Static Race Detection for C

Jeff Foster
University of Maryland

Introduction

- Concurrent programming is hard
 - Google for “notoriously difficult” and “concurrency” – 58,300 hits
- One particular problem: data races
 - Two threads access the same location “simultaneously,” and one access is a write

Consequences of Data Races

- Data races cause real problems
 - 2003 Northeastern US blackout
 - One of the “top ten bugs of all time” due to races
 - http://www.wired.com/news/technology/bugs/1,69355-0.html
 - 1985-1987 Therac-25 medical accelerator
- Race-free programs are easier to understand
 - Many semantics for concurrent languages assume correct synchronization
 - It’s hard to define a memory model that supports unsynchronized accesses

Cf. The Java Memory Model, recent addition to Java Spec

Avoiding Data Races

- The most common technique:
 - Locations r
 - Locks l
 - Correlation: r @ l
 - Location r is accessed when l is held
 - Consistent correlation
 - Any shared location is only ever correlated with one lock
 - We say that that lock guards that location
 - Implies race freedom
- Not the only technique for avoiding races!
 - But it’s simple, easy to understand, and common

Eraser [Savage et al, TOCS 1997]

- A dynamic tool for detecting data races based on this technique
 - Locks_held(t) = set of locks held by thread t
 - For each r, set C(r) := (all locks)
 - On each access to r by thread t,
 - C(r) := C(r) \ locks_held(t)
 - If C(r) = 0, issue a warning

An Improvement

- Unsynchronized reads of a shared location are OK
 - As long as no on writes to the field after it becomes shared
- Track state of each field
 - Only enforce locking protocol when location shared and written
Safety and Liveness Tradeoffs

• Programs should be safe, so that they do not have data races
 - Adding locking is one way to achieve safety
 - (Note: not the only way)
• Programs should be live, so that they make progress
 - Removing locking is one way to achieve liveness!

Data Races in Practice

• Programmers worry about performance
 - A good reason to write a concurrent program!
 - Hence want to avoid unnecessary synchronization
• OK to do unsafe things that "don't matter"
 - Update a counter
 - Often value does not need to be exact
 - But what if it's a reference count, or something critical?
 - Algorithm works ok with a stale value
 - The algorithm will "eventually" see the newest values
 - Need deep reasoning here, about algorithm and platform
 - And others

Concurrent Programming in C

• Many important C programs are concurrent
 - E.g., Linux, web servers, etc
• Concurrency is usually provided by a library
 - Not baked into the language
 - But there is a POSIX thread specification
 - Linux kernel uses its own model, but close

A Static Analysis Against Races

• Goal: Develop a tool for determining whether a C program is race-free
• Design criteria:
 - Be sound: Complain if there is a race
 - Handle locking idioms commonly-used in C programs
 - Don’t require many annotations
 - In particular, do not require the program to describe which locations are guarded by what locks
 - Scale to large programs

Oops — We Can’t Do This!

• Rice’s Theorem: No computer program can precisely determine anything interesting about arbitrary source code
 - Does this program terminate?
 - Does this program produce value 42?
 - Does this program raise an exception?
 - Is this program correct?

The Art of Static Analysis

• Programmers don’t write arbitrarily complicated programs
 - Programmers have ways to control complexity
 - Otherwise they couldn’t make sense of them
 - Target: Be precise for the programs that programmers want to write
 - It's OK to forbid yucky code in the name of safety
Outline

- C locking idioms
- Alias analysis
 - An overview
 - Alias analysis via type systems
- Extend to infer correlations
- Making it work in practice for C
- Context-sensitivity via CFL reachability
- Using alias analysis to detect sharing

A Hypothetical Program: Part 1

```c
lock_t log_lock; /* guards logfd, bw */
int logfd, bw = 0;
void log(char *msg) {
  int len = strlen(msg);
  lock(&log_lock);
  bw += len;
  write(logfd, msg, len);
  unlock(&log_lock);
}
```

Acquires log_lock to protect access to logfd, bw
However, assumes caller has necessary locks to guard *msg

A Hypothetical Program: Part 2

```c
struct job {
  lock_t j_lock; /* guards worklist and cnt */
  struct job *next;
  void *worklist;
  unsigned cnt;
};
lock_t list_lock; /* guards list backbone */
struct job *joblist;
```

Data structures can include locks
Sometimes locks guard individual elements, sometimes they guard sets of elements (and sometimes even more complex)

A Hypothetical Program: Part 3

```c
void logger() { ...
  lock(&list_lock);
  for (j = joblist; j != NULL; j = j->next) {
    cnt++;
    if (trylock(&j->job_lock)) {
      printf(msg, ... , cnt, j->cnt);
      log(msg);
      unlock(&j->job_lock);
    }
  }
  unlock(&list_lock); ...
```

trylock returns false (and does not block) if lock already held
locking appears at arbitrary program points

Summary: Key Idioms

- Locks can be acquired or released anywhere
 - Not like synchronized blocks in Java
- Locks protect static data and heap data
 - And locks themselves are both global and in data structures
- Functions can be polymorphic in the relationship between locks and locations
- Much data is thread-local
 - Either always, or up until a particular point
 - No locking needed while thread-local
Other Possible Idioms (Not Handled)

- Locking can be path-sensitive
 - if (foo) lock(a); ... if (foo) unlock(a)
- Reader/writer locking
- Ownership of data may be transferred
 - E.g., thread-local data gets put into a shared buffer, then pulled out, at which point it becomes thread-local to another thread

First Task: Understand Pointers

- We need to know a lot about pointers to build a tool to handle these idioms
 - We need to know which locations are accessed
 - We need to know what locks are being acquired and released
 - We need to know which locations are shared and which are thread local
- The solution: Perform an alias analysis

Introduction

- Aliasing occurs when different names refer to the same thing
 - Typically, we only care for imperative programs
 - The usual culprit: pointers
- A core building block for other analyses
 - "p = 3; // What does p point to?
- Useful for many languages
 - C — lots of pointers all over the place
 - Java — "objects" point to updatable memory
 - ML — ML has updatable references

May Alias Analysis

- p and q may alias if it’s possible that p and q might point to the same address
- If not (p may alias q), then a write through p does not affect memory pointed to by q
 - "p = 3; x = *q; // write through p doesn’t affect x
- Most conservative may alias analysis?
 - Everything may alias everything else

Must Alias Analysis

- p and q must alias if p and q do point to the same address
 - If p must alias q, then p and q refer to the same memory
 - "p = 3; x = *q; // x is 3
- What’s the most conservative must alias analysis?
 - Nothing must alias anything
Early Alias Analysis (Landi and Ryder)

- Expressed as computing alias pairs
 - E.g., (*p, *q) means p and q may point to same memory

- Issues?
 - There could be many alias pairs
 - (*p, *q), (p=ao, q=ao), (p=ib, q=ib), ...
 - What about cyclic data structures?
 - (*p, p->next), (*p, p->next->next), ...

Points-to Analysis (Emami, Ghiya, Hendren)

- Determine set of locations p may point to
 - E.g., (p, (dx)) means p may point to the location x
 - To decide if p and q alias, see if their points-to sets overlap

- More compact representation

- Need to name locations in the program
 - Pick a finite set of possible location names
 - No problem with cyclic structures

 - x = malloc(...); // where does x point to?

