
Type Systems as a

Foundation for Reliable Computing

Robert Harper
Carnegie Mellon University

Summer School on Reliable Computing
University of Oregon

July, 2005

References

These lectures are based on the course Constructive Logic at Carnegie Mellon
University. The course materials are available at the course web site:

http://www.cs.cmu.edu/~rwh/courses/logic/www.

The primary reference is Frank Pfenning’s notes Constructive Logic, supple-
mented by the additional notes and references on the course readings page.

The following sources are especially relevant to these lectures:

1. J.-Y. Girard, Proofs and Types, Cambridge University Press, 1989.

2. P. Martin-Löf, Intuitionistic Type Theory, Bibliopolis Press, 1984.

3. B. C. Pierce, Types and Programming Languages, MIT Press, 2002.

Lecture 1: Intuitionistic Propositional Logic

1. Judgements and evidence.

(a) Analytic = self-evident.

(b) Synthetic = requires evidence.

2. Categorical judgements of IPL:

(a) P prop: analytic.

(b) P true: synthetic.

3. Hypothetical judgements: J1, . . . , Jn ` J .

(a) Evidence consists of an “open” proof of J from hypotheses J1, . . . , Jn.

1



(b) Admissibility of the structural rules.

i. Reflexivity/assumption:

Γ, J ` J

ii. Transitivity/substitution:

Γ ` J Γ, J ` J ′

Γ ` J ′

iii. Weakening:
Γ ` J

Γ,Γ′ ` J

iv. Contraction:
Γ, J, J ` J ′

Γ, J ` J ′

v. Permutation:
Γ, J ′, J,Γ′ ` J ′′

Γ, J, J ′,Γ′ ` J ′′

(c) Linear logic denies weakening and contraction; strict/relevance logic
denies weakening; affine logic denies contraction; ordered logic denies
permutation, weakening, and contraction.

4. Defining connectives:

(a) Introduction rules determine canonical evidence.

(b) Elimination rules exploit arbitrary evidence.

(c) Inversion principles: coherence of introduction and elimination.

5. Inference rules of IPL:

(a) The propositional connectives: >, ⊥, P ∧Q, P ⊃ Q, P ∨Q, ¬P .

(b) Definability of connectives.

6. Algebraic structure of IPL.

(a) Entailment relation as a pre-order.

(b) Connectives specify algebraic structure called a Heyting algebra.

(c) IPL is sound and complete for interpretation into HA’s.

2



Lecture 2: Proof Terms and Normal Proofs

1. IPL in analytic form.

(a) Categorical judgements, revisited:

i. P prop: as before.
ii. M : P : M is a proof of P .

(b) Hypothetical judgements, revisited:

i. u1:P1, . . . , un:Pn ` M : P .
ii. Structural rules.

(c) Propositions as types principle:

i. Propositions may be viewed as types of their proofs.
ii. Proofs are λ-terms classified by propositions.

2. Normal and neutral proofs.

(a) Idea: codify “direct” proofs.

i. No digressions: no elimination of intro.
ii. Sub-formula property.

(b) Two relations (second is auxiliary):

i. Γ ` M ↘ P : M is a normal proof of P .
ii. Γ ` M ↗ P : M is a neutral proof of P .

3. Independence results.

(a) To show that P is not provable (from given assumptions Γ), show
that there is no normal proof of P .

(b) Examples

i. LEM: ¬¬LEM true, so ¬LEM true is not provable. LEM is not
provable either.

ii. DNE: similar story.

Lecture 3: Normalization for the Multiplicative
Fragment

1. Normalization and neutralization.

(a) Show that every proof may be brought into normal form.

(b) Head reduction and head normalization.

(c) Two relations:

i. Γ ` M : P ↘ N : N is the normal form of M .

3



ii. Γ ` M ↗ N : P : N is the neutral form of M , where M is
head-irreducible and of atomic type.

(d) Easy: if Γ ` M : P ↘ N , then Γ ` N ↘ P .

(e) Harder: if Γ ` M : P then there exists N such that Γ ` M : P ↘ N .

2. Theorem: if ΓM : P , then there exits N such that Γ ` M : P ↘ N .

(a) Obvious strategy: induction on derivation of antecedent.

i. Need to make some assumption about hypotheses.
ii. Need to ensure closure under typing rules.

(b) Solution: strengthen the induction hypothesis. (Tait’s Method aka
logical relations).

i. Show that well-formed proofs are computable.
ii. Show that computable terms are normalizable.

3. Complications with additive fragment (summary):

(a) Commuting conversions for case and abort.

(b) Maintaining the sub-formula property for normal forms.

