«)

Multithreaded
Programming in

Cilk

" LECTURE 3 Y

Charles E. Leiserson

Supercomputing Technologies Research Group
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Minicourse Outline

e LECTURE 1
Basic Cilk programming: Cilk keywords,
performance measures, scheduling.

e LECTURE 2
Analysis of Cilk algorithms: matrix
multiplication, sorting, tableau construction.

® LABORATORY
Programming matrix multiplication in Cilk
— Dr. Bradley C. Kuszmaul

e LECTURE 3
Advanced Cilk programming: inlets, abort,
speculation, data synchronization, & more.

© 2006 by Charles E. Leiserson Muliithreaded Programming in Cilk — LECTURE 3 July 17,2006 2

LECTURE 3

* Inlets

* Abort

* Speculative Computing
* Data Synchronization

* Under the Covers

« JCilk

* Conclusion

© 2006 by Charles E. Leiserson

ilk — LECTURE 3 July 17,2006 3

© 2006 by Charles E. Leiserson

Operating on Returned Values

Programmers may sometimes wish to
incorporate a value returned from a spawned
child into the parent frame by means other
than a simple variable assignment.

Example" x += spawn foo(a,b,c);

Cilk achieves this functionality using an
internal function, called an inlet, which is
executed as a secondary thread on the parent
frame when the child returns.

in Cilk — LECTURE 3 July 17,2006 4

Semantics of Inlets

for (i=0; i<1000000; i++) {
update (spawn foo(i), i);

sync; /* ix now indexes the largest foo(i) */

* The inlet keyword defines a void internal function
to be an inlet.

* In the current implementation of Cilk, the inlet
definition may not contain a spawn, and only the first
argument of the inlet may be spawned at the call site.

©2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 5

Semantics of Inlets

int max, ix = -1;
inlet void update (int val, int index) {
if (idx == -1 || val > max)
ix = index; max = val;
}
}

for (i=0; i<1000000; i++) {
}

sync; /* ix now indexes the largest foo (i) */

The non-spawn args to update () are evaluated.
The Cilk procedure foo (1) is spawned.

Control passes to the next statement.

When foo (i) returns, update () is invoked.

W=

© 2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 6

Semantics of Inlets

int max, ix = -1;
inlet void update (int val, int index) {
if (idx == -1 || val > max) {

ix = index; max = val;
}
}

for (i=0; i<1000000; i++) {
update (spawn foo(i), i);

sync; /* ix now indexes the largest foo (i) */

Cilk provides implicit atomicity among the
threads belonging to the same frame, and thus
no locking is necessary to avoid data races.

©2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 7

Implicit Inlets

cilk int wfib(int n) {
if (n == 0) {
return 0;
} else {
int i, x = 1;
for (i=0; i<=n-2; i++) {
x += spawn wfib(i);

sync;
return x;
}
}

For assignment operators, the Cilk compiler
automatically generates an implicit inlet to
perform the update.

© 2006 by Charles E. Leiserson Multithreaded Programming in Cilk— LECTURE 3 July 17,2006 §

LECTURE 3

* Inlets
* Abort
Speculative Computing

* Data Synchronization
Under the Covers
JCilk

* Conclusion

© 2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 9

Computing a Product

P:E)Ai

int product(int *A, int n) {
int i, p=1;
for (i=0; i<n; i++) {
p *= A[i];

return p;

Optimization: Quit early if the
partial product ever becomes 0.

©2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 10

Computing a Product

P:l:[OAi

int product(int *A, int n) {
int i, p=1;
for (i=0; i<n; i++) {
p *= A[i];
if (p == 0) break;

return p;

Optimization: Quit early if the
partial product ever becomes 0.

© 2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 11

Computing a Product in Parallel

pzl:[()A[

cilk int prod(int *A, int n) {
int p=1;
if (n == 1) {

return A[O]
} else {

P *= spawn product(A, n/2);

p *= spawn product(A+n/2, n-n/2);

sync;

return p;

;

}

How do we quit early if we discover a zero?