 - (x, (malloc@257)) "the malloc at line 257"

Flow-Sensitivity

- An analysis is flow-sensitive if it tracks state changes
 - E.g., data flow analysis is flow-sensitive

- An analysis is flow-insensitive if it discards the order of statements
 - E.g., type systems are flow-insensitive

- Flow-sensitivity is much more expensive, but also more precise

Example

\[
\begin{align*}
p &= \&x; \\
p &= \&y; \\
*p &= \&z;
\end{align*}
\]

Flow-sensitive:
(\(p, (\&x, \&y)\))

Flow-insensitive:
(\(x, \&z\))

A Simple Language

- We’ll develop an alias analysis for ML
 - We’ll talk about applying this to C later on

 e ::= \begin{align*}
 n & \quad \text{variables} \\
 \langle \text{f.t.e} \rangle & \quad \text{integers} \\
 \langle e \rangle & \quad \text{functions} \\
 \langle \text{if}\ e\ \text{then}\ e\ \text{else}\ e \rangle & \quad \text{application} \\
 \langle \text{let}\ x = e \text{in}\ e \rangle & \quad \text{conditional} \\
 \langle \text{let}\ e\ =\ e \rangle & \quad \text{binding} \\
 \langle \text{ref}\ e \rangle & \quad \text{allocation} \\
 \langle \text{le} \rangle & \quad \text{dereference} \\
 \langle e := e \rangle & \quad \text{assignment}
\end{align*}

Aliasing in this Language

- ref creates an updatable reference
 - It’s like malloc followed by initialization

- That pointer can be passed around the program

 \[
 \begin{align*}
 \text{let}\ x = \text{ref 0 in} \\
 \text{let}\ y = x\ \text{in} \\
 y := 3. \quad \text{// updates lx}
 \end{align*}
 \]
Label Flow for Points-to Analysis

- We’re going to extend references with labels
 - \(e := \ldots | \text{ref}^R \ e \ | \ldots \)
 - Here \(r \) labels this particular memory allocation
 - Like malloc@257, identifies a line in the program
 - Drawn from a finite set of labels \(R \)
 - For now, programmers add these

- **Goal of points-to analysis:** determine set of labels a pointer may refer to

 \[
 \text{let } x = \text{ref}^R \ 0 \ \text{in} \\
 \text{let } y = x \ \text{in} \\
 y := 3; /\ y \text{ may point to } (R^x) \\
 \]

Type-Based Alias Analysis

- We’re going to build an alias analysis out of type inference
 - If you’re familiar with ML type inference, that’s what we’re going to do

- We’ll use **labeled types** in our analysis
 - \(t ::= \text{int} \ | \ t \
ightarrow t \ | \text{ref}^R \ t \)
 - If we have \(l_x \) or \(x := \ldots \), we can decide what location \(x \) may point to by looking at its ref type

A Type Checking System

\[
\begin{align*}
A & \vdash x : A(x) & A & \vdash n : \text{int} \\
A, x : t \vdash e : t' & \rightarrow A \vdash \lambda x : e : t \rightarrow t' \\
A \vdash \lambda x : e : t \rightarrow t' & \rightarrow A \vdash \text{if} 0 \ e1 \ \text{then} \ e2 \ \text{else} \ e3 : t \\
A & \vdash \text{if} 0 \ e1 \ \text{then} \ e2 \ \text{else} \ e3 : t & A & \vdash e : t \\
A & \vdash \text{ref}^R \ e : \text{ref}^R \ t & A & \vdash \text{ref}^R \ t \\
A & \vdash e \ : \ t & A & \vdash e \ : \ t \\
A & \vdash e1 : \text{ref}^R \ t & A & \vdash e2 : t \\
A & \vdash e1 : e2 : t \\
A & \vdash e1 : e2 : t
\end{align*}
\]

Example

- Let \(x = \text{ref}^R \ 0 \ \text{in} \\
- Let \(y = x \ \text{in} \\
- \ y := 3; \)
 - \(x \) has type \(\text{ref}^R \text{int} \)
 - \(y \) must have the same type as \(x \)
 - Therefore at assignment, we know which location \(y \) refers to

Another Example

- Let \(x = \text{ref}^R \ 0 \ \text{in} \\
- Let \(y = \text{ref}^R \ 0 \ \text{in} \\
- Let \(w = \text{ref}^R \ 0 \ \text{in} \\
- Let \(z = \text{if} 0 \ 42 \ \text{then} \ x \ \text{else} \ y \ \text{in} \\
- z := 3; \)
 - \(x \) and \(y \) both have type \(\text{ref}^R \text{int} \)
 - They must have this type because they are conflated by if
 - At assignment, we write to location \(R \)
 - Notice that we don’t know which of \(x, y \) we write to
 - But we do know that we don’t affect \(w \)
Yet Another Example

- let x = ref 3
- let y = ref x
- let z = ref 4
 y := z

- Both x and z have the same label
- y has type ref (ref int)
 Notice we don’t know after the assignment whether y points to x or z

Things to Notice

- We have a finite set of labels
 - One for each occurrence of ref in the program
 - A label may stand for more than one run-time loc
- Whenever two labels “meet” in the type system, they must be the same
 - Where does this happen in the rules?
- The system is flow-insensitive
 - Types don’t change after assignment

The Need for Type Inference

- In practice, we don’t have labeled programs
 - We need inference

- Given an unlabeled program that satisfies a standard type system, does there exist a valid labeling?
 - That labeling is our alias analysis

Type Checking vs. Type Inference

- Let’s think about C’s type system
 - C requires programmers to annotate function types
 - ...but not other places
 - E.g., when you write down 3 * 4, you don’t need to give that a type
 - So all type systems trade off programmer annotations vs. computed information
- Type checking = it’s “obvious” how to check
- Type inference = it’s “more work” to check

A Type Inference Algorithm

- We’ll follow the standard approach
 - Introduce label variables a, which stand for unknowns
 - Now r may be either a constant R or a variable a
 - Traverse the code of the unlabeled program
 - Generate a set of constraints
 - Solve the constraints to find a labeling
 - No solution => no valid labeling

Step 1: Introducing Labels

- Problem 1: In the ref rule, we don’t know what label to assign to the ref
 - Solution: Introduce a fresh unknown
 - Why do we need to pick a variable rather than a constant?

