Model Checking Concurrent
Software

Shaz Qadeer
Microsoft Research

Model checking, narrowly interpreted:

Decision procedures for checking if a
given Kripke structure is a model for a
given formula of a temporal logic.

Why is this of interest to us?

Because the dynamics of a discrete system can
be captured by a Kripke structure.

Because some dynamic properties of a discrete
system can be stated in temporal logics.

U

Model checking = System verification

Model checking, generously interpreted:

Algorithms, rather than proof calculi,
for system verification which operate on
a system model (semantics), rather than
a system description (syntax).

A specific model-checking problem is defined by

I =S
/1N
“implementation” “specification”
(system model) (system property)

VAR UBRY

"satisfies”, "implements”, "refines”
(satisfaction relation)

Paradigmatic example:

mutual-exclusion protocol

loop 1 loop
out: x1:=1; last:=1 out: x2:=1; last := 2
req: await x2=0 or last=2 req: await x1=0 or last=1
int x1:=0 int x2:=0

end loop. end loop.

P1 P2

Model-checking problem

system model system property

satisfaction relation

Model-checking problem

I|=s
/ \

system model system property

satisfaction relation

While the choice of system model is important for
ease of modeling in a given situation,

the only thing that is important for model checking
is that the system model can be translated into
some form of state-transition graph.

1O

92 93

State-transition graph

Q set of states {91.9..93}
A set of atomic observations {a,b}
—>cQxQ transition relation 9> q
[]: Q—> 24 observation function [q] = {a}

set of observations

Mutual-exclusion protocol

loop 1l loop
out: x1:=1; last =1 out: x2:=1; last = 2
req: await x2=0 or last=2 req: await x1=0 or last=1
it x1:=0 inn x2:=0
end loop. end loop.
P1 P2

pel: {o,r.i}
@ pc2: {o,r,i}
x1: {0,1}
/ \ x2:{0,1}
last: {1,2}
3.3-2:2:2 = 72 states

The translation from a system description
to a state-transition graph usually involves
an exponential blow-up !!!

e.g., nboolean variables = 2" states

This is called the "state-explosion problem.”

Finite state-transition graphs don't handle:
- recursion (need pushdown models)

State-transition graphs are not necessarily finite-state

We will talk about some of these issues later.

Model-checking problem

system model system property

satisfaction relation

Example: Mutual exclusion

Tt cannot happen that both processes are in
their critical sections simultaneously.

Initial states: pcl=oApc2=0Ax1=0Ax2=0
Error states: pcl=rapc2=r

Reachability analysis:
Does there exist a path from an initial state o
an error state?

Complexity of state transition graph is due to:

1. Control: finite (single program counter) vs.
infinite (stack of program counters)
2. Data: finite domain (boolean) vs.
infinite domain (integers) vs.
dynamically created (heap objects)
3. Threads of control: single vs.
multiple vs.
dynamically created

For example, the mutual exclusion protocol has
multiple threads of finite control and finite data.

Decidability of reachability analysis

Single thread of control:
Finite
Control Acyclic Looping Infinite

Data
Finite Yes Yes Yes
Infinite Yes No No

Decidability of reachability analysis
Multiple threads of control:
Finite
Control Acyclic Looping Infinite

Data
Finite Yes Yes No
Infinite Yes No No

Analysis of concurrent
programs is difficult

* Finite-data finite control program
-n lines

- m states for global data variables
* 1 thread

-n* m states
+ K threads

- (n)K * m states

Outline

+ Reachability analysis for finite data
- finite control
- infinite control

* Richer property specifications
- safety vs. liveness

Part 1: Reachability analysis
for finite-state systems

Why should we bother about finite-data programs?

Two reasons:

1. These techniques are applicable to infinite-data
programs without the guarantee of termination
2. These techniques are applicable to finite
abstractions of infinite-data programs

Reachability analysis for finite data and finite control
1. Stateless model checking or systematic testing

- enumerate executions
2. Explicit-state model checking with state caching

- enumerate states

Note:

These techniques applicable even to infinite data and
infinite control programs, but without the guarantee
of termination.