© 2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 12

© 2006 by Charles E. Leiserson

Cilk’s Abort Feature

cilk int product(:l.nt *A, int n) {
int p =
inlet vo:.d mult(int x) {
P *= x;
return;

if (n == 1) {
return A[O]
} else {
mult(spawn product(A, n/2));
mult(spawn product(A+n/2, n- n/2)) 8
sync;
return p;

1. Recode the implicit inlet to make it explicit.

Multithreaded Programming in Cilk — LECTURE 3

July 17, 2006

13

Cilk’s Abort Feature

cilk int product(int *A, int n) {
int p = 1;
inlet void mult(int x) {
P *= x;

return;

if (n == 1) {

return A[O];

else {

mult(spawn product(A, n/2));
mult(spawn product(A+n/2, n-n/2));
sync;

return p;

}

-~

}

2. Check for 0 within the inlet.

© 2006 by Charles E. Leiserson Multithreaded Programming in Cilk— LECTURE 3

July 17, 2006

14

© 2006 by Charles E. Leiserson

Cilk’s Abort Feature

cilk int product(:l.nt *A, int n) {
int

inlet v01d mult(int x) {
P *= x;
if (p == 0)
abort; /* Aborts existing children, */
} /* but not future ones. */
return;

if (n == 1) {
return A[O0];

} else {
mult(spawn product(A, n/2));
mult(spawn product(A+n/2, n-n/2));
sync;
return p;

}

}

2. Check for 0 within the inlet.

Multithreaded Programming in Cilk — LECTURE 3 July 17,2006

15

Cilk’s Abort Feature

cilk int product(:l.nt *A, int n) {

int p =
inlet vo:.d mult(int x) {
p *= x;
if (p == 0)
abort; /* Aborts existing children, */
/* but not future ones. *
return;
if (n == 1) {
return A[O0];
} else {

mult(spawn product(A, n/2));

mult(spawn product(A+n/2, n-n/2));
sync;
return p;

}

}

©2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3

July 17, 2006

16

© 2006 by Charles E. Leiserson

Cilk’s Abort Feature

cilk int product(int *A, int n) {

int p = 1;
inlet void mult(int x) {
*= x;
if (p == 0) {
abort; /* Aborts existing children, */
} /* but not future ones. */
return;

Implicit atomicity eases

if (n == 1) {

retuen AL0]; reasoning about races.

} else {
mult(spawn product(A, n/2));
if (p == 0) { /* Don’t spawn if we’ve */
return 0; /* already aborted! */
mult(spawn product(A+n/2, n-n/2));
sync;
return p;

}
}

Multithreaded Programming in Cilk — LECTURE 3 July 17,2006

17

LECTURE 3

* Inlets
* Abort
* Speculative Computing

L]

Data Synchronization

Under the Covers
JCilk

e Conclusion

© 2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3

July 17, 2006

18

Min-Max Search

e Two players: MAX © and MIN @,

e The game tree represents all moves from the current
position within a given search depth.

o At leaves, apply a static evaluation function.
o MAX chooses the maximum score among its children.
® MIN chooses the minimum score among its children.

©2006 by Charles E. Leiserson Multithreade

Cilk — LECTURE 3 July 17,2006 19

© 2006 by Charles E. Leiserson Multithr

Alpha-Beta Pruning

InpEa: If MAX ™ discovers a move so good that
MIN @ would never allow that position, MAX’s
other children need not be searched — beta cutoff.

g in Cilk — LECTURE 3 July 17,2006 20

Alpha-Beta Pruning

IpEa: If MAX © discovers a move so good that
MIN @ would never allow that position, MAX’s
other children need not be searched — beta cutoff.

© 2006 by Charles E. Leiserson Muliithreaded Programming in Cilk — LECTURE 3

July 17,2006 21

© 2006 by Charles E. Leiserson

Alpha-Beta Pruning

Ipea: If MAX © discovers a move so good that
MIN @ would never allow that position, MAX’s
other children need not be searched — beta cutoff.

Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 22

Alpha-Beta Pruning

IpeA: [f MAX © discovers a move so good that
MIN @ would never allow that position, MAX’s
other children need not be searched — beta cutoff.

