gc.

Finally, sometimes it is useful to pass C data and pointers
to OCaml. For example, glue code for a windowing library
might return pointers representing windows or buttons to
OCaml. It is up to the programmer to assign such data
appropriate (distinct) opaque OCaml types, but there is no
guarantee that different C types will not be conflated, and
perhaps misused. Thus our grammar for OCaml types mt
includes types ct custom that track the C type of embedded
data. Our inference system checks that OCaml code faith-
fully distinguishes the C types, so that it is not possible to
perform a C type cast by passing a pointer through OCaml.

3. TYPE SYSTEM
In this section, we present our multi-lingual type inference

system. Our inference system takes as input a program writ-
ten in both OCaml and C and proceeds in two stages. We
begin by analyzing the OCaml source code and converting
the source types of FFI functions into our multi-lingual types
(Section 3.1). The second stage of inference begins with a
type environment containing the converted types and ap-
plies our type inference algorithm to the C source code to
detect any type errors (Section 3.3).

3.1 Type Inference for OCaml Source Code
The first stage of our algorithm is to translate each external

function type declared in OCaml into our multi-lingual types.
Restricting ourselves to the type information from OCaml
is sufficient for checking that C code uses OCaml data cor-
rectly. We then combine the converted types into an initial
type environment ΓI , which feeds into the second stage.

We construct ΓI using the type translation function Φ
given in Figure 4. In this definition, we implicitly assume
that mltypen is not constructed with →, i.e., that the arity
of the function whose type is being translated is n.

In Figure 4, ρ gives unit and int both pure unboxed types,
with no Σ component. Since unit is a singleton type, we
know its value is 0, and we assign it type (1, ∅). This is the
same as the representational type for a degenerate sum type
with no non-nullary constructors and exactly one nullary
constructor. This is correct because that one nullary con-
structor has the same representation as unit. In contrast, int
may represent any integer, and so it is not compatible with

3

ct ::= void | int | mt value | ct *

| ct × · · ·× ct →GC ct

GC ::= γ | gc | nogc

mt ::= α | mt → mt | ct custom | (Ψ, Σ)

Ψ ::= ψ | n | #
Σ ::= σ | ∅ | Π + Σ

Π ::= π | ∅ | mt ×Π

Figure 3: Multi-Lingual Type Language

Our goal is to accept this kind of code and infer the pos-
sible OCaml types for x. Figure 3 contains our combined,
multi-lingual type language that integrates and generalizes
the types in Figure 1.

Our grammar for C types ct embeds extended OCaml
types mt in the type value, so that we can track OCaml
type information through C. Additionally, we augment func-
tion types with an effect GC, discussed below.

Our grammar for OCaml types mt includes type variables
α as well as function types and custom types (see below).
Note that α is a monomorphic type variable, and our sys-
tem does not support polymorphic OCaml types, since they
seem to be uncommon in foreign functions in practice (see
Section 5.1).

All of the other OCaml types from Figure 1a—unit, in-
teger, products, sums, and references—are modeled with a
representational type (Ψ, Σ). In this type, Ψ bounds the
unboxed values of the type. For a sum type, Ψ is an ex-
act value n counting the number of nullary constructors of
the type. Integers have the same physical representation
but could have any value, so for this case Ψ is !. Ψ may
also be a variable ψ. The Σ component of a representa-
tional type describes the boxed values, if any. Σ is a se-
quence of products Π, one for each non-nullary constructor
of the type. The position of each Π in the sequence cor-
responds to the constructor tag number, and each Π itself
contains the types of the elements of the structured block.
For example, the OCaml type t has representational type
(2, (!, ∅) + (!, ∅)× (!, ∅)))).

Notice in Figure 2 that our code to examine a value of
type t does not by itself fully specify the type of x. For
example, the type could have another nullary constructor or
non-nullary constructor that simply is not checked for. Thus
our grammars for Σ and Π include variables σ and π that
range over sums and products [19], which we use to allow
sum and product types to grow during inference. Only when
an inferred type is unified with an OCaml type can we know
its size exactly.