Stateless model checking
a.k.a
Systematic testing

void doDfs() {
stack.push(initialState);
while (stack.Count > 0) {
State s := (State) stack.Peek();

// execute the next enabled thread
int tid := s.NextEnabledThread();

if (tid = -1) { stack.Pop(); continue; }
State newS := s.Execute(tid);

stack.push(newS);

This algorithm is not fully stateless since it requires a
stack of states.

t t

.o 1
|n|1- e ——— o o o — 3

Maintain instead a stack of thread identifiers.
To recreate the state at the top of the stack,
replay the stack from the initial state

The algorithm will not terminate in general.
However, it will terminate if

- the program is acyclic

- if we impose a bound on the execution depth

Even if it terminates, it is very expensive
- after each step, every single thread is scheduled
- leads to too many executions

Atomic Increment

intg=0;
Tl T2
int x=0; inty=0;
X++; Y+
g+, g+,
X++; Y+
g++; g++;

Naive stateless model checking:
No. of explored executions = (4+4)!/(41)2= 70

No. of threads = n
No. of steps executed by each thread = k
No. of executions = (nk)! / (kI)"n

Partial-order reduction techniques

An access to x by Tl is invisible to T2.

T x++ T2
Unnecessary to explore this transition

An access to y by T2 is invisible to T1.

Tl T2: y++
Unnecessary to explore this transition

intg=0;
T1 T2
int x=0; inty=0;
X++; Y+
g++, g++,
X++) y++
g+, g+,

Without partial-order reduction:
No. of explored executions = (4+4)!/(41)? = 70

With partial-order reduction:
No. of explored executions = (2+2)l/(2!1)2= 6

and so on ...

Execution el is equivalent to e2 if e2 can be obtained
from el by commuting adjacent independent operations.

— T1
— T2
X++ g+t X++ g++

y++ g++ y++ g++

—_— —_—

An execution is partially rather than totally ordered!
- all linearizations of a partially-ordered execution are
equivalent

Goal: an algorithm to systematically enumerate one
and only one representative execution from each
equivalence class

Non-atomic Increment

Lock l; int g=0;
T1 T2
int x=0; inty=0;
X4+ y++,
acq(l); acq(l);
++) ++)
rel(l); rel(l);
X++, ++!
acq(l); acq(l);
g++; g++;
rel(l); rel(l);

Challenge

Goal: an algorithm to systematically enumerate
one and only one representative execution from
each equivalence class

Obstacles:

1. Dependence between actions difficult to
compute statically

2. Difficult to avoid repeating equivalent
executions

Happens-before relation

+ Partial-order on atomic actions in a

concurrent execution

+ Inter-thread edges based on program order
+ Intra-thread edges based on synchronization

actions

- acquire and release on locks
- fork and join on threads

- P and V on semaphores

- wait and signal on events

Happens-before relation

acquire(mx);
acquire(my);
X++,
++)
release(my);
release(mx);
acquire(my);
++) g
release(my);
X++,

acquire(mx):g

release(mx);

Data race

* Partition of program variables into
synchronization variables and data
variables

« There is a data-race on x if there are
two accesses to x such that

- They are unrelated by the happens-
before relation

- At least one of those accesses is a write

No race

acquire(mx);
acquire(my);
X+
y++,
release(my);
release(mx);
acqui re(my),'%
++)
release(my);
X+

acquir‘e(mx):g

release(mx);

Race on x

acquire(mx);
acquire(my);
X++;
y++:
release(my);
release(mx);

acquire(my);
++) %
release(my);

X+,

A data race usually indicates an error!

