
Kathleen Fisher
AT&T Labs Research

Yitzhak Mandelbaum, David Walker
Princeton

The Next 700 Data
Description Languages

Summer School 2005

Review: Technical Challenges of Ad Hoc Data

• Data arrives “as is.”
• Documentation is often out-of-date or nonexistent.

– Hijacked fields.
– Undocumented “missing value” representations.

• Data is buggy.
– Missing data, human error, malfunctioning machines, race conditions

on log entries, “extra” data, …
– Processing must detect relevant errors and respond in application-

specific ways.
– Errors are sometimes the most interesting portion of the data.

• Data sources often have high volume.
– Data may not fit into main memory.

Summer School 2005

Many Data Description Languages

• PacketTypes (SIGCOMM ‘00)
– Packet processing

• DataScript (GPCE ‘02)
– Java jar files, ELF object files

• Erlang Binaries (ESOP ‘04)
– Packet processing

• PADS (PLDI ‘05)
– General ad hoc data

Summer School 2005

The Next 700 Programming Languages

The languages people use to communicate with computers differ
in their intended aptitudes, towards either a particular
application area, or a particular phase of computer use (high
level programming, program assembly, job scheduling, etc.).
They also differ in physical appearance, and more important, in
logical structure. The question arises, do the idiosyncrasies
reflect basic logical properties of the situation that are being
catered for? Or are they accidents of history and personal
background that may be obscuring fruitful developments? This
question is clearly important if we are trying to predict or
influence language evolution.

Continued…

Summer School 2005

The Next 700 Programming Languages, cont.

 To answer it we must think in terms, not of languages, but
families of languages. That is to say we must systematize their
design so that a new language is a point chosen from a well-
mapped space, rather than a laboriously devised construction.

 — J. P. Landin
 The Next 700 Programming Languages, 1965.

Summer School 2005

The Next 700 Data Description Languages

• What is the family of data description languages?
• How do existing languages relate to each other?
• What differences are crucial, which “accidents of history”?
• What do the existing languages mean, precisely?

To answer these questions, we introduce a
semantic framework for understanding data
description languages.

Summer School 2005

PacketTypes
PADS

DataScript

DDC

Contributions

• A core data description calculus (DDC)
– Based on dependent type theory
– Simple, orthogonal, composable types
– Types transduce external data source to internal representation.

• Encodings of high-level DDLs in low-level DDC

Summer School 2005

Outline

• Introduction
• A Data Description “�Calculus” (DDC)
• But what does DDC mean?

– Well-kinding judgment
– Representation, parse descriptor, and parser generation

• But what to data description languages (DDLs) mean?
– Idealized PADS (IPADS)
– Features from other DDLs.

• Applications of the semantics

Summer School 2005

A Data Description Calculus

?

Summer School 2005

Candidate DDC Primitives

• Base types parameterized by expressions (Pstring(:̀ |`:))
– Type constructor constants

• Pair of fields with cascading scope (Pstruct)
– Dependent sums

• Additional constraints (Ptypedef, Pwhere, field constraints).
– Set types

• Alternatives (Punion, Popt)
– Sums

• Open-ended sequences (Parray)
– Some kind of list?

• User-defined parameterized types
– Abstraction and application

• “Active types”: compute, absorb, and scanning
– Built-in functions

Summer School 2005

Base Types and Sequences

• C(e): base type parameterized by expression e.
• Σx: τ. τ’: dependent sum describes sequence of values.

– Variable x gives name to first value in sequence.
– Note syntactic sugar: τ * τ’ if x not in τ’ .

• Examples:

(‘:’,“hello”,‘:’)

(3,513)

(123, “hello”, ‘|’)

Σterm:char.string(term) * char

Σwidth:int_fw(1). int_fw(width)

int * string(‘|’) * char

“:hello:”

“3513”

“123hello|”

Summer School 2005

Constraints

• {x: τ | e}: set types add constraints to the type τ and express
relationships between elements of the data.

• Examples:

“43|105|67”

“101”,
“82”

‘a’ inl ‘a’{c : char | c = ‘a’} (abbrev: Sc(‘a’))

(43, inl ‘|’, inl 105,
 inl ‘|’, inl 67)

inl 101,
inr 82

Σmin:int.Sc(‘|’) *
Σmax:{m:int | min ≤ m}.Sc(‘|’) *
 {mid:int | min ≤ mid & mid ≤ max}

{x : int | x > 100}

Summer School 2005

Unions and the Empty String

• τ + τ’ : deterministic, exclusive or
– try τ; on failure, try τ’.

