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Review: Technical Challenges of Ad Hoc Data

• Data arrives “as is.”
• Documentation is often out-of-date or nonexistent.

– Hijacked fields.
– Undocumented “missing value” representations.

• Data is buggy.
– Missing data, human error, malfunctioning machines, race conditions 

on log entries, “extra” data, …
– Processing must detect relevant errors and respond in application-

specific ways.
– Errors are sometimes the most interesting portion of the data.

• Data sources often have high volume.
– Data may not fit into main memory.
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Many Data Description Languages

• PacketTypes (SIGCOMM ‘00)
– Packet processing

• DataScript (GPCE ‘02)
– Java jar files, ELF object files

• Erlang Binaries (ESOP ‘04)
– Packet processing

• PADS (PLDI ‘05)
– General ad hoc data
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The Next 700 Programming Languages

The languages people use to communicate with computers differ 
in their intended aptitudes, towards either a particular 
application area, or a particular phase of computer use (high 
level programming, program assembly, job scheduling, etc.). 
They also differ in physical appearance, and more important, in 
logical structure.  The question arises, do the idiosyncrasies 
reflect basic logical properties of the situation that are being 
catered for? Or are they accidents of history and personal 
background that may be obscuring fruitful developments? This 
question is clearly important if we are trying to predict or 
influence language evolution. 

Continued…
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The Next 700 Programming Languages, cont.

      To answer it we must think in terms, not of languages, but 
families of languages. That is to say we must systematize their 
design so that a new language is a point chosen from a well-
mapped space, rather than a laboriously devised construction.

                               — J. P. Landin                        
     The Next 700 Programming Languages, 1965.
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The Next 700 Data Description Languages

• What is the family of data description languages?
• How do existing languages relate to each other?
• What differences are crucial, which “accidents of history”?
• What do the existing languages mean, precisely?

To answer these questions, we introduce a 
semantic framework for understanding data 
description languages.
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PacketTypes
PADS

DataScript

DDC

Contributions

• A core data description calculus (DDC)
– Based on dependent type theory
– Simple, orthogonal, composable types
– Types transduce external data source to internal representation.

• Encodings of high-level DDLs in low-level DDC
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Outline

• Introduction
• A Data Description “�Calculus” (DDC)
• But what does DDC mean?

– Well-kinding judgment
– Representation, parse descriptor, and parser generation

• But what to data description languages (DDLs) mean?
– Idealized PADS (IPADS)
– Features from other DDLs.

• Applications of the semantics
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A Data Description Calculus

?
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Candidate DDC Primitives

• Base types parameterized by expressions (Pstring(:̀ |`:))
– Type constructor constants

• Pair of fields with cascading scope (Pstruct)
– Dependent sums

• Additional constraints (Ptypedef, Pwhere, field constraints).
– Set types

• Alternatives (Punion, Popt)
– Sums

• Open-ended sequences (Parray)
– Some kind of list?

• User-defined parameterized types
– Abstraction and application

• “Active types”: compute, absorb, and scanning
– Built-in functions
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Base Types and Sequences

• C(e): base type parameterized by expression e.
• Σx: τ. τ’: dependent sum describes sequence of values.

– Variable x gives name to first value in sequence.
– Note syntactic sugar: τ * τ’ if x not in τ’ .

• Examples:

(‘:’,“hello”,‘:’)

(3,513)

(123, “hello”, ‘|’)

Σterm:char.string(term) * char

Σwidth:int_fw(1). int_fw(width)

int * string(‘|’) * char

“:hello:”

“3513”

“123hello|”
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Constraints

• {x: τ | e}: set types add constraints to the type τ and express 
relationships between elements of the data.

• Examples:

“43|105|67”

“101”,
“82”

‘a’ inl ‘a’{c : char | c = ‘a’}  (abbrev: Sc(‘a’))

(43, inl ‘|’, inl 105,
 inl ‘|’,  inl 67)

inl 101,
inr 82

Σmin:int.Sc(‘|’) *
Σmax:{m:int | min ≤  m}.Sc(‘|’) *
 {mid:int | min ≤ mid & mid ≤ max} 

{x : int | x  > 100}
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Unions and the Empty String

• τ + τ’ : deterministic, exclusive or
–  try τ; on failure, try τ’.