Lecture 4: Types and Programming Languages

1. Evaluation for PL’s is a form of weak head reduction.

(a) Restricted to closed terms; don’t evaluate under binders.

(b) Choice of whether to evaluate components of pairs, arguments to
injections, arguments to applications.

(c) Type safety: closed values have canonical form.

(d) Transition system characterization of evaluation.

i. SOS and its relation to ES.
ii. Progress and preservation formulation of type safety.

2. Scaling up logical type theory.

(a) Data types as domains of quantification.

i. Judgements: τ type, t ∈ τ .
ii. Natural numbers, inductive types in general.
iii. Streams, coinductive types in general.
iv. Type of propositions, types of proofs.
v. Closure properties for types: sums, products, functions.

(b) Quantifier logic: ∀, exists over a type.

i. First-order arithmetic as quantification over the type nat.

4



ii. Second-order logic as quantification over the type prop.
iii. No traditional logic quantifies over proofs!
iv. Props-as-types, revisited. Status of existential quantification?

(c) Intuitionistic modal logics.

i. IS4: necessity and possiblity.
ii. Lax logic: weak notions of truth as possible necessity.

(d) Classical logic.

i. Two judgements: P true and P false.
ii. Symmetric axiomatization.
iii. Proof terms, tie-breaking.

3. Scaling up types for programming languages.

(a) General recursive types.

i. No positivity restrictions.
ii. Introduces non-termination.

(b) Second-order quantification:

i. Universal: polymorphism.
ii. Existential: data abstraction.

(c) Lax modality as a monad.

i. P lax means P is stably true after alteration of world.
ii. Expression / term distinction.

(d) Control via classical logic.

i. Classical logic adds call/cc and throw.
ii. Exposes computational content of classical logic.

5



Normal and Neutral Proofs

Γ ` V ↗ α

Γ ` V ↘ α

Γ ` ∗ ↘ >
Γ ` V ↗⊥
Γ ` V ↘⊥

Γ ` N1 ↘ P1 Γ ` N2 ↘ P2

Γ ` 〈N1, N2〉 ↘ P1 ∧ P2

Γ, x:P1 ` N2 ↘ P2

Γ ` λx:P1.N2 ↘ P1 ⊃ P2

Γ ` N1 ↘ P1

Γ ` inl(N1) ↘ P1 ∨ P2

Γ ` N2 ↘ P2

Γ ` inr(N2) ↘ P1 ∨ P2

Γ ` V ↗ P1 ∨ P2 Γ, x:P1 ` N1 ↘ Q Γ, x:P2 ` N2 ↘ Q

Γ ` case V { inl(x) ⇒ N1 | inr(x) ⇒ N2 } ↘ Q

Γ, x:P ` x ↗ P

Γ ` V ↗ P1 ∧ P2

Γ ` fst(V ) ↗ P1

Γ ` V ↗ P1 ∧ P2

Γ ` snd(V ) ↗ P2

Γ ` V ↗ P1 ⊃ P2 Γ ` N ↘ P2

Γ ` V N ↗ P2

Γ ` V ↗⊥
Γ ` abort(V ) ↗ P

Proof Normalization (Multiplicative Fragment)

Weak Head Reduction and Weak Head Normalization

fst(〈M1,M2〉) ⇒ M1 snd(〈M1,M2〉) ⇒ M2

M ⇒ M ′

fstM ⇒ fstM ′
M ⇒ M ′

sndM ⇒ sndM ′

(λx:P.M2) M1 ⇒ [M1/x]M2

M1 ⇒ M ′
1

M1 M2 ⇒ M ′
1 M2

whnf W : : = x | fst(W ) | snd(W ) | W M

W ⇓ W

M ⇒ M ′ M ′ ⇓ W

M ⇓ W

Lemma 1
If M ⇓ W1 and M ⇓ W2, then W1 = W2.

6



Normalization and Neutralization

normal N : : = V | ∗ | 〈N1, N2〉 | λx:P.N

neutral V : : = x | fst(V ) | snd(V ) | V N

M ⇓ W Γ ` W ↗ V : α

Γ ` M : α ↘ V Γ ` M : > ↘ ∗
Γ ` fst(M) : P ↘ N1 Γ ` snd(M) : Q ↘ N2

Γ ` M : P ∧Q ↘ 〈N1, N2〉
Γ, x:P ` M x : Q ↘ N

Γ ` M : P ⊃ Q ↘ λx:P.N

Γ(x) = P

Γ ` x ↗ x : P

Γ ` W1 ↗ V1 : P ⊃ Q Γ ` M2 : P ↘ N2

Γ ` W1 M2 ↗ V1 N2 : Q

Γ ` W ↗ V : P ∧Q

Γ ` fst(W ) ↗ fst(V ) : P

Γ ` W ↗ V : P ∧Q

Γ ` snd(W ) ↗ snd(V ) : P

Lemma 2 (Determinacy)
1. If Γ ` M : P ↘ N1 and Γ ` M : P ↘ N2, then N1 = N2.