• unit: matches the empty string.
• Examples:

“2341”, “”

“54”, “n/a”

inl 2341, inr ()

inl 54, inr (inl “n/a”)

int + unit

int + Ss(“n/a”)

Summer School 2005

Array Features

• What features do we need to handle data sequences?
– Elements
– Separator between elements
– Termination condition (“Are we done yet?”)
– Terminator after sequence

• Examples:
“192.168.1.1”
“Harry|Ron|Hermione|Ginny;”

Summer School 2005

Bottom and Arrays

• τ seq(τs; e, τt) specifies:
– Element type τ

– Separator types τs.

– Termination condition e.

– Terminator type τt.

• bottom: reads nothing, flagging an error.
• Example: IP address.

int seq(Sc(‘.’); len 4, bottom) (4, [192,168,1,1])“192.168.1.1”

Summer School 2005

Abstraction and Application

• Can parameterize types over values: λx. τ
• Correspondingly, can apply types to values: τ e
• Example: IP address with terminator

IP_addr ‘|’ * Sc(‘|’)

λterm.int seq(Sc(‘.’); len 4, Sc(term))

((4, [1,2,3,4]), inl ‘|’)“1.2.3.4|”

nonenone

Summer School 2005

Absorb, Compute and Scan

• Absorb, Compute and Scan are active types.
– absorb(τ) : consume data from source; produce nothing.
– compute(e:σ) : consume nothing; output result of computation e.
– scan(τ) : scan data source for type τ.

• Examples:

scan(Sc(‘|’))

Σwidth:int.Sc(‘|’) *
Σlength:int.
 area:compute(width × length:int)

absorb(Sc(‘|’))

(6,inl ‘|’)“^%$!&_|”

(10,12,120)

()

“10|12”

“|”

Summer School 2005

DDC Example: Idealized Web Server Log

response_t = λx.{y : int16_fw(x) | 100 <= y and y < 600 }

entry_t seq(S(‘\n’); λx.false, bottom)

 compute(getdomain client = “edu” : bool)
 Σresponse : response_t 3.

 Σremoteid : authid_t. S(‘ ’) *
 Σclient : ip. S(‘ ’) *

entry_t =

authid_t = S(‘-’) + string(‘ ’)

S = λch.{c : char | c = ch}

124.207.15.27 - 234
12.24.20.8 kfisher 208

Summer School 2005

A Data Description Calculus

“Active types”absorb,
compute, scan

Empty strings: ok/errorunit/bottom

Open ended sequencesτ seq(τ s; e, τ t)

Supplying values to parameterized types.τ e

Parameterizing types by expressions.λx. τ

Alternativesτ + τ’

Adding constraints to existing descriptions{x: τ | e}

Field sequence with cascading scopeΣx: τ. τ’

Atomic type parameterized by expression eC(e)

Summer School 2005

Semantics Overview

• Well formed DDC type: Γ |- τ : κ

• Representation for type τ : [τ]rep

• Parse descriptor for type τ : [τ]pd

• Parsing function for type τ : [τ]

– [τ] : bits * offset → offset * [τ]rep * [τ]pd

Summer School 2005

Type Kinding

Kinding ensures types are well formed.

Γ |- e : σ
Γ |- τ e: κ

Γ |- τ : σ → κ Γ |- τ’ : T
Γ |- τ + τ’: type

Γ |- τ : T

Γ, x:[τ]rep ∗ [τ]pd |- e : bool

Γ |- {x: τ | e}: T
Γ |- τ : T

κ ::= T | σ → κ

Summer School 2005

Selected Representation Types

[τ]rep[λx. τ]rep, [τ e]rep

[τ]rep * [τ’]rep[Σx: τ. τ’]rep

int * ([τ]rep seq)[τ seq(τs; e, τ t)]rep

Host LanguageDDC

[τ]rep + [τ]rep [{x: τ | e}]rep

I(C) + none[C(e)]rep

unit[unit]rep

[τ]rep + [τ’]rep [τ + τ’]rep

unrecoverable
error

semantic error

Note that we erase
all dependencies.

Summer School 2005

Selected Parse Descriptor Types

[τ]pd[λx. τ]pd, [τ e]pd

pd_hdr * [τ]pd * [τ’]pd[Σx: τ. τ’]pd

pd_hdr * int * int * ([τ]pd seq)[τ seq(τ s; e, τ t)]pd

Host LanguageDDC

pd_hdr * [τ]pd[{x: τ | e}]pd

pd_hdr[C(e)]pd

pd_hdr[unit]pd

pd_hdr * ([τ]pd + [τ’]pd)[τ + τ’]pd

pd_hdr =
int * errcode * span

Summer School 2005

Parsing Semantics of Types

• Semantics expressed as parsing functions written in
the polymorphic λ-calculus.
– [τ] : bits * offset → offset * [τ]rep * [τ]pd

• Dependent sum case:

 (ω 2 , RΣ(r1, r2), PΣ(p1, p2))

 let (ω 2, r2, p 2) = [τ’] (B, ω 1) in

 let x = (r1, p1) in

 let (ω 1, r1, p1) = [τ] (B, ω) in

 λ(B, ω).