A |- e : t
A |- ref e : ref t
Step 1: Introducing Labels (cont’d)

• Problem 2: In the function rule, we don’t know what type to give to the argument
 - Assume we are given a standard type s (no labels)
 - Make up a new type with fresh labels everywhere
 - We’ll write this as fresh(s)

\[
A, x : t \vdash e : t' \quad t \leftarrow fresh(s)
\]

\[
A \vdash \lambda x : s . e : t \rightarrow t'
\]

Step 2: Adding Constraints

• Problem 3: Some rules implicitly require types to be equal
 - We will make this explicit with equality constraints

\[
A \vdash e_1 : int \quad A \vdash e_2 : t_2 \quad A \vdash e_3 : t_3
\]

\[
t_2 = t_3
\]

\[
A \vdash if \ e_1 \ then \ e_2 \ else \ e_3 : t_2
\]

Step 2: Adding Constraints (cont’d)

\[
A \vdash e_1 : \text{ref} \rightarrow t' \quad A \vdash e_2 : t_2 \quad t = t_2
\]

\[
A \vdash e_1 := e_2 : t
\]

• Notice we’re assuming that \(e_1 \) is a ref
 - That was part of our assumption — we assumed the program was safe according to the standard types

Step 2: Adding Constraints (cont’d)

\[
A \vdash e_1 : t \rightarrow t' \quad A \vdash e_2 : t_2 \quad t = t_2
\]

\[
A \vdash e_1 e_2 : t'
\]

• Again, we’re assuming \(e_1 \) is a function

Constraint Resolution

• After applying the rules, we are left with a set of equality constraints
 - \(t_1 = t_2 \)

• We’ll solve the constraints via rewriting
 - We’ll simplify more complex constraints into simpler constraints
 - \(S \leftrightarrow S' \) rewrite constraints \(S \) to constraints \(S' \)

Constraint Resolution via Unification

• \(S + (\text{int} + \text{int}) \Rightarrow S \)
• \(S + (t_1 \rightarrow t_2 \leftarrow t_1 \rightarrow t_2) \Rightarrow \)
 \[
 S + (t_1 \leftarrow t_1) + (t_2 \leftarrow t_2)
 \]
• \(S + (\text{ref} \leftarrow t_1 \leftarrow \text{ref} \leftarrow t_2) \Rightarrow \)
 \[
 S + (t_1 \leftarrow t_2) + (a_1 \leftarrow a_2)
 \]
• \(S + (\text{mismatched constructors}) \Rightarrow \text{error} \)
 - Can’t happen if program correct w.r.t. std types

• Claim 1: This algorithm always terminates
• Claim 2: When it terminates, we are left with equalities among labels
Constraint Resolution via Unification (cont’d)

- Last step:
 - Computes sets of labels that are equal (e.g., using union-find)
 - Assign each equivalence class its own constant label

Example

```
let x = ref 0 in // x : ref^a int
let y = ref 0 in // y : ref^b int
let w = ref 0 in // w : ref^c int
let z = if 0 42 then x else y in // z : ref^a, ref^a = ref^b
    z := 3; // write to ref^a
```

- Solving constraint ref^a = ref^b yields a = b
- So we have two equivalence classes
 - (a,b) and (c)
 - Each one gets a label, e.g., R1 and R2

Steensgaard’s Analysis

- Flow-insensitive
- Context-insensitive
- Unification-based
 - = Steensgaard’s Analysis
 - (In practice, Steensgaard’s analysis includes stuff for type casts, etc)

- Properties
 - Very scalable
 - Complexity?
 - Somewhat imprecise

Limitation of Unification

- Modification of previous example:
  ```
  let x = ref 0 in // x : ref^a int
  let y = ref 0 in // y : ref^b int
  let z = if 0 42 then x else y in // z : ref^a
      z := 3; // write to ref^a
      x := 2; // write to ref^a
  ```

- We’re equating labels that may alias
 - Gives “backward flow” -- the fact that x and y are merged “downstream” (in z) causes x and y to be equivalent everywhere

Subtyping

- We can solve this problem using subtyping
 - Each label variable now stands for a set of labels
 - In unification, a variable could only stand for one label
 - We’ll write [a] for the set represented by a
 - And [R] = (R) for a constant R

- Ex: let x have type ref^a int
 - Suppose [a] = (R1, R2)
 - Then x may point to location R1 or R2
 - …and R1 and R2 may themselves stand for multiple locations
Labels on ref

- Slightly different approach to labeling
 - Assume that each ref has a unique constant label
 - Generate a fresh one for each syntactic occurrence
 - Add a fresh variable, and generate a subtyping constraint between the constant and variable
 - \(a \preceq a^2 \text{ means } [a] \subseteq [a^2] \)

\[
\begin{align*}
A & \vdash e : R \quad a \text{ a fresh} \\
A & \vdash \text{ref}^a e : \text{ref}^a t
\end{align*}
\]

Subtype Inference

- Same basic approach as before
 - Walk over source code, generate constraints
 - Now want to allow subsets rather than equalities

\[
\begin{align*}
A & \vdash e_1 : \text{int} \\
A & \vdash e_2 : \text{ref}^r t \\
A & \vdash e_3 : \text{ref}^r t \\
r^2 & \subseteq r \\
r^3 & \subseteq r \\
A & \vdash \text{if} e_1 \text{ then } e_2 \text{ else } e_3 : \text{ref}^r t
\end{align*}
\]

Subtyping Constraints

- Need to generalize to arbitrary types
 - Think of types as representing sets of values
 - E.g., \(\text{int} \) represents the set of integers
 - So \(\text{ref}^a \text{int} \) represents the set of pointers to integers that are labeled with \([r]\)
 - Extend \(\preceq \) to a relation \(\preceq \) on types

\[
\begin{align*}
\text{int} & \preceq \text{int} \\
\text{ref}^a \text{int} & \preceq \text{ref}^b \text{int}
\end{align*}
\]

Subsumption

- Add one new rule to the system
 - And leave remaining rules alone

\[
\begin{align*}
A & \vdash e_1 : t \\
& \vdash t \subseteq t' \\
A & \vdash e_1 : t'
\end{align*}
\]

- If we think that \(e \) has type \(t \), and \(t \) is a subtype of \(t' \), then \(e \) also has type \(t' \)
- We can use a subtype anywhere a supertype is expected

Example

```c
let x = ref^0x 0 in       // x : ref^a int, Rx \preceq a
let y = ref^x 1 in       // y : ref^b int, Ry \preceq b
let z = if 42 then x else y in
x := 3
```

- At conditional, need types of \(x \) and \(y \) to match \(a \preceq c \)

\[
\begin{align*}
A & \vdash x : \text{ref}^a \text{int} \\
& \vdash \text{ref}^a \text{int} \preceq \text{ref}^c \text{int} \\
A & \vdash x : \text{ref}^c \text{int}
\end{align*}
\]

- Thus we have \(z : \text{ref}^c \text{int} \) with \(a \preceq c \) and \(b \preceq c \)
- Thus can pick \(a = \text{Rx} \), \(b = \text{Ry} \), \(c = \text{Rx, Ry} \)

Subtyping References (cont’d)

- Let’s try generalizing to arbitrary types

\[
\begin{align*}
r^1 & \preceq r^2 \\
t_1 & \preceq t_2 \\
\text{ref}^r t_1 & \preceq \text{ref}^r t_2
\end{align*}
\]

- This rule is broken

```c
let x = ref^0x (ref^0x 0) in       // x : ref^a (ref^b int), Rx \preceq b
let y = x in       // y : ref^b (ref^d int), b \preceq d
y := ref^0x 0       // Oops \preceq d
lx := 3       // dereference of b
```

- Can pick \(b = \{\text{Rx}\} \), \(d = \{\text{Rx}^\prime, \text{Oops}\} \)
 - Then write \(\text{via} b \) doesn’t look like it’s writing \(\text{Oops} \)
You’ve Got Aliasing!