In addition to using OCaml data at the correct type, C
FFI functions that call the OCaml runtime must notify the
garbage collector of any C pointers to the OCaml heap. To
do so, C functions use macros CAMLparam and CAMLlocal to
register parameters and locals, respectively. If a function
registers any such pointers, it must call CAMLreturn upon
exiting to release the pointers. It is easy to forget to use
these macros, especially when functions only indirectly call
the OCaml runtime, as we have found in our experiments
(Section 5.2). Thus in our type language, we annotate each
function type with a garbage collection effect GC, either a

Φ(external mltype1 → · · · → mltypen) =
ρ(mltype1) value× · · ·× ρ(mltypen−1) value→g

ρ(mltypen) value
g fresh

ρ(unit) = (1, ∅)
ρ(int) = (#, ∅)

ρ(mltype ref) = (0, ρ(mltype))
ρ(mltype1 → mltype2) = ρ(mltype1) → ρ(mltype2)

ρ(L1 | L2 of mltype) = (1, ρ(mltype))
ρ(mltype1 ×mltype2) = (0, ρ(mltype1)× ρ(mltype2))

Figure 4: Translation Rules for OCaml Types

variable γ, gc if the function may invoke the garbage collec-
tor, or nogc if it definitely will not. GC naturally forms the
two-point lattice with order nogc $ gc (note we reserve ≤
for the total ordering over the integers and use $ for par-
tial orders over any other lattice). Our type system ensures
that all necessary variables are registered before calling a
function with effect gc.

Finally, sometimes it is useful to pass C data and pointers
to OCaml. For example, glue code for a windowing library
might return pointers representing windows or buttons to
OCaml. It is up to the programmer to assign such data
appropriate (distinct) opaque OCaml types, but there is no
guarantee that different C types will not be conflated, and
perhaps misused. Thus our grammar for OCaml types mt
includes types ct custom that track the C type of embedded
data. Our inference system checks that OCaml code faith-
fully distinguishes the C types, so that it is not possible to
perform a C type cast by passing a pointer through OCaml.

3. TYPE SYSTEM
In this section, we present our multi-lingual type inference

system. Our inference system takes as input a program writ-
ten in both OCaml and C and proceeds in two stages. We
begin by analyzing the OCaml source code and converting
the source types of FFI functions into our multi-lingual types
(Section 3.1). The second stage of inference begins with a
type environment containing the converted types and ap-
plies our type inference algorithm to the C source code to
detect any type errors (Section 3.3).

3.1 Type Inference for OCaml Source Code
The first stage of our algorithm is to translate each external

function type declared in OCaml into our multi-lingual types.
Restricting ourselves to the type information from OCaml
is sufficient for checking that C code uses OCaml data cor-
rectly. We then combine the converted types into an initial
type environment ΓI , which feeds into the second stage.

We construct ΓI using the type translation function Φ
given in Figure 4. In this definition, we implicitly assume
that mltypen is not constructed with →, i.e., that the arity
of the function whose type is being translated is n.

In Figure 4, ρ gives unit and int both pure unboxed types,
with no Σ component. Since unit is a singleton type, we
know its value is 0, and we assign it type (1, ∅). This is the
same as the representational type for a degenerate sum type
with no non-nullary constructors and exactly one nullary
constructor. This is correct because that one nullary con-
structor has the same representation as unit. In contrast, int
may represent any integer, and so it is not compatible with

3

Checking Type Safety of Foreign Function Calls

Type Rule

32

3.3.3 Expressions

Figure 8 gives our type rules for expressions. These rules include
type environments Γ, which map variables to types ct{B, I, T},
and a protection set P , which contains those variables that have
been registered with the garbage collector by CAMLprotect. Our
rules for expressions prove judgments of the form Γ, P ! e :
ct{B, I, T}, meaning that in type environment Γ and protection
set P , the C expression e has type ct , boxedness B, offset I , and
value/tag T .
We discuss the rules briefly. In all of the rules, we assume that

the program is correct with respect to the standard C types, and that
full C type information is available. Thus some of the rules apply
to the same source construct but are distinguished by the C types
of the subexpressions. We also distinguish between rules based on
the flow-sensitive type of a subexpression as explained below.
The rule (INT EXP) gives an integer the appropriate type, and

(VAR EXP) is standard. (VAL DEREF EXP) extracts a field from
a structured block. To assign a type to the result, e must have a
known tag m and offset n, and we use unification to extract the
field type. Notice that the resulting B and T information is ",
since they are unknown, but the offset is 0, since we will get back
safe OCaml data. This rule, however, cannot handle the case when
records or tuples that are not part of sums are passed to functions,
because their boxedness is not checked before dereferencing. We
use (VAL DEREF TUPLE EXP) in this case, where B is ". This
rule requires that the type have one, non-nullary constructor and no
nullary constructors.
The rule (C DEREF EXP) follows a C pointer. Notice that the