[Σx: τ. τ’] =

Summer School 2005

Properties of the Calculus

• Theorem: If Γ |- τ : κ then
�Γ |- [τ] : bits * offset → offset * [τ]rep * [τ]pd

“Well-formed type τ yields a parser that returns values with types
corresponding to τ.”

• Theorem: Parsers report errors accurately.
– Errors in parse descriptor correspond to

errors in representation.
– Parsers check all semantic constraints.

Summer School 2005

Making Use of the Calculus

IPADS

DDC

 t ⇒ τ

 IPADS

t ::= C(e) | Pfun(x:s) = t | t e

 | Pstruct{fields} | Punion{fields}

 | Pswitch e of {alts tdef;} | Popt t

 | t Pwhere x.e | Palt{fields}

 | t Parray [t, t] | Pcompute e | Plit c

fields ::= | fields x : t;
alts ::= | alts e => t;

Summer School 2005

IPADS Example

 };

entry_t Parray(Peor, Peof)

 academic : Pcompute(getdomain client = “edu” : bool);

 response : response_t 3;

 remoteid : authid_t; “ ”;

 client : Pip; “ ”;

entry_t = Pstruct {

 Puint16_FW(x) Pwhere y.100 <= y and y < 600;

response_t = Pfun(x:int)

authid_t = Punion { unauth : “-”; id : Pstring(“ ”)};

124.207.15.27 - 234
12.24.20.8 kfisher 208

Summer School 2005

Example: Popt and Plit

Popt t ⇒ τ + unit

 t ⇒ τ

Plit c ⇒ scan(absorb({x:char | x = c}))

 c : char

unit
τ1 + τ2

C(e)
{x:τ | e}
absorb(τ)
scan(τ)

Summer School 2005

Example: Pswitch

Pswitch e of {e1 => t1; e2 => t2; … tdef} ⇒
 (λc.{x:τ1 | c = e1} + {x:τ2 | c = e2} + …+ τdef) e

 ti ⇒ τ i (i = 1…n)
τ + τ’
λx.τ
{x:τ|e}

 tdef ⇒ τdef

Summer School 2005

Example: Pswitch

Pswitch e of {e1 => t1; e2 => t2; … tdef} ⇒
 (λc.{x:τ1 | c = e1} + {x:τ2 | c = e2} + …+ τdef) e

 ti ⇒ τ i (i = 1…n)
τ + τ’
λx.τ
{x:τ|e}

 tdef ⇒ τdef

But this encodin�g isn’t exactly right, as it parses the data as
each branch until it reaches the matching tag.

Summer School 2005

Encoding Conditionals

if e then t1 else t2 ⇒ ({x:unit | !e} + τ1) * ({x:unit | e} + τ2)

t1 ⇒ τ1

if e then t1 else t2

t2 ⇒ τ2

Summer School 2005

Pswitch e {
 e1 => x1 : t1

 …
 en => xn : tn

 tdef

}

Pswitch Revisted

• Encode Pswitch as a sequence of conditionals

(Pfun (x : int) =
 if x = e1 then t1 else
 …
 if x = en then tn else
 tdef) e

=

Summer School 2005

Other Features

• PacketTypes: arrays, where clauses, structures, overlays, and
alternation.

• DataScript: set types (enumerations and bitmask sets), arrays,
constraints, value-parameterized types, and (monotonically
increasing labels).

Summer School 2005

Other Uses of the Semantics

• Bug hunting!
– Non-termination of array parsing if no progress made.
– Inconsistent parse descriptor construction.

• Principled extensions
– Adding recursion (done)
– Adding polymorphism?

• Distinguishing the essential from the accidental
– Highlights places where PADS sacrifices safety.
– Pomit and Pcompute : much more useful than originally thought
– Punion : what if correct branch has an error?

Summer School 2005

Future work

• What are the set of languages recognized by the DDC?
• How does the expressive power of the DDC relate to CFGs

and regular expressions?
• Add polymorphism to DDC and PADS.

Summer School 2005

Summary

• Data description languages are well-suited to describing ad
hoc data.

• No one DDL will ever be right - different domains and
applications will demand different languages with differing
levels of expressiveness and abstraction.

• Our work defines the first semantics for data description
languages.

• For more information, visit www.padsproj.org.