- We have multiple names for the same memory location
 - But they have different types
 - And we can write into memory at different types

Solution #1: Java’s Approach

- Java uses this subtyping rule
 - If S is a subclass of T, then S[] is a subclass of T[]

- Counterexample:
 - Foo[] a = new Foo[5];
 - Object[] b = a;
 - b[0] = new Object();
 - a[0].foo();
 - Write to b[0] forbidden at runtime, so last line cannot happen

Solution #2: Purely Static Approach

- Require equality “under” a ref
 \[
 r_1 \leq r_2 \quad t_1 \leq t_2 \quad t_2 \leq t_1
 \]
 \[
 \text{ref}^2 t_1 \leq \text{ref}^2 t_2
 \]
 or
 \[
 r_1 \leq r_2 \quad t_1 \leq t_2
 \]
 \[
 \text{ref}^2 t_1 \leq \text{ref}^2 t_2
 \]

Subtyping on Function Types

- What about function types?

 \[
 \begin{array}{c}
 t_1 \rightarrow \text{ref}^2 t_2 \\
 \text{ref} \end{array}
 \]

- Recall: S is a subtype of T if an S can be used anywhere a T is expected
 - When can we replace a call “f x” with a call “g x”?

Replacing “f x” by “g x”

- When is \(t_1' \rightarrow t_2' \leq t_1 \rightarrow t_2 \) ?

- Return type:
 - We are expecting \(t_2 \) (f’s return type)
 - So we can only return at most \(t_2 \)
 - \(t_2 \leq t_2' \)

- Example: A function that returns a pointer to \(\{R_1, R_2\} \) can be treated as a function that returns a pointer to \(\{R_1, R_2, R_3\} \)

Replacing “f x” by “g x” (cont’d)

- When is \(t_1' \rightarrow t_2' \leq t_1 \rightarrow t_2 \) ?

- Argument type:
 - We are supposed to accept \(t_1 \) (f’s argument type)
 - So we must accept at least \(t_1 \)
 - \(t_1 \leq t_1' \)

- Example: A function that accepts a pointer to \(\{R_1, R_2, R_3\} \) can be passed a pointer to \(\{R_1, R_2\} \)
Subtyping on Function Types

\[t_1' \leq t_1 \quad t_2 \leq t_2' \]
\[t_1 \rightarrow t_2 \leq t_1' \rightarrow t_2' \]

• We say that \(\rightarrow \) is
 - Covariant in the range (subtyping dir the same)
 - Contravariant in the domain (subtyping dir flips)

Where We Are

• We've built a unification-based alias analysis
• We've built a subtyping-based alias analysis
 - But it's still only a checking system
• Next steps
 - Turning this into inference
 - Adding context-sensitivity

The Problem: Subsumption

\[A \vdash e : t \leq t' \]
\[A \vdash e : t' \]

• We're allowed to apply this rule at any time
 - Makes it hard to develop a deterministic algorithm
 - Type checking is not syntax driven
• Fortunately, we don’t have that many choices
 - For each expression \(e \), we need to decide
 • Do we apply the “regular” rule for \(e \)?
 • Or do we apply subsumption (how many times)?

Getting Rid of Subsumption

• Lemma: Multiple sequential uses of subsumption can be collapsed into a single use
 - Proof: Transitivity of \(\leq \)
• So now we need only apply subsumption once after each expression

Getting Rid of Subsumption (cont’d)

• We can get rid of the separate subsumption rule
 - Integrate into the rest of the rules
 \[A \vdash e_1 : t \rightarrow t' \quad A \vdash e_2 : t_2 \quad t = t_2 \]
 \[A \vdash e_1 e_2 : t' \]
 becomes
 \[A \vdash e_1 : t \rightarrow t' \quad A \vdash e_2 : t_2 \quad t_2 \leq t \]
 \[A \vdash e_1 e_2 : t' \]
• Apply the same reasoning to the other rules
 - We’re left with a purely syntax-directed system

Constraint Resolution: Step 1

• \(S + \{ \text{int} \leq \text{int} \} \implies S \)
• \(S + \{ t_1 \rightarrow t_2 \leq t_1' \rightarrow t_2' \} \implies \)
 \[S + \{ t_1 \leq t_1' \} \}
• \(S + \{ \text{ref}^2 t_1 \leq \text{ref}^2 t_2 \} \implies \)
 \[S + \{ t_1 \leq t_2 \} \}
• \(S + \{ \text{mismatched constructors} \} \implies \text{error} \)
Constraint Resolution: Step 2

- Our type system is called a structural subtyping system
 - If \(t \leq t' \), then \(t \) and \(t' \) have the same shape
- When we’re done with step 1, we’re left with
 - constraints of the form \(r_1 \leq r_2 \)
 - Where \(r_1 \) and \(r_2 \) are constants \(R \) or variables \(a \)
 - This is called an atomic subtyping system
 - That’s because there’s no “structure” left

Finding a Least Solution

- Our goal: compute a least solution to the remaining constraints
 - For each variable, compute a minimal set of constants satisfying the constraints
- One more rewriting rule: transitive closure
 - \(S \cdot \{ r_1 \leq r_2 \} \cdot \{ r_2 \leq r_3 \} \Rightarrow \{ r_1 \leq r_3 \} \)
 - \(\Rightarrow \) means add the constraint without removing lhs constraints
 - Apply this rule until no new constraints generated
 - Then \([a] \subseteq \{ R | R \leq a \} \text{ is a constraint in } S \)

Graph Reachability

- Think of a constraint as a directed edge
 - \(R_1 \leq a \)
 - \(R_2 \leq b \)
 - \(a \leq c \)
 - \(b \leq a \)
 - Use graph reachability to compute solution
 - Compute set of constants that reach each variable
 - E.g., \([c] \subset [a] = (R_1, R_2), [b] = (R_2)\)
 - Complexity?

Andersen’s Analysis

- Flow-insensitive
- Context-insensitive
- Subtyping-based
 - \(\Rightarrow \) Andersen’s analysis
 - \(\Rightarrow \) Das’s “one-level flow”
- Properties
 - Still very scalable in practice
 - Much less coarse than Steensgaard’s analysis
 - Can still be improved (will see later)

Programming Against Races

- Recall our model:
 - Locations \(r \)
 - Locks \(l \)
 - Correlation: \(r \bowtie l \)
 - Location \(r \) is accessed when \(l \) is held
 - Consistent correlation
 - Any shared location is only ever correlated with one lock
 - We say that that lock guards that location
 - Implies race freedom

Back to Race Detection
Applying Alias Analysis

- Recall our model:
 - Locations r
 - Drawn from a set of constant labels R, plus variables a
 - We’ll get these from (may) alias analysis
 - Locks l
 - h...need to think about these
 - Draw from a set of constant lock labels L, plus variables m
 - Correlation: $r \otimes l$
 - h...need to associate locks and locations somehow
 - Let’s punt this part

Lambda-Corr

- A small language with “locations” and “locks”
 - $e ::= x \mid n \mid x + e \mid e \mid if e e$ then e else e
 - $\mathtt{newlock}$
 - create a new lock
 - $\mathtt{ref}\ e$
 - allocate “shared” memory
 - $\mathtt{h}\ e$
 - dereference with a lock held
 - $\mathtt{e} \mathtt{:=}\ e$
 - assign with a lock held
 - $t ::= \mathtt{int} \mid t \mathtt{:=} t \mid \mathtt{lock} l \mid \mathtt{ref}\ t$

- No acquire and release
 - All accesses have explicit annotations (superscript) of the lock
 - This expression evaluates to the lock to hold
- No thread creation
 - \mathtt{ref} creates “shared” memory

Type Inference for Races

- We’ll follow the same approach as before
 - Traverse the source code of the program
 - Generate constraints
 - Solve the constraints
 - Solution \Rightarrow program is consistently correlated
 - No solution \Rightarrow potential race
 - Notice that in alias analysis, there was always a solution

- For now, all rules except for locks and deref, assignment will be the same

Type Rule for Locks

- For now, locks will work just like references
 - Different set of labels for them
 - Standard labeling rule, standard subtyping
 - Warning: this is broken! Will fix later...