resulting B and T are ". (AOP EXP) performs the operation aop
on T and T ′ in the types. (ADD VAL EXP) computes an offset
into a structured block. Notice that it must be possible to safely
dereference the resulting pointer as the offset cannot be larger than
the width of the block. While this is not strictly necessary (we could
wait until the actual dereference to enforce the size requirement),
it seems like good practice not to form invalid pointers. We use
(ADD VAL TUPLE EXP) for computing offsets into tuples that are
not part of sums. Similar to (VAL DEREF TUPLE EXP), we allowB
to be ", but add the constraint that the type have one, non-nullary
constructor and no nullary constructors. (ADD C EXP) performs
pointer arithmetic on C types other than value.
(CUSTOM EXP) casts a C pointer to a value type, and the result

is given a ct * custom value type with unknown boxedness and
tag. (VAL CAST EXP) allows a custom type to be extracted from
a value of a known pointer type ct *. Notice that this is the only
rule that allows casts from value, which are otherwise forbidden.
We omit other type casts from our formal system; they are handled
with heuristics in our implementation (Section 5.1).
(VAL INT EXP) and (INT VAL EXP) translate between C and

OCaml integers. When a C integer is turned into an OCaml integer
with Val int, we do not yet know whether the result represents an
actual int or whether it is a nullary constructor. Thus we assign it
a fresh representational type (ψ, σ), where T + 1 ≤ ψ. This con-
straint models the fact that e can only be a constructor of a sum
with at least T nullary constructors. Similar to (VAL DEREF TU-
PLE EXP), (INT VAL UNBOXED EXP) handles the case where a
value is used immediately as an integer without a boxedness test.
The (APP) rule models a function call. Technically, function

calls are not expressions in our grammar, but we put this rule
here to make the rules for statements a bit more compact. To
invoke a function, the actual types and the formal types are unified;
notice that the Bi and Ti are discarded, but we require that all
actual arguments are safe (Ii = 0). Additionally, we require that
GC′ $ GC, since if f might call the garbage collector, so might
the current function cur func.

INT EXP

Γ, P ! n : int{", 0, n}

VAR EXP
x ∈ dom(Γ)

Γ, P ! x : Γ(x)

VAL DEREF EXP
Γ, P ! e : mt value{boxed, n, m}

mt = (ψ, π0 + · · · + πm + σ)
πm = α0 × . . .× αn × π ψ, πi, σ, αi, π fresh

Γ, P ! *e : αn value{", 0,"}

VAL DEREF TUPLE EXP
Γ, P ! e : mt value{", n, T}

mt = (0, α0 × · · ·× αn × π) αi, π fresh

Γ, P ! *e : αn value{", 0,"}

C DEREF EXP
Γ, P ! e : ct *{", 0,"}
Γ, P ! *e : ct{", 0,"}

AOP EXP
Γ, P ! e1 : int{", 0, T} Γ, P ! e2 : int{", 0, T ′}

Γ, P ! e1 aop e2 : int{", 0, T aop T ′}

ADD VAL EXP
Γ, P ! e1 : mt value{boxed, n, n′}

Γ, P ! e2 : int{", 0, m} mt = (ψ, π0 + · · · + πn′ + σ)
πn′ = α0 × · · ·× αn+m × π ψ, πi, σ, αi, π fresh

Γ, P ! e1 +p e2 : mt value{boxed, n + m, n′}

ADD VAL TUPLE EXP
Γ, P ! e1 : mt value{", n, n′}

Γ, P ! e2 : int{", 0, m} mt = (0, π0 + · · · + πn′ + σ)
πn′ = α0 × · · ·× αn+m × π πi, σ, αi, π fresh