©2006 by Charles E. Leiserson Multithreaded Pr ig in Cilk — LECTURE 3 July 17,2006

23

© 2006 by Charles E. Leiserson Multithreaded Pro

Alpha-Beta Pruning

Ipea: If MAX ™ discovers a move so good that
MIN @ would never allow that position, MAX’s
other children need not be searched — beta cutoff.

g in Cilk — LECTURE 3 July 17,2006 24

Alpha-Beta Pruning

Ipea: If MAX I discovers a move so good that
MIN @ would never allow that position, MAX’s
other children need not be searched — beta cutoff.

©2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 25

Alpha-Beta Pruning

InpEa: If MAX ™ discovers a move so good that
MIN @ would never allow that position, MAX’s
other children need not be searched — beta cutoff.

© 2006 by Charles E. Leiserson Muliithreaded Programming in Cilk — LECTURE 3 July 17,2006 26

Alpha-Beta Pruning

IpeA: If MAX © discovers a move so good that
MIN @ would never allow that position, MAX’s
other children need not be searched — beta cutoff.

© 2006 by Charles E. Leiserson Muliithreaded Programming in Cilk — LECTURE 3 July 17,2006 27

Alpha-Beta Pruning

Ipea: If MAX © discovers a move so good that
MIN @ would never allow that position, MAX’s
other children need not be searched — beta cutoff.

© 2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 28

Alpha-Beta Pruning

IpeA: [f MAX © discovers a move so good that
MIN @ would never allow that position, MAX’s
other children need not be searched — beta cutoff.

©2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 29

Alpha-Beta Pruning

Ipea: If MAX ™ discovers a move so good that
MIN @ would never allow that position, MAX’s
other children need not be searched — beta cutoff.

© 2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 30

Alpha-Beta Pruning

Ipea: If MAX I discovers a move so good that
MIN @ would never allow that position, MAX’s
other children need not be searched — beta cutoff.

©2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 31

Alpha-Beta Pruning

InpEa: If MAX ™ discovers a move so good that
MIN @ would never allow that position, MAX’s
other children need not be searched — beta cutoff.

© 2006 by Charles E. Leiserson Muliithreaded Programming in Cilk — LECTURE 3 July 17,2006 32

Alpha-Beta Pruning

Alpha-Beta Pruning

IpeA: If MAX © discovers a move so good that
MIN @ would never allow that position, MAX’s
other children need not be searched — beta cutoff.

© 2006 by Charles E. Leiserson Muliithreaded Programming in Cilk — LECTURE 3 July 17,2006 33

Ipea: If MAX © discovers a move so good that
MIN @ would never allow that position, MAX’s
other children need not be searched — beta cutoff.

© 2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 34

Alpha-Beta Pruning

Alpha-Beta Pruning

IpeA: [f MAX © discovers a move so good that
MIN @ would never allow that position, MAX’s
other children need not be searched — beta cutoff.

©2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 35

Ipea: If MAX ™ discovers a move so good that
MIN @ would never allow that position, MAX’s
other children need not be searched — beta cutoff.

© 2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 36

Alpha-Beta Pruning

Alpha-Beta Pruning

Ipea: If MAX I discovers a move so good that
MIN @ would never allow that position, MAX’s
other children need not be searched — beta cutoff.

©2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 37

InpEa: If MAX ™ discovers a move so good that
MIN @ would never allow that position, MAX’s
other children need not be searched — beta cutoff.

© 2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 38

Alpha-Beta Pruning

IpEA: If MAX I discovers a move so good that
MIN @ would never allow that position, MAX’s
other children need not be searched — beta cutoff.

[Unfortunately, this heuristic is inherently serial.]

© 2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 39

Parallel Min-Max Search

OBSERVATION: In a best-ordered tree, the degree
of every internal node is either 1 or maximal.

IDEA: [Feldman-Mysliwietz-Monien 91] If the
first child fails to generate a cutoff, speculate that
the remaining children can be searched in parallel
without wasting any work: “young brothers wait.”

© 2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 40

Parallel Alpha-Beta (I)

cilk int search(position *prev, int move, int depth) {
position cur; /* Current position */
int bestscore = -INF; /* Best score so far */
int num _moves; /* Number of children */
int mv; /* Index of child */
int sc; /* Child’s score */
int cutoff = FALSE; /* Have we seen a cutoff? */

e View from MAX’s perspective; MIN’s viewpoint
can be obtained by negating scores — negamax.

e The node generates it{ #Cilk keywords pm its
parent’s position pre used Sofar

e The alpha and beta AT TITeTIOV €
are fields of the position data structure.