- $\mathtt{newlock}$
 - fresh

\begin{align*}
(L \leq m & \quad m \text{ fresh}) \\
A &\vdash \mathtt{newlock}\ ! : \mathtt{lock} \, m \\
 &\vdash l1 \leq l2 \quad \text{lock} l1 \leq \text{lock} l2
\end{align*}

Correlation Constraints for Locations

- Generate a correlation constraint $r \otimes l$ when location r is accessed with lock l held

\begin{align*}
A \vdash e1 : \mathtt{ref} &\otimes t & A \vdash e2 : \mathtt{lock} &\otimes l & r \otimes l \\
A &\vdash \mathtt{ref}\ e1 : t
\end{align*}

\begin{align*}
A \vdash e1 : \mathtt{ref} &\otimes t & A \vdash e2 : t &\otimes l & A \vdash e3 : \mathtt{lock} &\otimes l & r \otimes l \\
A &\vdash e1 :\mathtt{ref}\ e2 : t
\end{align*}
Constraint Resolution

- Apply subtyping until only atomic constraints
 - \(r_1 \leq r_2 \) — location subtyping
 - \(l_i \leq l_j \) — lock subtyping
 - \(r @ l \) — correlation

- Now apply three rewriting rules
 - \(S \times (r_1 \leq r_2) \times (r_2 \leq r_3) \Rightarrow (r_1 \leq r_3) \)
 - \(S \times (l_i \leq l_j) \times (l_j \leq l_k) \Rightarrow (l_i \leq l_k) \)
 - If \(r_i \) "flows to" \(r_j \) and \(r_j \) "flows to" \(r_k \)
 - \(r_k \) are correlated, then so are \(r_i \) and \(r_k \)
 - Note: \(r \times r \) and \(l \times l \)

Consistent Correlation

- Next define the correlation set of a location
 - \(S(R) = \{ L | R @ L \} \)
 - The correlation set of \(R \) is the set of locks \(L \) that are correlated with \(R \) after applying all the rewrite rules
 - Notice that both of these are constants

- Consistent correlation: for every \(R \), \(|S(R)| = 1 \)
 - Means location only ever accessed with one lock

Example

- \(k_1 = \text{newlock}^{k_1} \) in \(k_1 : \text{lock} \) \(m, L_1 \leq m \)
- \(k_2 = \text{newlock}^{k_2} \) in \(k_2 : \text{lock} \) \(n, L_2 \leq n \)
- \(x = \text{ref}^{Rx} 0 \) in \(x : \text{ref}^{\text{int}}(Rx) \leq a \)
- \(y = \text{ref}^{Ry} 1 \) in \(y : \text{ref}^{\text{int}}(Ry) \leq b \)
 - \(x := k_1 3; \)
 - \(x := k_4 4; \)
 - \(y := k_5 b; \)
 - \(y := k_6 b; \)

- Applying last constraint resolution rule yields
 - \((Rx @ L_1) + (Rx @ L_1) + (Ry @ L_1) + (Ry @ L_2) \)
 - Inconsistent correlation for \(R_y \)

Consequences of May Alias Analysis

- We used may aliasing for locations and locks
 - One of these is okay, and the other is not

May Aliasing of Locations

- \(k_1 = \text{newlock}^{k_1} \)
- \(x = \text{ref}^{Rx} 0 \)
- \(y = \text{ref}^{Ry} 0 \)
- \(z = \text{if} 42 \text{ then } x \text{ else } y \)
 - \(z := k_3 \)

- Constraint solving yields \((Rx @ L) + (Ry @ L) \)
- Thus any two locations that may alias must be protected by the same lock
- This seems fairly reasonable, and it is sound
May Aliasing of Locks

let k1 = newlock^1
let k2 = newlock^2
let k = if 0 42 then k1 else k2
let x = refPx 0
\[x := k \text{ 3}; x := k1 \text{ 4} \]

- \((Rx @ L1) + (Rx @ L2) + (Rx @ L1) \)
- Thus Rx is inconsistently correlated
- That’s not so bad — we’re just rejecting an odd program

May Aliasing of Locks (cont’d)

let k1 = newlock^1
let k2 = newlock^2 // fine according to rules
let k = if 0 42 then k1 else k2
let x = refPx 0
\[x := k \text{ 3}; x := k1 \text{ 4} \]

- \((Rx @ L) + (Rx @ L) + (Rx @ L) \)
- Uh-oh! Rx is consistently correlated, but there’s a potential “race”
 - Note that k and k1 are different locks at run time
 - Allocating a lock in a loop yields same problem

The Need for Must Information

- The problem was that we need to know exactly what lock was “held” at the assignment
 - It’s no good to know that some lock in a set was held, because then we don’t know anything
 - We need to ensure that the same lock is always held on access
- We need must alias analysis for locks
 - Static analysis needs to know exactly which runtime lock is represented by each static lock label

Must Aliasing via Linearity

- Must aliasing not as well-studied as may
 - Many early alias analysis papers mention it
 - Later ones focus on may alias
 - Recall this is really used for “must not”
- One popular technique: linearity
 - We want each static lock label to stand for exactly one run-time location
 - I.e., we want lock labels to be linear
 - Term comes from linear logic
 - “Linear” in our context is a little different

Enforcing Linearity

- Consider the bad example again
 - let k1 = newlock^1
 - let k2 = newlock^2
 - Need to prevent lock labels from being reused
- Solution: remember newlock^d labels
 - And prevent another newlock with the same label
 - We can do this by adding effects to our type system

Effects

- An effect captures some stateful property
 - Typically, which memory has been read or written
 - We’ll use these kinds of effects soon
 - In this case, track what locks have been creates

\[
\begin{align*}
f &::= 0 & \text{no effect} \\
| eff & \text{effect variable} \\
| (l) & \text{lock l was allocated} \\
| f + f & \text{union of effects} \\
| f \oplus f & \text{disjoint union of effects}
\end{align*}
\]
Type Rules with Effects

\[
L \leq m \quad m \text{ fresh} \\
A \vdash \text{newlock}^d : \text{lock}_m: (m)
\]

Judgments now assign a type and effect

Type Rules with Effects (cont’d)

\[
A \vdash x : A(x) : 0 \\
A \vdash e_1 : \text{ref}^t : t_1 \quad A \vdash e_2 : t : t_2 \\
A \vdash e_1 : e_2 : t : t_1 @ t_2 \\
\]