Γ, P ! e1 +p e2 : mt value{boxed, n + m, n′}

ADD C EXP
Γ, P ! e1 : ct *{", 0,"} Γ, P ! e2 : int{", 0, T}

Γ, P ! e1 +p e2 : ct *{", 0,"}

CUSTOM EXP
Γ, P ! e : ct *{", 0,"}

Γ, P ! (value)e : ct * custom value{", 0,"}

VAL CAST EXP
Γ, P ! e : mt value{B, I, T} mt = ct * custom

Γ, P ! (ct *) e : ct{", 0,"}

VAL INT EXP
Γ, P ! e : int{", 0, T} T + 1 ≤ ψ ψ, σ fresh

Γ, P ! Val int e : (ψ, σ) value{unboxed, 0, T}

INT VAL EXP
Γ, P ! e : mt value{unboxed, 0, T}

Γ, P ! Int val e : int{", 0, T}

INT VAL UNBOXED EXP
Γ, P ! e : mt value{", 0, T} mt = (ψ, ∅) ψ fresh

Γ, P ! Int val e : int{", 0, T}

APP
Γ, P ! f : ct ′

1 × · · ·× ct ′
n →GC′ ct

Γ, P ! ei : cti{Bi, 0, Ti} cti = ct ′
i i ∈ 1..n

Γ, P ! cur func : ·→GC ·
GC′ (GC gc (GC ⇒ (ValPtrs(Γ) ∩ live(Γ)) ⊆ P

Γ, P ! f(e1, . . . , en) : ct{", 0,"}

Figure 8. Type Inference for C Expressions

Checking Type Safety of Foreign Function Calls 33

Custom Types

• C data can be passed to OCaml opaquely
■ E.g., pointers to window or button objects

■ Assigned opaque type by programmer

• No guarantee types are used safely
■ Could perform C type cast by going through OCaml!

• Our systems extends ML types with C types:

1 if(Is long(x)) {
2 switch(Int val(x)) {
3 case 0: /* X */ break;
4 case 1: /* Z */ break;
5 } } else {
6 switch(Tag val(x)) {
7 case 0: /* W */ break;
8 case 1: /* Y */ break;
9 } }

Figure 2. Code to Examine a value of Type t

ct ::= void | int | mt value | ct *

| ct × · · ·× ct →GC ct

GC ::= γ | gc | nogc

mt ::= α | mt → mt | ct custom | (Ψ, Σ)

Ψ ::= ψ | n | #
Σ ::= σ | ∅ | Π + Σ

Π ::= π | ∅ | mt ×Π

Figure 3.Multi-Lingual Type Language

Clearly a value of type t may have many different represen-
tations, depending on its constructor. OCaml provides a series
of macros for testing tags and for determining the boxedness of
a value. For example, code to examine a value of type t is
shown in Figure 2. Here, Is long() on line 1 checks whether
a value is a pointer (by examining the low-order bit). If it is un-
boxed, Int val() on line 2 is used to extract the tag, otherwise
Tag val() is used on line 6 where x is known to be boxed.
In addition to using OCaml data at the correct type, C FFI func-

tions that call the OCaml runtime must notify the garbage collec-
tor of any C pointers to the OCaml heap. To do so, C functions
use macros CAMLparam and CAMLlocal to register parameters and
locals, respectively. If a function registers any such pointers, it
must call CAMLreturn upon exiting to release the pointers. We
have found in our experiments that it is easy to forget to use these
macros, especially when functions only indirectly call the OCaml
runtime (Section 5.2).
All of the macros described above are left unchecked in part

because the correct OCaml types are not available in the C code.
Thus, our goal is to accept the kind of code presented in Figure 2
and infer the possible OCaml types for x. Since a single C value
could represent several OCaml types, a more expressive type sys-
tem is required than that of either C or OCaml. Furthermore, we
wish to only accept C code that does not violate OCaml’s garbage
collector invariants. In order to achieve these goals, we have devel-
oped a combined, multi-lingual type language, shown in Figure 3,
that integrates and generalizes the types in Figure 1.
Our grammar for C types ct embeds extended OCaml typesmt

in the type value, so that we can track OCaml type information
through C. Additionally, we augment function types with an effect
GC, discussed below. Our grammar for OCaml types mt includes
type variables α1 as well as function types and custom types (see
below).
All of the other OCaml types from Figure 1a—unit, int, prod-

ucts, sums, and references—are modeled with a representational

1α is a monomorphic type variable. Our system does not support polymor-
phic OCaml types since they seem to be uncommon in foreign functions in
practice.

type (Ψ, Σ). In this type,Ψ bounds the unboxed values of the type.
For a sum type, Ψ is an exact value n counting the number of
nullary constructors of the type. Integers have the same physical
representation as nullary constructors but could have any value, so
for this case Ψ is !. Ψ may also be a variable ψ. The Σ compo-
nent of a representational type describes its possible boxed values,
if any. Σ is a sequence of products Π, one for each non-nullary
constructor of the type. The position of each Π in the sequence
corresponds to the constructor tag number, and each Π itself con-
tains the types of the elements of the structured block. For exam-
ple, the OCaml type t presented above has representational type
(2, (!, ∅)+(!, ∅)×(!, ∅)))). Here,Ψ = 2 since t has two nullary
constructors (X and Z). Also, Σ contains two product types, the in-
teger type (!, ∅) for W, and the integer pair type (!, ∅) × (!, ∅)
for Y.
Notice in Figure 2 that our C code to examine a value of type t