• unit: matches the empty string.
• Examples:

“2341”, “”

“54”, “n/a”

inl 2341, inr ()

inl 54, inr (inl “n/a”)

int + unit

int + Ss(“n/a”)
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Array Features

• What features do we need to handle data sequences?
– Elements
– Separator between elements
– Termination condition (“Are we done yet?”)
– Terminator after sequence

• Examples:
“192.168.1.1”
“Harry|Ron|Hermione|Ginny;”
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Bottom and Arrays

• τ seq(τs; e, τt) specifies:
– Element type τ

– Separator types τs.

– Termination condition e.

– Terminator type τt.

• bottom: reads nothing, flagging an error.
• Example: IP address.

int seq(Sc(‘.’); len 4, bottom) (4, [192,168,1,1])“192.168.1.1”
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Abstraction and Application

• Can parameterize types over values: λx. τ
• Correspondingly, can apply types to values: τ e
• Example: IP address with terminator

IP_addr ‘|’ * Sc(‘|’) 

λterm.int seq(Sc(‘.’); len 4, Sc(term))

((4, [1,2,3,4]), inl ‘|’)“1.2.3.4|”

nonenone
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Absorb, Compute and Scan

• Absorb, Compute and Scan are active types.
– absorb(τ) : consume data from source; produce nothing.
– compute(e:σ) : consume nothing; output result of computation e.
– scan(τ) :  scan data source for type τ.

• Examples:

scan(Sc(‘|’))

Σwidth:int.Sc(‘|’) *
Σlength:int.
  area:compute(width × length:int) 

absorb(Sc(‘|’))

(6,inl ‘|’)“^%$!&_|”

(10,12,120)

()

“10|12”

“|”
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DDC Example: Idealized Web Server Log

response_t   =   λx.{y : int16_fw(x) | 100 <= y and y < 600 }

entry_t seq(S(‘\n’); λx.false, bottom)

     compute(getdomain client = “edu” : bool)
     Σresponse : response_t 3.    

     Σremoteid : authid_t.          S(‘ ’) *
     Σclient : ip.                         S(‘ ’) * 

entry_t   = 

authid_t   =   S(‘-’) + string(‘ ’)

S   =   λch.{c : char | c = ch}

124.207.15.27 - 234
12.24.20.8 kfisher 208
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A Data Description Calculus

“Active types”absorb, 
compute, scan

Empty strings: ok/errorunit/bottom

Open ended sequencesτ seq(τ s; e, τ t)

Supplying values to parameterized types.τ e

Parameterizing types by expressions.λx. τ

Alternativesτ + τ’

Adding constraints to existing descriptions{x: τ | e}

Field sequence with cascading scopeΣx: τ. τ’

Atomic type parameterized by expression eC(e)
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Semantics Overview

• Well formed DDC type: Γ |- τ : κ 

• Representation for type τ : [τ]rep

• Parse descriptor for type τ : [τ]pd

• Parsing function for type τ : [τ]

– [τ] : bits * offset →  offset * [τ]rep * [τ]pd
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Type Kinding

Kinding ensures types are well formed.

Γ |-   e : σ
Γ |- τ e: κ

Γ |- τ : σ →  κ Γ |- τ’ : T
Γ |- τ + τ’: type

Γ |- τ : T

Γ, x:[τ]rep ∗ [τ]pd |- e : bool

Γ |- {x: τ |  e}: T
Γ |- τ : T

κ ::= T | σ →  κ
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Selected Representation Types 

[τ]rep[λx. τ]rep, [τ e]rep

[τ]rep * [τ’]rep[Σx: τ. τ’]rep

int * ([τ]rep  seq)[ τ seq(τs; e, τ t) ]rep

Host LanguageDDC

[τ]rep + [τ]rep [{x: τ | e}]rep

I(C) + none[C(e)]rep

unit[unit]rep

[τ]rep + [τ’]rep [τ + τ’]rep

unrecoverable 
error

semantic error

Note that we erase
all dependencies.
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Selected Parse Descriptor Types 

[τ]pd[λx. τ]pd, [τ e]pd

pd_hdr * [τ]pd * [τ’]pd[Σx: τ. τ’]pd

pd_hdr * int * int * ( [τ]pd seq )[ τ seq(τ s; e, τ t) ]pd

Host LanguageDDC

pd_hdr * [τ]pd[{x: τ | e}]pd

pd_hdr[C(e)]pd

pd_hdr[unit]pd

pd_hdr * ([τ]pd + [τ’]pd )[τ + τ’]pd

pd_hdr = 
int * errcode * span
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Parsing Semantics of Types

• Semantics expressed as parsing functions written in 
the polymorphic λ-calculus.
– [τ] : bits * offset →  offset * [τ]rep * [τ]pd

• Dependent sum case:

         (ω 2 , RΣ(r1, r2), PΣ(p1, p2))

     let (ω 2, r2, p 2) = [τ’] (B, ω 1)  in

     let x = (r1, p1)  in

     let (ω 1, r1, p1) = [τ] (B, ω )  in

  λ(B, ω ). 