Improved partial-order
reduction

+ Schedule other threads only at
accesses to synchronization variables

- Justified if each execution is free of
data races

- check by computing the happens-before
relation

- report each data race

Clock-vector algorithm

Initially:
Lock I: V()= [0,..,0] Thread t: CV(t) = [0,...,0]

Data variable x: Clock(x) = -1, Owner(x) = 0

Thread t performs:

release(l): CV(¥)[t]:= CV(T)[t]+ L CV(l) := CV(t)

acquire(l): CV(t) := max(CV(t), V(1))

access(x): if (Owner(x) =t v Clock(x) < CV(t)[Owner(x)])
Owner(x) := t; Clock(x) := CV(1)[t]

else
Report race on x

Further improvements
Lock Ix, ly; intx=0,y=0;

T1 T2
acq(Ix); acq(ly):
X++; Y+
rel(1x); rel(ly);

* Previous algorithm results in exploring two linearizations
+ Yet, there is only one partially-ordered execution

Perform partial-order reduction on synchronization actions
- Flanagan-Godefroid 06
* Lei-Carver 06

Explicit-state model checking

+ Explicitly generate the individual states
- Systematically explore the state space

- State space: Graph that captures all
behaviors

* Model checking = Graph search

* Generate the state space graph "on-
the-fly"

- State space is typically much larger than
the reachable set of states

void doDfs() {
while (stateStack.Count > 0) {
State s := (State) stateStack.Peek();

// execute the next enabled thread

int tid := s.NextEnabled Thread():

if (tid = -1) { stateStack.Pop(); continue; }
State newS := s.Execute(tid);

if (stateHash.contains(newS)) continue;
stateHash.add(newS);

stateStack.push(newS);

State-space explosion

- Reachable set of states for realistic
software is huge

* Need to investigate state-space reduction
techniques

+ Stack compression

+ Identify behaviorally equivalent states
- Process symmetry reduction
- Heap symmetry reduction

Stack compression

+ State vector can be very large

- cloning the state vector to push an entry
on the stack is expensive

+ Each transition modifies only a small
part of the state

* Solution
- update state in place
- push the state-delta on the stack

Hash compaction
e Compact states in the hash table [Stern,
1995]

- Compute a signature for each state
- Only store the signature in the hashtable

e Signature is computed incrementally
e Might miss errors due to collisions

¢ Orders of magnitude memory savings
— Compact 100 kilobyte state to 4-8 bytes

e Possible to search ~10 million states

50

State symmetries

e Explore one out of a (large) set of equivalent
states

e Canonicalize states before hashing

Canonical Hash
State Signature

Current State

Successor States Hash table

51

Heap canonicalization
e Heap objects can be allocated in different order

— Depends on the order events happen

e Relocate heap objects to a unique representation

>
stated \‘
state2 &I Canonical Representation

Find a canonical representation for each heap graph by
abstracting the concrete values of pointers

52

Heap-canonicalization algorithm

e Basic algorithm [Tosif 01]

- Perform deterministic graph traversal of the heap
(bfs / dfs)

- Relocate objects in the order visited

e Incremental canonicalization [Musuvathi-
Dill 04]

e Should not traverse the entire heap in every
transition

53

Tosif’s canonicalization algorithm

* Do a deterministic graph traversal of the
heap (bfs / dfs)

* Relocate objects to a canonical location
— Determined by the dfs (or bfs) number of the object

* Hash the resulting heap

;- L [
e

Heap Canonical Heap

Example: two linked lists

Heap Canonical Heap

i i : i Partial
| | hash values
‘Transition: Insert b
o 2 I 6 3
f DD
RECICK) :

A Much Larger Example : Linux Kernel

Heap Canonical Heap

?

An object insertion here Affects the canonical location of objects here

Incremental heap canonicalization

* Access chain S
- A path from the root to an object
in the heap ;

- BFS access chain

- Shortest of all access paths from)
Access chain of ¢

a global variable Carfgs
- Break ties lexicographically : <r,f9%hh
. <rif,

+ Canonical location of an ors oo
. . . . access chain of ¢
object is a function of its bfs g
access chain

Revisiting example

Relocation <r> 0 <s>
F tion r,s are root vars
unc <r,n> 2 <s,n> 6 .
Table n is the next field
<r,n> 8

Canonical Heap

10