does not by itself fully specify the type of x. For example, the type
could have another nullary constructor or non-nullary constructor
that is not checked for. Thus our grammars for Σ and Π include
variables σ and π that range over sums and products [21], which
we use to allow sum and product types to grow during inference.
Only when an inferred type is unified with an OCaml type can we
know its size exactly.
Our type language also annotates each function type with a

garbage collection effect GC, which can either be a variable γ,
gc if the function may invoke the OCaml runtime (and thus the
garbage collector), or nogc if it definitely will not. GC naturally
forms the two-point lattice with order nogc $ gc Note that we
reserve≤ for the total ordering over the integers and use$ for other
partial orders. Our type system ensures that all necessary variables
are registered before calling a function with effect gc.
Finally, sometimes it is useful to pass C data and pointers to

OCaml. For example, glue code for a windowing library might
return pointers representing windows or buttons to OCaml. It is
up to the programmer to assign such data appropriate (distinct)
opaque OCaml types, but there is no guarantee that different C
types will not be conflated and perhaps misused. Thus our grammar
for OCaml typesmt includes types ct custom that track the C type
of the embedded data. Our inference system checks that OCaml
code faithfully distinguishes the C types, so that it is not possible
to perform a C type cast by passing a pointer through OCaml.

3. Type System

In this section, we present our multi-lingual type inference system.
Our inference system takes as input a program written in both
OCaml and C and proceeds in two stages. We begin by analyzing
the OCaml source code and converting the source types of FFI
functions into our multi-lingual types (Section 3.1). The second
stage of inference begins with a type environment containing the
converted types and applies our type inference algorithm to the C
source code (Section 3.2) to detect any type errors (Section 3.3).

3.1 Type Inference for OCaml Source Code

The first stage of our algorithm is to translate each external func-
tion type declared in OCaml into our multi-lingual types. We only
analyze the types in the OCaml source code and not the instructions
since the OCaml type checker ensures that the OCaml source code
does not contain any type errors. We then combine the converted
types into an initial type environment ΓI , which is used during the
second stage.
We construct ΓI using the type translation Φ given in Figure 4,

which converts OCaml function types into representational types.
In this definition, we implicitly assume that mltypen is not con-
structed with→, i.e., the arity of the function is n− 1. Φ is defined
in terms of helper function ρ. The translation ρ gives unit and int

1 if(Is long(x)) {
2 switch(Int val(x)) {
3 case 0: /* X */ break;
4 case 1: /* Z */ break;
5 } } else {
6 switch(Tag val(x)) {
7 case 0: /* W */ break;
8 case 1: /* Y */ break;
9 } }

Figure 2. Code to Examine a value of Type t

ct ::= void | int | mt value | ct *

| ct × · · ·× ct →GC ct

GC ::= γ | gc | nogc

mt ::= α | mt → mt | ct custom | (Ψ, Σ)

Ψ ::= ψ | n | #
Σ ::= σ | ∅ | Π + Σ

Π ::= π | ∅ | mt ×Π

Figure 3.Multi-Lingual Type Language

Clearly a value of type t may have many different represen-
tations, depending on its constructor. OCaml provides a series
of macros for testing tags and for determining the boxedness of
a value. For example, code to examine a value of type t is
shown in Figure 2. Here, Is long() on line 1 checks whether
a value is a pointer (by examining the low-order bit). If it is un-
boxed, Int val() on line 2 is used to extract the tag, otherwise
Tag val() is used on line 6 where x is known to be boxed.
In addition to using OCaml data at the correct type, C FFI func-

tions that call the OCaml runtime must notify the garbage collec-
tor of any C pointers to the OCaml heap. To do so, C functions
use macros CAMLparam and CAMLlocal to register parameters and
locals, respectively. If a function registers any such pointers, it
must call CAMLreturn upon exiting to release the pointers. We
have found in our experiments that it is easy to forget to use these
macros, especially when functions only indirectly call the OCaml
runtime (Section 5.2).
All of the macros described above are left unchecked in part

because the correct OCaml types are not available in the C code.
Thus, our goal is to accept the kind of code presented in Figure 2
and infer the possible OCaml types for x. Since a single C value
could represent several OCaml types, a more expressive type sys-
tem is required than that of either C or OCaml. Furthermore, we
wish to only accept C code that does not violate OCaml’s garbage
collector invariants. In order to achieve these goals, we have devel-
oped a combined, multi-lingual type language, shown in Figure 3,
that integrates and generalizes the types in Figure 1.
Our grammar for C types ct embeds extended OCaml typesmt

in the type value, so that we can track OCaml type information
through C. Additionally, we augment function types with an effect
GC, discussed below. Our grammar for OCaml types mt includes
type variables α1 as well as function types and custom types (see
below).
All of the other OCaml types from Figure 1a—unit, int, prod-

ucts, sums, and references—are modeled with a representational

1α is a monomorphic type variable. Our system does not support polymor-
phic OCaml types since they seem to be uncommon in foreign functions in
practice.