[Σx: τ. τ’] = 
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Properties of the Calculus

• Theorem: If Γ |- τ : κ then 
�Γ |- [τ] :  bits * offset →  offset * [τ]rep * [τ]pd

“Well-formed type τ yields a parser that returns values with types 
corresponding to τ.”

• Theorem:  Parsers report errors accurately.
– Errors in parse descriptor correspond to                                            

errors in representation.
– Parsers check all semantic constraints.
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Making Use of the Calculus

IPADS

DDC

 t ⇒  τ

     IPADS

t ::= C(e) | Pfun(x:s) = t | t e

   |   Pstruct{fields} |  Punion{fields}

   |   Pswitch e of {alts tdef;}  | Popt t

   |   t Pwhere x.e | Palt{fields}

   |   t Parray [t, t] | Pcompute e | Plit c

fields ::= | fields x : t;
alts   ::= | alts e => t;
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IPADS Example

             };

entry_t Parray(Peor, Peof)

                 academic :  Pcompute(getdomain client = “edu” : bool);

                 response : response_t 3;    

                  remoteid : authid_t;          “ ”;

                 client : Pip;                      “ ”;

entry_t = Pstruct {

                    Puint16_FW(x) Pwhere y.100 <= y and y < 600;

response_t = Pfun(x:int)

authid_t = Punion { unauth : “-”;   id  : Pstring(“ ”)}; 

124.207.15.27 - 234
12.24.20.8 kfisher 208
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Example: Popt and Plit

Popt t ⇒ τ + unit

 t ⇒  τ

Plit c ⇒ scan(absorb({x:char | x = c}))

 c : char

unit
τ1 + τ2

C(e)
{x:τ | e}
absorb(τ)
scan(τ)
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Example: Pswitch

Pswitch e of {e1 => t1; e2 => t2; … tdef}   ⇒  
    (λc.{x:τ1 | c = e1} + {x:τ2 | c = e2} + …+ τdef) e 

 ti ⇒ τ i  (i = 1…n)   
τ + τ’
λx.τ
{x:τ|e}

 tdef ⇒ τdef
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Example: Pswitch

Pswitch e of {e1 => t1; e2 => t2; … tdef}   ⇒  
    (λc.{x:τ1 | c = e1} + {x:τ2 | c = e2} + …+ τdef) e 

 ti ⇒ τ i  (i = 1…n)   
τ + τ’
λx.τ
{x:τ|e}

 tdef ⇒ τdef

But this encodin�g isn’t exactly right, as it parses the data as
each branch until it reaches the matching tag.
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Encoding Conditionals

if e then t1 else t2 ⇒  ({x:unit | !e} + τ1) * ({x:unit | e} + τ2) 

t1 ⇒  τ1

if e then t1 else t2

t2 ⇒  τ2
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Pswitch e {
   e1 => x1 : t1

   …
   en => xn : tn

   tdef

}

Pswitch Revisted

• Encode Pswitch as a sequence of conditionals

( Pfun (x : int) = 
   if x = e1 then t1 else
   …
   if x = en then tn else
   tdef )   e

=
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Other Features

• PacketTypes: arrays, where clauses, structures, overlays, and 
alternation.

• DataScript: set types (enumerations and bitmask sets), arrays, 
constraints, value-parameterized types, and (monotonically 
increasing labels).
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Other Uses of the Semantics

• Bug hunting!
– Non-termination of array parsing if no progress made.
– Inconsistent parse descriptor construction.

• Principled extensions
– Adding recursion (done)
– Adding polymorphism?

• Distinguishing the essential from the accidental
– Highlights places where PADS sacrifices safety.
– Pomit and Pcompute : much more useful than originally thought
– Punion : what if correct branch has an error?
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Future work

• What are the set of languages recognized by the DDC?
• How does the expressive power of the DDC relate to CFGs 

and regular expressions?
• Add polymorphism to DDC and PADS.
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Summary

• Data description languages are well-suited to describing ad 
hoc data.

• No one DDL will ever be right - different domains and 
applications will demand different languages with differing 
levels of expressiveness and abstraction.

• Our work defines the first semantics for data description 
languages.

• For more information, visit www.padsproj.org.