Prevents 1 alloc

\[
A \vdash e_1 : \text{int} : t_1 \quad A \vdash e_2 : t : t_2 \quad A \vdash e_3 : t : t_3 \\
A \vdash \text{if}0 e_1 \text{then} e_2 \text{else} e_3 : t : t_1 @ (t_2 @ t_3)
\]

Only one branch taken

Rule for Functions

• Is the following rule correct?

\[
A, x : t \vdash e : t ; t' \quad f \\
A \vdash \lambda x : t. e : t ; t' ; f
\]

- No!
- The fn's effect doesn't occur when it's defined
- It occurs when the function is called
- So we need to remember the effect of a function

Correct Rule for Functions

• Extend types to have effects on arrows

\[
t ::= \text{int} | \text{t} \rightarrow t \mid \text{lock} \mid \text{ref}^t
\]

\[
A, x : t \vdash e : t ; t' \quad f \\
A \vdash \lambda x : t. e : t ; t' ; 0
\]

\[
A \vdash e_1 : t \rightarrow t' ; t_1 \quad A \vdash e_2 : t ; t_2 \\
A \vdash e_1 e_2 : t ; t_1 @ t_2 @ f
\]

One Minor Catch

• What if two function types need to be equal?
 - Can use subsumption rule

\[
A \vdash e : t ; f \quad t \sqsupseteq t' ; f \quad \text{eff}
A \vdash e : t' ; \text{eff}
\]

- We always use a variable as an upper bound
- Otherwise how would we solve constraints like
 \[
 \{L_1\} \cdot \{L_2\} \cdot f : \{L_1\} \cdot g + h >
 \]

Safe to assume have more effects

Another Minor Catch

• We don’t have types with effects on them

\[
A, x : s \vdash e : t ; t = \text{fresh}(s) \\
A \vdash \lambda x : s. e : t ; t = \text{effect}(s)
\]

Fresh label variables and effect variables
Effect Constraints

- The same old story!
 - Walk over the program
 - Generate constraints
 - \(r_1 \leq r_2 \)
 - \(l_1 \leq l_2 \)
 - \(f \leq \text{eff} \)
 - Effects include disjoint unions
 - Solution \(\Rightarrow \) locks can be treated linearity
 - No solution \(\Rightarrow \) reject program

Effect Constraint Resolution

- **Step 1:** Close lock constraints
 - \(S \ast (l_1 \leq l_2) \ast (l_2 \leq l_3) \Rightarrow (l_1 \leq l_3) \)
- **Step 2:** Count!
 - \(\text{occurr}(l, 0) = 0 \)
 - \(\text{occurr}(l, \{ l \}) = 1 \)
 - \(\text{occurr}(l, \{ f \}) = 1 \Rightarrow l = f \)
 - \(\text{occurr}(l, f_1 \oplus f_2) = \text{occurr}(l, f_1) + \text{occurr}(l, f_2) \)
 - \(\text{occurr}(l, f_1 \ast f_2) = \max(\text{occurr}(l, f_1), \text{occurr}(l, f_2)) \)
 - \(\text{occurr}(l, \text{eff}) = \max(\text{occurr}(l, f) \text{ for } f \neq \text{eff}) \)
 - For each effect \(f \) and for every lock \(l \), make sure that occurs \(\text{occurr}(l, f) \leq 1 \)

Example

```plaintext
let k1 = newlock;
let k2 = newlock;  // violates disjoint union
let k = if 42 then k1 else k2; // k1, k2 have same type
let x = ref 0;
  x := 3; x := 4;
```

- Example is now forbidden
- Still not quite enough, though, as we’ll see...

Applying this in Practice

- That’s the core system
 - But need a bit more to handle those cases we saw way back at the beginning of lecture
- In C,
 1. We need to deal with C
 2. Held locks are not given by the programmer
 - Locks can be acquired or released anywhere
 - More than one lock can be held at a time
 3. Functions can be polymorphic in the relationship between locks and locations
 4. Much data is thread-local

Variables in C

- The first (easiest) problem: C doesn’t use ref
 - It has malloc for memory on the heap
 - But local variables on the stack are also updateable:
    ```c
    void foo(int x) {
        int y;
        y = x * 3;
        y++; 
        x = 42;
    }
    ```
- The C types aren’t quite enough
 - 3 : int, but can’t update 3!

L-Types and R-Types

- C hides important information:
 - Variables behave different in l- and r-positions
 - l = left-hand-side of assignment, r = rhs
 - On lhs of assignment, x refers to location x
 - On rhs of assignment, x refers to contents of location x
Mapping to ML-Style References

- Variables will have ref types:
 - `ref <contents type>`
- Parameters as well, but r-types in fn sigs
- On rhs of assignment, add deref of variables
- Address of uses ref type directly

```c
void foo(int x) {
  let x = ref x in
  int y;
  let y = x + 3;
  y := (x) + 3;
  x := 42;
  g(y);
}
```

Computing Held Locks

- Create a control-flow graph of the program
 - We’ll be constraint-based, for fun!
 - A program point represented by state variable \(S \)
 - State variables will have kinds to tell us what happened in the state (e.g., lock acquire, deref)

- Propagate information through the graph using dataflow analysis

Computing Held Locks by Example

```c
pthread_mutex_t k1 = ... // k1: lock L1
int x; // x: ref\(^{\text{rel}} \) int

// L: lock L, p: ref\(^{\text{rel}} \) (ref\(^{\text{rel}} \) int)
void muge(pthread_mutex_t *l, int *p) {
  pthread_mutex_lock(l);
  pthread_mutex_unlock(l);
}

muge(&k1, &x);
```

Solving Constraints

![Graph showing constraints](image)

More than One Lock May Be Held

- We can acquire multiple locks at once
 - `pthread_mutex_lock(&k1)`
 - `pthread_mutex_lock(&k2)`
 - `*p = 3;`

- This is easy — just allow sets of locks, right?
 - Constraints \(r @ \{1, \ldots, n\} \)
 - Correlation set \(S(r) = \{ \{1, \ldots, l\} | r @ \{1, \ldots, n\} \} \)
 - Consistent correlation: for every \(R \), \(|rS(R)| \geq 1 \)

Back to Linearity

- How do we distinguish previous case from
 - Let \(k = if0 42 then k1 \) else \(k2 \)
 - `pthread_mutex_lock(&k)`
 - \(*p = 3; \)
 - Can’t just say \(p \) correlated with \((k1, k2) \)
 - Some lock is acquired, but don’t know which
Solutions (Pick One)

- Acquiring a lock \(L \) representing more than one concrete lock \(L \) is a no-op
 - We’re only interested in races, so okay to forget that we’ve acquired a lock
- Get rid of subtyping on locks
 - Interpret \(\epsilon \) as unification on locks
 - Unifying two disjoint locks not allowed
 - Disjoint unions prevent same lock from being allocated twice
- \(\Rightarrow \) Can never mix different locks together

Limitations of Subtyping

- Subtyping gives us a kind of polymorphism
 - A polymorphic type represents multiple types
 - In a subtyping system, \(t \) represents \(\pi \) and all of \(\pi \)'s subtypes
- As we saw, this flexibility helps make the analysis more precise
 - But it isn’t always enough...