type (Ψ, Σ). In this type,Ψ bounds the unboxed values of the type.
For a sum type, Ψ is an exact value n counting the number of
nullary constructors of the type. Integers have the same physical
representation as nullary constructors but could have any value, so
for this case Ψ is !. Ψ may also be a variable ψ. The Σ compo-
nent of a representational type describes its possible boxed values,
if any. Σ is a sequence of products Π, one for each non-nullary
constructor of the type. The position of each Π in the sequence
corresponds to the constructor tag number, and each Π itself con-
tains the types of the elements of the structured block. For exam-
ple, the OCaml type t presented above has representational type
(2, (!, ∅)+(!, ∅)×(!, ∅)))). Here,Ψ = 2 since t has two nullary
constructors (X and Z). Also, Σ contains two product types, the in-
teger type (!, ∅) for W, and the integer pair type (!, ∅) × (!, ∅)
for Y.
Notice in Figure 2 that our C code to examine a value of type t

does not by itself fully specify the type of x. For example, the type
could have another nullary constructor or non-nullary constructor
that is not checked for. Thus our grammars for Σ and Π include
variables σ and π that range over sums and products [21], which
we use to allow sum and product types to grow during inference.
Only when an inferred type is unified with an OCaml type can we
know its size exactly.
Our type language also annotates each function type with a

garbage collection effect GC, which can either be a variable γ,
gc if the function may invoke the OCaml runtime (and thus the
garbage collector), or nogc if it definitely will not. GC naturally
forms the two-point lattice with order nogc $ gc Note that we
reserve≤ for the total ordering over the integers and use$ for other
partial orders. Our type system ensures that all necessary variables
are registered before calling a function with effect gc.
Finally, sometimes it is useful to pass C data and pointers to

OCaml. For example, glue code for a windowing library might
return pointers representing windows or buttons to OCaml. It is
up to the programmer to assign such data appropriate (distinct)
opaque OCaml types, but there is no guarantee that different C
types will not be conflated and perhaps misused. Thus our grammar
for OCaml typesmt includes types ct custom that track the C type
of the embedded data. Our inference system checks that OCaml
code faithfully distinguishes the C types, so that it is not possible
to perform a C type cast by passing a pointer through OCaml.

3. Type System

In this section, we present our multi-lingual type inference system.
Our inference system takes as input a program written in both
OCaml and C and proceeds in two stages. We begin by analyzing
the OCaml source code and converting the source types of FFI
functions into our multi-lingual types (Section 3.1). The second
stage of inference begins with a type environment containing the
converted types and applies our type inference algorithm to the C
source code (Section 3.2) to detect any type errors (Section 3.3).

3.1 Type Inference for OCaml Source Code

The first stage of our algorithm is to translate each external func-
tion type declared in OCaml into our multi-lingual types. We only
analyze the types in the OCaml source code and not the instructions
since the OCaml type checker ensures that the OCaml source code
does not contain any type errors. We then combine the converted
types into an initial type environment ΓI , which is used during the
second stage.
We construct ΓI using the type translation Φ given in Figure 4,

which converts OCaml function types into representational types.
In this definition, we implicitly assume that mltypen is not con-
structed with→, i.e., the arity of the function is n− 1. Φ is defined
in terms of helper function ρ. The translation ρ gives unit and int

Checking Type Safety of Foreign Function Calls

Algorithm

• Apply type inference rules iteratively, until we
reach a fixpoint with B, I, and T facts
■ Generates constraints ct = ct' and mt = mt'

- Solved with standard type unification

■ Generates constraints GC ≤ GC'

- Solved with reachability (atomic subtyping constraints/
qualifiers)

■ Also generates some additional constraints (not
shown) that can be solved easily

34

Checking Type Safety of Foreign Function Calls 35

Implementation: Phase 1, OCaml

• Tool built from camlp4 preprocessor

• Analyzes OCaml source and extracts types of
foreign functions
■ Concretizes any abstract types in modules

■ Fully resolves all aliases

• Incrementally updates central type repository
■ Seeded with types from standard library

• Result: Type environment fed into Phase 2

Checking Type Safety of Foreign Function Calls 36

Implementation: Phase 2, C

• Second tool built using CIL
■ This is the tool that issues warnings etc.