2. If Γ ` W ↗ V1 : P1 and Γ ` W ↗ V2 : P2, then V1 = V2 and P1 = P2.

Lemma 3 (Monotonicity)
1. If Γ ` M : P ↘ N and Γ′ ⊇ Γ, then Γ′ ` M : P ↘ N .

2. If Γ ` W ↗ V : P and Γ′ ⊇ Γ, then Γ′ ` W ↗ V : P .

Logical Relations for Normalization

M norm α [∆] if there exists N s.t. ∆ ` M : α ↘ N

M norm> [∆] if true

M norm P ∧Q [∆] if fst(M) norm P [∆] and snd(M) norm Q [∆]

M norm P ⊃ Q [∆] if for all ∆′ ⊇ ∆, M ′ norm P [∆′] implies M M ′ norm Q [∆′]

γ norm Γ [∆] if for allx ∈ dom(Γ), γ(x) norm Γ(x) [∆]

Lemma 4 (Monotonicity)
If M norm P [∆] and ∆′ ⊇ ∆, then M norm P [∆′].

7



Proof: By induction on the structure of P . �

Lemma 5 (Normal Paths Normalize)
1. If M norm P [∆], then ∆ ` M : P ↘ N for some N .

2. If ∆ ` W ↗ P , then W norm P [∆].

Proof: Simultaneously, by induction on the structure of P .

P = α Immediate from the definition of the predicate.

P = > Trivial.

P = P1 ∧Q1

1. If M norm P [∆], then fst(M) norm P1 [∆] and snd(M) norm P2 [∆].
So by induction ∆ ` fst(M) : P1 ↘ N1 and ∆ ` snd(M) : P2 ↘ N2,
and hence ∆ ` M : P ↘ 〈N1, N2〉.

2. If Γ ` W ↗ V : P , then Γ ` fst(W ) ↗ fst(V ) : P1 and Γ `
snd(W ) ↗ snd(V ) : P2. So by induction fst(W ) norm P1 [∆] and
snd(W ) norm P2 [∆], and hence W norm P [∆].

P = P1 ⊃ P2

1. Suppose M norm P [∆]. We are to show ∆ ` M : P ↘ N for some
N . Let ∆′ = ∆, x:P1. It suffices to show ∆′ ` M x : P2 ↘ N2, for
then we may take N = λx:P1.N2. By induction x norm P1 [∆′]. By
monotonicity M norm P [∆′], so M x norm P2 [∆′], so by induction
∆′ ` M x : P2 ↘ N2, as required.

2. Suppose ∆ ` W ↗ V : P . Let ∆′ ⊇ ∆ and suppose M1 norm P1 [∆′].
By monotonicity ∆′ ` W ↗ V : P , and by induction ∆′ ` M1 :
P1 ↘ N1, so ∆′ ` W M : P2 ↘ N2, and hence by induction
W M norm P2 [∆′] as required.

�

Therefore x norm P [∆, x:P ], and hence idΓ norm Γ [Γ].

Lemma 6 (Weak Head Expansion)
If M norm P [∆] and M ′ ⇒ M , then M ′ norm P [∆].

Proof: By induction on the structure of P . For example, if P = P1 ⊃ P2,
then to show that M ′ norm P [∆] it suffices to show that M ′ M1 norm P2 [∆′]
for any ∆′ ⊇ ∆ and M1 norm P1 [∆′]. Now since M ′ ⇒ M , it follows by
monotonicity and the definition of weak head reduction that M ′ M1 ⇒ M M1,
from which the result follows by an application of the inductive hypothesis. �

8



Lemma 7 (Fundamental Lemma)
If Γ ` M : P and γ norm Γ [∆], then γ̂(M) norm P [∆].

Proof: By induction on the definition of Γ ` M : P . The case of a variable
is covered by the assumption on γ. The elimination rules are immediate con-
sequences of the inductive hypothesis and the definition of the normalizability
predicate. The introduction rules are handled by the inductive hypothesis, the
definition of normalizability, and the weak head expansion lemma. �

Theorem 8 (Normalization)
If Γ ` M : P , then Γ ` M : P ↘ N for some N .

Proof: Take γ = idΓ. �

9