©2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 41

Parallel Alpha-Beta (II)

inlet void get score(int child sc) {
child _sc = -child sc; /* Negamax */

if (child_sc > bestscore) {
bestscore = child sc;
if (child sc > cur.alpha) {
cur.alpha = child_sc;
if (child sc >= cur.beta) { /* Beta cutoff */
cutoff = TRUE; /* No need to search more 7
abort; /* Terminate other children */
}
}
}
}

®

© 2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 42

Parallel Alpha-Beta (III)

/* Create current position and set up for search */

make_move (prev, move, &cur);

sc = eval (&cur) ; /* Static evaluation */

if (abs(sc)>=MATE || depth<=0) { /* Leaf node */
return (sc);

}

cur.alpha = -prev->beta; /* Negamax */
cur.beta = -prev->alpha;

/* Generate moves, hopefully in best-first order*/

num_moves = gen_moves (&cur) ;

©2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 43

Parallel Alpha-Beta (IV)

/* Search the moves */

for (mv=0; !cutoff && mv<num moves; mv++) {
get_score(spawn search(&cur, mv, depth-1));
if (mv==0) sync; /* Young brothers wait */

}

sync;

return (bestscore) ;

}

e Only 6 Cilk keywords need be embedded in
the C program to parallelize it.

e In fact, the program can be parallelized using
only 5 keywords at the expense of minimal @
obfuscation.

©2006 by Charles E. Leiserson Multithreaded Programming in Cilk— LECTURE 3 July 17,2006 44

LECTURE 3

* Inlets

* Abort

* Speculative Computing
* Data Synchronization
Under the Covers
JCilk

* Conclusion

© 2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 45

Mutual Exclusion

Cilk’s solution to mutual exclusion is no
better than anybody else’s.

Cilk provides a library of spin locks
declared with Cilk lockvar.

* To avoid deadlock with the Cilk scheduler, a
lock should only be held within a Cilk thread.

¢ Le., spawn and sync should not be executed
while a lock is held.

Fortunately, Cilk’s control parallelism often
mitigates the need for extensive locking.

©2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 46

Cilk’s Memory Model

Programmers may also synchronize through

memory using lock-free protocols, although

Cilk is agnostic on consistency model.

* [f a program contains no data races, Cilk
effectively supports sequential consistency.

« If a program contains data races, Cilk’s behavior
depends on the consistency model of the
underlying hardware.

To aid portability, the Cilk fence ()

function implements a memory barrier on
machines with weak memory models.

©2006 by Charles E. Leiserson Muliithreaded Programming in Cilk — LECTURE 3 July 17,2006 47

Debugging Data Races

Cilk’s Nondeterminator debugging tool provably
guarantees to detect and localize data-race bugs.

“Abelian”
Cilk program

Information
localizing a -
data race.

A data race occurs whenever two logically parallel
threads, holding no locks in common, access the same
location and one of the threads modifies the location.

© 2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 48

Input data set

Every
execution
produces the
same result.

LECTURE 3

e Inlets
e Abort

* Speculative Computing

Data Synchronization

Under the Covers
JCilk

e Conclusion

©2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3

July 17,2006 49

Compiling Cilk

The cilke
compiler

source-to-source

Cilk translator
source

o)) C compiler -
C post- Cilk
source RTS

encapsulates
the process.

/)

cilk2c translates ObJECt
straight C code into code
identical C postsource.

linking
loader

© 2006 by Charles E. Leiserson

Multithreaded Programming in Cilk— LECTURE 3

July 17,2006 50

Cilk’s Compiler Strategy

The c¢ilk2c translator generates two
“clones” of each Cilk procedure:

* fast clone—serial, common-case code.

* slow clone—code with parallel bookkeeping.

* The fast clone is always spawned, SFI;&%YEV
saving live variables on Cilk’s FAST
work deque (shadow stack). FAST

* The slow clone is resumed if a FAST
thread is stolen, restoring variables FAST
from the shadow stack.