Context-Sensitivity

Limitations of Subtype Polymorphism

- Let’s look at the identity function on int pointers:
 - \(\text{let } \text{id} = \lambda \text{x}: \text{ref}^\text{int}. \text{x} \)
 - So \(\text{id} \) has type \(\text{ref}^\text{int} \rightarrow \text{ref}^\text{int} \)
- Now consider the following:
 - \(\text{let } x = \text{id}(\text{ref}^1 \text{O}) \)
 - \(\text{let } y = \text{id}(\text{ref}^2 \text{O}) \)
 - \(\text{It looks like } ax \text{ and } ay \text{ point to } (r1, r2) \)
 - This is a context-insensitive analysis

The Observation of Parametric Polymorphism

- Type inference on \(\text{id} \) yields a proof like this:

 ![Proof Tree](image)

 This is a proof tree

The Observation of Parametric Polymorphism

- We can duplicate this proof for any \(a, a' \), in any type environment

 ![Duplicate Proof](image)
The Observation of Parametric Polymorphism

- Thus when we use `id`...

```
\begin{center}
\begin{tikzpicture}
  \node (a) {a};
  \node (b) [right of=a] {a'};
  \node (c) [below of=a] {a};
  \node (d) [right of=c] {a'};
  \draw[->] (a) -- (b);
  \draw[->] (c) -- (d);
  \draw[->,red] (a) -- (c);
  \draw[->,red] (b) -- (d);
\end{tikzpicture}
\end{center}
```

The Observation of Parametric Polymorphism

- We can "inline" its type, with a different `a` each time

```
\begin{center}
\begin{tikzpicture}
  \node (a) {a};
  \node (b) [right of=a] {a'};
  \node (c) [below of=a] {a};
  \node (d) [right of=c] {a'};
  \draw[->] (a) -- (b);
  \draw[->] (c) -- (d);
  \draw[->,red] (a) -- (c);
  \draw[->,red] (b) -- (d);
\end{tikzpicture}
\end{center}
```

Hindley-Milner Style Polymorphism

- Standard type rules (not quite for our system)
- Generalize at `let`

```
\begin{center}
\begin{align*}
A \vdash e_1 : t_1 & \quad A, f : \forall a t_1 \vdash e_2 : t_2 \quad a = \text{fv}(t_1) - \text{fv}(A) \\
A \vdash \text{let } f = e_1 \text{ in } e_2 : t_2
\end{align*}
\end{center}
```

- Instantiate at uses

```
\begin{center}
\begin{align*}
A(f) = \forall a t_1 \\
A \vdash f : t_1[a\backslash t]\quad \text{(arbitrarily)}
\end{align*}
\end{center}
```

Polymorphically Constrained Types

- Notice that we inlined not only the type (as in ML), but also the constraints

- We need polymorphically constrained types

```
\begin{center}
\begin{align*}
x : \forall a t & \text{ where } C
\end{align*}
\end{center}
```

- For any labels `a` where constraints `C` hold, `x` has type `t`

Polymorphically Constrained Types

- Must copy constraints at each instantiation

```
\begin{center}
\begin{tikzpicture}
  \node (a) {a};
  \node (b) [right of=a] {a'};
  \node (c) [below of=a] {a};
  \node (d) [right of=c] {a'};
  \draw[->] (a) -- (b);
  \draw[->] (c) -- (d);
  \draw[->] (a) -- (c);
  \draw[->] (b) -- (d);
\end{tikzpicture}
\end{center}
```

Comparison to Type Polymorphism

- ML-style polymorphic type inference is EXPTIME-hard
- In practice, it's fine
- Bad case can't happen here, because we're polymorphic only in the labels
- That's because we'll apply this to `C`
A Better Solution: CFL Reachability

- Can reduce this to another problem
 - Equivalent to the constraint-copying formulation
 - Supports polymorphic recursion in qualifiers
 - It’s easy to implement
 - It’s efficient: $O(n^3)$ (Massin, PhD thesis)
- Idea due to Horwitz, Reps, and Sagiv [POPL’95], and Rehof, Fahndrich, and Das [POPL’01]

The Problem Restated: Unrealizable Paths

- No execution can exhibit that particular call/return sequence

Only Propagate Along Realizable Paths

- $\text{let } id = \lambda x: \text{ref } \text{int } . x$
- $\text{let } x = id \text{ (ref } 0\text{)}$
- $\text{let } y = id \text{ (ref } 0\text{)}$

- Add edge labels for calls and returns
 - Only propagate along valid paths whose returns balance calls

Parenthesis Edges

- Paren edges represent substitutions
 - $\text{id : } a, b \rightarrow b \text{ where } a \leq b$
 - $\text{let } x = id \text{ (ref } 0\text{)}$
 - At call 1 to id, we instantiate type of id
 - $(a \rightarrow b)[r1/a, ax/b] = r1 \rightarrow ax$
 - Renaming for call 1
- Edges with $)$1 or (1 represent renaming 1
 - $b \rightarrow)1 ax b$ instantiated to ax, and b flows to ax
 - $r1 \rightarrow)1 a$ a instantiated to $r1$, and $r1$ flows to a

Instantiation Constraints

- Edges with parentheses are called instantiation constraints
- They represent:
 - A renaming
 - Plus a “flow”
- We can extend instantiation constraints from labels to types in the standard way

Propagating Instantiation Constraints

- $S + \{ \text{int } \rightarrow \text{int } \} \Rightarrow S$
- $S + \{ \text{int } \rightarrow \text{int } \} \Rightarrow S$
- $S + \{ \text{ref } t1 \rightarrow \text{ref } t2 \} \Rightarrow $
 - $S + \{ r1 \rightarrow r2 \} \Rightarrow (t1 \rightarrow t2) \Rightarrow (t2 \rightarrow t1)$
- $S + \{ \text{ref } t1 \rightarrow \text{ref } t2 \} \Rightarrow$
 - $S + \{ r1 \rightarrow r2 \} \Rightarrow (t1 \rightarrow t2) \Rightarrow (t2 \rightarrow t1)$
Propagating Instantiation Constraints (cont’d)

- \(S + \{ t_1 \rightarrow t_2 \rightarrow t'_2 \} \implies\)
 \(S + \{ t_2 \rightarrow t'_2 \} + \{ t'_1 \rightarrow t_1 \} \)

- \(S + \{ t_1 \rightarrow t_2 \rightarrow t'_1 \rightarrow t'_2 \} \implies\)
 \(S + \{ t_2 \rightarrow t'_2 \} + \{ t'_1 \rightarrow t_1 \} \)

Type Rule for Instantiation

- Now when we mention the name of a function, we’ll instantiate it using the following rule:

\[
A(f) = t \quad t' = \text{fresh}(t) \quad t \rightarrow t'
\]

\[
A \vdash f : t'
\]

A Simple Example

Let id = \(\lambda x . x \) in
Let y = id, (ref y, O)
Let z = id, (ref y, O)

Two Observations

- We are doing constraint copying
 - Notice the edge from c to a got “copied” to Ry to y
 - We didn’t draw the transitive edge, but we could have

- This algorithm can be made demand-driven
 - We only need to worry about paths from constant qualifiers
 - Good implications for scalability in practice