• Int_val(), Tag_val(), etc. recognized using syntactic
pattern matching
■ Modified OCaml header file so we can track macros

through expansion

■ Tests look a bit more complicated in source, but still
easy to identify the cases in practice

Checking Type Safety of Foreign Function Calls 37

Handling Features of C

• Warnings for global values
■ Need to register them, but we don’t check for this

■ Not common in practice (10 warnings)

• C has address-of operator &
■ If &x taken for local x, treat like global

• Type casts handled with unsound heuristics
■ Goal: Track C data embedded in OCaml

• Function pointers yield warnings
■ Only added 8 warnings to benchmarks

Checking Type Safety of Foreign Function Calls 38

More Features of OCaml

• Type system does not include objects
■ But neither do FFI programs we looked at

• No parametric polymorphism for FFI functions
■ Allow annotation to be added by hand

■ Only needed 4 times

• Polymorphic variants not handled
■ Results in some false positives

Checking Type Safety of Foreign Function Calls 39

Experimental Results

Program C loc OCaml loc Time (s) Errors Warnings False Pos Imprecision

apm-1.00 124 156 1.3 0 0 0 0
camlzip-1.01 139 820 1.7 0 0 0 1

ocaml-mad-0.1.0 139 38 4.2 1 0 0 0
ocaml-ssl-0.1.0 187 151 1.5 4 2 0 0

ocaml-glpk-0.1.1 305 147 1.3 4 1 0 1
gz-0.5.5 572 192 2.2 0 1 0 1

ocaml-vorbis-0.1.1 1183 443 2.8 1 0 0 2
ftplib-0.12 1401 21 1.7 1 2 0 1
lablgl-1.00 1586 1357 7.5 4 5 140 20

cryptokit-1.2 2173 2315 5.4 0 0 0 1
lablgtk-2.2.0 5998 14847 61.3 9 11 74 48

Total 24 22 214 75

Figure 9: Experimental Results

ject model. Typically these systems include dynamic type
information that is checked at runtime and used to find
methods and fields. We leave the problem of statically
checking such object FFIs to future work.

Our type system bears some resemblance to systems that
use physical type checking for C [3, 17], in that both need
to be concerned with memory representations and offsets.
However, our system is considerably simpler than full-fledged
physical type checking systems simply because OCaml data
given type value is typically only used in restricted ways.

One way to avoid foreign function interfaces completely is
to compile all programs down to a common intermediate rep-
resentation. For example, the Microsoft common-language
runtime (CLR) [12, 16] includes a strong type system and
is designed as the target of compilers for multiple different
languages. While this solution avoids the kinds of program-
ming difficulties that can arise with FFIs, it does not solve
the issue of interfacing with programs in non-CLR languages
or with unmanaged (unsafe) CLR code.

7. CONCLUSION

We have presented a multi-lingual type inference system
for checking type and GC safety across the OCaml-to-C for-
eign function interface. Our system embeds the types of
each language into the other, using representational types to
model the overlapping physical representations in C of differ-
ent OCaml types. Our type inference algorithm uses a com-
bination of unification to infer OCaml types and dataflow
analysis to track offset and tag information. We use effects
to track garbage collection information and to ensure that C
pointers to the OCaml heap registered with the garbage col-
lector. Using an implementation of our algorithm, we found
several errors and questionable coding practices in a small
benchmark suite. We think our results suggest that multi-
lingual type inference can be an important part of foreign
function interfaces, and we believe these same techniques
can be extended and applied to other FFIs.

8. REFERENCES
[1] ANSI. Programming languages – C, 1999. ISO/IEC

9899:1999.
[2] M. Blume. No-Longer-Foreign: Teaching an ML compiler

to speak C “natively”. In BABEL’01, volume 59 of
Electronic Notes in Theoretical Computer Science, Firenze,
Italy, Sept. 2001.
http://www.elsevier.nl/locate/entcs/volume59.html.

[3] S. Chandra and T. W. Reps. Physical Type Checking for C.
In PASTE’99, pages 66–75, Toulouse, France, Sept. 1999.

[4] A. S. Christensen, A. Møller, and M. I. Schwartzbach.
Precise Analysis of String Expressions. In SAS’03, pages
1–18, San Diego, CA, USA, June 2003.

[5] R. DeLine and M. Fähndrich. The Fugue Protocol Checker:
Is your software Baroque? Technical Report
MSR-TR-2004-07, Microsoft Research, Jan. 2004.