* A check is made whenever a procedure returns
to see if the resuming parent has been stolen.

© 2006 by Charles E. Leiserson

Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 51

© 2006 by Charles E. Leiserson

Compiling spawn — Fast Clone

[frame
Cilk x = spawn fib(n-1);
source
frame->entry = 1;
frame->n = n; suspend
push (frame) ; parent
® = fib(n-1); run child
C post- +
source if (pop()==FAILURE) ({
frame->x = x; resume
frame->join--; parent
(clean up &
return to scheduler) remotely

}

Multithreaded Programming in Cilk — LECTURE 3

entry
join
n

x
y
entry

join

Cilk
deque

July 17,2006 52

Compiling sync — Fast Clone

Cilk . SLOW
source synes FAST
FAST
FAST
FAST
C post- . FAST
source

[No synchronization overhead in the fast clone/]

© 2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 53

© 2006 by Charles E. Leiserson

Compiling the Slow Clone

void fib_slow(fib_frame *frame) {
int n,x,y;

switch (f;ame—>entry) { }restore frame

case 1: goto L1;
case 2: goto L2; program
counter

case 3: goto L3;
}

frame->c'entry =1;
frame->n = n;
push (frame) ;

x = fib(n-1); same
if (pop()==FAILURE) { as fast
frame->x = x;
frame->join--; clone
(clean up &

return to scheduler)

}
) restore local
O } variables

n = frame->n; if resuming

) } continue

Multithreaded Programming in Cilk — LECTURE 3

entry
join
n

x
Y

entry |
join

Cilk
deque

July 17,2006 54

Breakdown of Work Overhead
(circa 1997)

MIPS R10000 E[-
UltraSPARC I @:-
T T T T T T

0 1

ac

[state saving

[] frame allocation
B stealing protocol

5 6 7

3 4
T,/T
Benchmark: £ib on one processor.

©2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17, 2006

55

© 2006 by Charles E. Leiserson

LECTURE 3

* Inlets

* Abort

* Speculative Computing

* Data Synchronization

* Under the Covers
JCilk

e Conclusion

Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 56

The JCilk System
JCilk Compiler JCilk RTS
N l{
~ ~
. o Jgo 5
T JCilk to Jgo T, Compiler T, JIVM
Fib jcilk Fib.jgo Fib.class

* Jgo =Java + goto.

¢ The Jgo compiler was built by modifying gcj to
accept goto statements so that a continuation
mechanism for JCilk could be implemented.

© 2006 by Charles E. Leiserson Mul

ilk — LECTURE 3 July 17,2006 57

© 2006 by Charles E. Leiserson Mulr

JCilk Keywords

cilk

spawn Same as Cilk, except that
sync cilk can also modify try.
SYNCHED

. |
} Eliminated!

JCilk leverages Java’s exception mechanism
to render two Cilk keywords unnecessary.

g in Cilk — LECTURE 3 July 17,2006 58

Exception Handling in Java

“During the process of throwing an exception, the
Java virtual machine abruptly completes, one by
one, any expressions, statements, method and
constructor invocations, initializers, and field
initialization expressions that have begun but not
completed execution in the current thread. This
process continues until a handler is found that
indicates that it handles that particular exception
by naming the class of the exception or a
superclass of the class of the exception.”

— J. Gosling, B Joy, G. Steele, and G. Bracha,
Java Language Specification, 2000, pp. 219-220.

© 2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 59

© 2006 by Charles E. Leiserson

Exception Handling in JCilk

private cilk void foo() throws IOException {
spawn A() ;
cilk try {
spawn B() ;
cilk try {
spawn C();
} catch(ArithmeticEx’'n e) {
doSomething() ;
}
} catch(RuntimeException e) {
doSomethingElse () ;
}
spawn D() ;
doYetSomethingElse() ;
sync;

}

Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 60

10

Exception Handling in JCilk

private cilk void foo() throws IOException {
spawn A();
cilk try {
spawn B(); Exception!
cilk try {
spawn C() ;
} catch(ArithmeticEx’'n e) {
doSomething() ;

}
} catch(RuntimeException e) {
doSomethingElse() ;

} An exception causes all
spawn D() ; subcomputations
doYetSomethingElse () ; dynamically enclosed
sync; by the catching clause

} to abort!