CFL Reachability

- We’re trying to find paths through the graph whose edges are a language in some grammar
 - Called the CFL Reachability problem
 - Computable in cubic time

Grammar for Matched Paths

\[
M ::= (i \ M) i \quad \text{for any } i
\]

| \(M M \) | regular subtyping edge |
| \(d \) | empty |

- Also can include other paths, depending on application
Global Variables

- Consider the following identity function
 \[
 \text{let id} = \lambda x. (z := x; \text{id})
 \]
 - Here \(z \) is a global variable
- Typing of id, roughly speaking:

\[
\begin{align*}
\text{id} & : a \rightarrow b \\
\end{align*}
\]

Global Variables

\[
\text{let foo} = \lambda y. ((\text{id}^2 \ y); \text{id}) \text{ in} \\
\text{foo}^2 \ (\text{ref}^k \ 0)
\]

(Apply \text{id} to \(y \), then return the value \(y \) via \(z \))

\[
\begin{align*}
\text{id} & : a \rightarrow b \\
\text{id} & \text{ is a global variable}
\end{align*}
\]

- Uh oh! \((2 \ (1 \ 2))\) is not a valid flow path
- But \(Rx \) may certainly reach \(d \)

Thou Shalt Not Quantify a Global Variable

- We violated a basic rule of polymorphism
 - We generalized a variable free in the environment
 - In effect, we duplicated \(z \) at each instantiation
- Solution: Don’t do that!

Our Example Again

- We want anything flowing into \(z \), on any path, to flow out in any way
 - Add a self-loop to \(z \) that consumes any mismatched parentheses

Typing Rules, Fixed

- Track unquantifiable vars at generalization
 \[
 \begin{align*}
 A \vdash e_1 : t_1 & \quad A, x : (t_1, b) \vdash e_2 : t_2 & \quad b = \text{fv}(A) \\
 A \vdash \text{let } x = e_1 \text{ in } e_2 : t_2
 \end{align*}
 \]

- Add self-loops at instantiation
 \[
 A(f) = (t, b) \quad t' = \text{fresh}(t) \quad t \rightarrow t'
 \]
 \[
 b \cdot b \quad b \rightarrow b
 \]
 \[
 A \vdash f_1 : t'
 \]

Label Constants

- Also use self-loops for label constants
 - They’re global everywhere
Efficiency

- Constraint generation yields $O(n)$ constraints
 - Same as before
 - Important for scalability
- Context-free language reachability is $O(n^3)$
 - But a few tricks make it practical (not much slowdown in analysis times)
- For more details, see
 - Rehof + Fahndrich, POPL'01

Adapting to Correlation

- Previous propagation rule, but match ()'s

Example

```c
pthread_mutex_t k1 = ..., k2 = ...;
int x, y;
void munge(pthread_mutex_t *l, int *p) {
    pthread_mutex_lock(l);
    *p = 3;
    pthread_mutex_unlock(l);
    munge(&k1, &x);
    munge(&k2, &y);
}
```

Example: Using Context-Sensitivity

```c
pthread_mutex_t k1 = ..., k2 = ...;
int x, y;
void munge(pthread_mutex_t *l, int *p) {
    pthread_mutex_lock(l);
    *p = 3;
    pthread_mutex_unlock(l);
    munge(&k1, &x);
    munge(&k2, &y);
}
```

Thread-Local Data

- Even in multi-threaded programs, lots of data is thread local
 - No need to worry about synchronization
 - A good design principle
- We've assumed so far that everything is shared
 - Much too conservative
Sharing Inference

- Use alias analysis to find shared locations
- Basic idea:
 - Determine what locations each thread may access
 - Hm, looks like an effect system...
 - Shared locations are those accessed by more than one thread
 - Intersect effects of each thread
 - Don’t forget to include the parent thread

Initialization

- A common pattern:
  ```c
  struct foo *p = malloc(...);
  // initialize *p
  fork(something with p); // p becomes shared
  // parent no longer uses p
  ```
- If we compute
  ```
  \{\text{effects of parent}\} \cap \{\text{effects of child}\}
  ```
 then we’ll see p in both, and decide it’s shared

Continuation Effects

- Continuation effects capture the effect of the remainder of the computation
 - I.e., of the continuation
 - So in our previous example, we would see that in the parent’s continuation after the fork, there are no effects
- Effects on locations
 - \(f := O \mid \{ r \} \mid \text{eff} \mid f + f \)
 - Empty, locations, variables, union

Judgments

- Direction of flow
- Effect of rest of program, including evaluation of \(e \)
- Effect of rest of program after evaluating \(e \)

Type Rules

- No change from before to after
  ```
  A; f |- x : t; A(x); f
  ```
- Left-to-right order of evaluation
  ```
  A; f |- e1 : ref^r; f1
  A; f1 |- e2 : t; f2
  ```
- Memory write happens after \(e1 \) and \(e2 \) evaluated

Rule for Fork

- Child’s effect included in parent
- Include everything after the fork in the parent
- Label each fork
Computing Sharing

- Resolve effect constraints
 - Same old constraint propagation
 - Let $S(f) = \text{set of locations in effect } f$
- Then the shared locations at fork are
 - $S_{\text{shared}} = S(f_{\text{child}}) \land S(f_{\text{parent}})$
- And all the shared locations are
 - $\text{shared} = \bigcup_i S_i$

Including Child’s Effect in Parent

- Consider:
 - let $x = \text{ref}^R A$ in
 fork (i);
 fork $(x := 2)$;
- Then if we didn’t include child’s effects in parent, we wouldn’t see that parallel child threads share data

Race Detection, Results

void* and Aggregates

Error Messages are Important

Possible data race on
&kwritten(aget_comb.c:943)
References:
derereference at aget_comb.c:1079
locks acquired at dereference:
dkwritten_mutex(aget_comb.c:996)
in: FORK at aget_comb.c:468 ->
http_get_agnet_comb.c:468
derereference at aget_comb.c:984
locks acquired at dereference:
(two)
in: FORK at aget_comb.c:193 ->
signal_waiter(aget_comb.c:193) ->
signal_handler(aget_comb.c:957)

Experimental Results
Experimental Results

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Size (kloc)</th>
<th>Time</th>
<th>Warm</th>
<th>Ungraded</th>
<th>Races</th>
</tr>
</thead>
<tbody>
<tr>
<td>plp</td>
<td>19.1</td>
<td>24.9s</td>
<td>11</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>eql</td>
<td>16.5</td>
<td>3.2s</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3c501</td>
<td>17.4</td>
<td>240.1s</td>
<td>24</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>sundance</td>
<td>19.9</td>
<td>98.2s</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>sis900</td>
<td>20.4</td>
<td>61.0s*</td>
<td>8</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>slip</td>
<td>22.7</td>
<td>16.5s*</td>
<td>19</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>hp100</td>
<td>20.3</td>
<td>31.8s*</td>
<td>23</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

*- disabled linearity checks.

Conclusion

- Alias analysis is a key building block
 - Lots and lots of stuff is variations on it
- We can perform race detection on C code
 - Bring out the toolkit of constraint-based analysis
 - Scales somewhat, still needs improvement
 - Handles idioms common to C
 - Including some things we didn’t have time for