[6] S. Finne, D. Leijen, E. Meijer, and S. P. Jones. Calling hell
from heaven and heaven from hell. In ICFP’99, pages
114–125, Paris, France, Sept. 1999.

[7] K. Fisher, R. Pucella, and J. Reppy. A framework for
interoperability. In BABEL’01, volume 59 of Electronic
Notes in Theoretical Computer Science, Firenze, Italy,
Sept. 2001.
http://www.elsevier.nl/locate/entcs/volume59.html.

[8] M. Furr and J. S. Foster. Checking Type Safety of Foreign
Function Calls. Technical Report CS-TR-4627, University
of Maryland, Computer Science Department, Nov. 2004.

[9] C. Gould, Z. Su, and P. Devanbu. Static Checking of
Dynamically Generated Queries in Database Applications.
In ICSE’04, pages 645–654, Edinburgh, Scotland, UK, May
2004.

[10] D. N. Gray, J. Hotchkiss, S. LaForge, A. Shalit, and
T. Weinberg. Modern Languages and Microsoft’s
Component Object Model. CACM, 41(5):55–65, May 1998.

[11] J. Hamilton. Interlanguage Object Sharing with SOM. In
Usenix’96, San Diego, California, Jan. 1996.

[12] J. Hamilton. Language Integration in the Common
Language Runtime. ACM SIGPLAN Notices, 38(2):19–28,
Feb. 2003.

[13] L. Huelsbergen. A Portable C Interface for Standard ML of
New Jersey.
http://www.smlnj.org//doc/SMLNJ-C/smlnj-c.ps, 1996.

[14] X. Leroy. The Objective Caml system, Aug. 2004.
[15] S. Liang. The Java Native Interface: Programmer’s Guide

and Specification. Addison-Wesley, 1999.
[16] E. Meijer, N. Perry, and A. van Yzendoorn. Scripting .NET

using Mondrian. In ECOOP 2001, pages 150–164,
Budapest, Hungary, June 2001.

[17] G. Necula, S. McPeak, and W. Weimer. CCured: Type-Safe
Retrofitting of Legacy Code. In POPL’02, pages 128–139,
Portland, Oregon, Jan. 2002.

[18] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer.
CIL: Intermediate Language and Tools for Analysis and
Transformation of C Programs. In CC’02, pages 213–228,
Grenoble, France, Apr. 2002.

[19] D. Rémy. Typechecking records and variants in a natural
extension of ML. In POPL’89, pages 77–88, Austin, Texas,
Jan. 1989.

[20] V. Trifonov and Z. Shao. Safe and Principled Language
Interoperation. In ESOP’99, pages 128–146, Amsterdam,
The Netherlands, Mar. 1999.

10

Note: Time includes compilation

Checking Type Safety of Foreign Function Calls 40

Common Errors

• Forgetting to register C pointer to ML heap
■ 3 errors

• Forgetting to release a registered pointer
■ 2 errors

• Remainder are type mismatches (19 errors)
■ 5 errors due to Val_int instead of Int_val or reverse

■ 1 due to forgetting that an argument was in an option

- OCaml: external f : ?x: int -> unit = “f”

- C: value f(value x) { int bar = Int_val(x); ... }

■ Others similar

Checking Type Safety of Foreign Function Calls 41

Warnings: Questionable Coding

• Forgetting to add unit parameter to C fn
■ OCaml: external f : int -> unit -> unit = “f”

■ C: value f(value x);

• Polymorphism abuse
■ OCaml: type input_channel, output_channel

■ OCaml: external seek : int -> ’a -> unit = “seek”

■ C: value seek(value pos, value file);

Checking Type Safety of Foreign Function Calls 42

Imprecision and False Positives

• Tags and offsets are sometimes Top

• Globals and function pointers

• Polymorphic variants

• Pointer arithmetic disguised as long arithmetic

■ (t*)v + 1 == (t*) (v + sizeof(t*))

- Our system gets confused

Checking Type Safety of Foreign Function Calls 43

Future Work

• Ensure immutable data not changed by C code
■ Could yield unexpected results

• Improved handling of polymorphic variants
■ Will require some programmer annotations

• Check safety of unsafe code within OCaml

• Extend to other FFIs

Checking Type Safety of Foreign Function Calls 44

Conclusion

• FFIs are a useful part of a language

• FFI code is messy
■ But not complicated, hence analyzable

• Our system: A multi-lingual safety checker
■ The first we know of to check glue code

■ Shows that FFI need not compromise safety

http://www.cs.umd.edu/~furr/saffire/