©2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 61

© 2006 by Charles E. Leiserson

Exception Handling in JCilk

private cilk void foo() throws IOException {

spawn A() ;
cilk try {
spawn B(); ArithmeticEx’n
cilk try {
spawn C(); —
} catch(ArithmeticEx’'n e) { .
doSomething () ; Nothing
}
} catch(RuntimeException e) { abOI‘tS.
doSomethingElse () ; .
} An exception causes all
spawn D() ; subcomputations
doYetSomethingElse () ; dynamically enclosed
sync; by the catching clause
} to abort!

Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 62

Exception Handling in JCilk

private cilk void foo() throws IOException {
spawn A();
cilk try {
-spawn—B-0—
cilk try {
spawn C() ;
} catch(ArithmeticEx’'n e) {
doSomething() ;

RuntimeEx’n

} catch(RuntimeException e) {

doSomethingElse() ; .
} An exception causes all
spawn D() ; subcomputations
doYetSomethingElse(); dynamically enclosed
sync; by the catching clause
} to abort!

© 2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 63

© 2006 by Charles E. Leiserson

Exception Handling in JCilk

private cilk void foo() throws IOException {

cilk try {
-spawn—B-0—
cilk try {
spawn C() ;
} catch(ArithmeticEx’'n e) {
doSomething() ;

IOException

} catch(RuntimeException e) {
doSomethingElse () ;

} An exception causes all
—spawn—D-+ subcomputations
doYetSomethingElse(); dynamically enclosed
sync; by the catching clause
} to abort!

Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 64

Exception Handling in JCilk

private cilk void foo() throws IOException {
spawn A();
cilk try {
-spawn—B-+
cilk try {
spawn C(); —
} catch(ArithmeticEx’'n e) {
doSomething() ;

RuntimeEx’n

}
} catch(RuntimeException e) {
doSomethingElse() ;

} The appropriate catch

spawn D() ; clause is executed only

doYetSomethingElse () ; dafter all spawned methods

sync; within the corresponding
} try block terminate.

© 2006 by Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 65

© 2006 by Charles E. Leiserson

JCilk’s Exception Mechanism

* JCilk’s exception semantics allow
programs such as alpha-beta to be
coded without Cilk’s inlet and
abort keywords.

* Unfortunately, Java exceptions are
slow, reducing the utility of JCilk’s
faithful extension.

Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 66

11

LECTURE 3

* Inlets

* Abort

* Speculative Computing
* Data Synchronization

* Under the Covers

» JCilk

* Conclusion

© 2006 by Charles E. Leiserson

Cilk — LECTURE 3 July 17,2006 67 © 2006 by Charles E. Leiserson Multithr

Future Work

Adaptive computing
e Getrid of -—-nproc.
 Build a job scheduler that uses parallelism feedback
to balance processor resources among Cilk jobs.

Integrating Cilk with static threads
« Currently, interfacing a Cilk program to other
system processes requires arcane knowledge.
* Build linguistic support into Cilk for Cilk processes
that communicate.
* Develop a job scheduler that uses pipeload to
allocate resources among Cilk processes.

Cilk — LECTURE 3 July 17,2006 68

Key Ideas

* Cilk is simple: cilk, spawn, sync,
SYNCHED, inlet, abort

* JCilk is simpler

* Work & span

* Work & span
* Work & span

(X>])

* Work & span
* Work & span

* Work & span

+ Work & span

+ Work & span

Multithreaded Programming in Cilk — LECTURE 3 July 17,2006 69

Open-Cilk Consortium

* We are in the process of forming a
consortium to manage, organize,
and promote Cilk open-source
technology.

* [f you are interested in participating,
please let us know.

©2006 by Charles E. Leiserson Muliithreaded Programming in Cilk — LECTURE 3 July 17,2006 70

ACM Symposium on Parallelism in

Algorithms and Architectures

SPAA 2006

= i‘

Cambridge, MA, USA
July 30 — August 2, 2006

© 2006 by Charles E. Leiserson Multithreade

Cilk — LECTURE 3 July 17,2006 7

12

