
1

Beyond Reduction ...

2

Busy Acquire

atomic void busy_acquire() {
while (true) {
if (CAS(m,0,1)) break;

}
}

if (m == 0) {
m = 1; return true;

} else {
return false;

}

3

Busy Acquire

atomic void busy_acquire() {
while (true) {
if (CAS(m,0,1)) break;

}
}

CAS(m,0,1) CAS(m,0,1) CAS(m,0,1)

(succeeds)(fails) (fails)

4

Non-Serial Execution:

Serial Execution:

Atomic but not reducible

CAS(m,0,1) CAS(m,0,1) CAS(m,0,1)

(fails) (fails) (succeeds)

CAS(m,0,1)

(succeeds)

5

alloc
boolean b[MAX]; // b[i]==true iff block i is free
Lock m[MAX];

atomic int alloc() {
int i = 0;
while (i < MAX) {

acquire(m[i]);
if (b[i]) {

b[i] = false;
release(m[i]);
return i;

}
release(m[i]);
i++;

}
return -1;

}

6

alloc

acq(m[0]) rel(m[0])test(b[0]) acq(m[1]) test(b[1]) b[1]=false rel(m[1])

7

alloc is not Atomic

There are non-serial executions with no
equivalent serial executions

8

m[0] = m[1] = 0; b[0] = b[1] = false;

t = alloc(); || free(0); free(1);

void free(int i) {
acquire(m[i]);
b[i] = true;
release(m[i]);

}

9

m[0] = m[1] = 0; b[0] = b[1] = false;

t = alloc(); || free(0); free(1);

Non-Serial Execution:

Serial Executions:

loop for b[0]
t = 1

free(0) loop for b[1]free(1)

loop for b[0] free(0)loop for b[1] free(1)

loop for b[0]free(0) free(1)

t = -1

t = 0

loop for b[0]free(0) free(1)
t = 0

10

Extending Atomicity

Atomicity doesn't always hold for methods
that are "intuitively atomic"
– serializable but not reducible (busy_acquire)
– not serializable (alloc)

Examples
– initialization
– resource allocation
– wait/notify

– caches
– commit/retry transactions

11

Pure Code Blocks

Pure block: pure { E }
– If E terminates normally, it does not update

state visible outside of E
–E is reducible

Example
while (true) {

pure {
acquire(mx);
if (x == 0) { x = 1; release(mx); break; }
release(mx);

}
}

12

Purity and Abstraction

A pure block's behavior under normal
termination is the same as skip

Abstract execution semantics:
– pure blocks can be skipped

acq(m) rel(m)test(x)

rel(m)acq(m) test(x)

skip

13

Abstraction

Abstract semantics that admits more behaviors
– pure blocks can be skipped
– hides "irrelevant" details (ie, failed loop iters)
–

Program must still be (sequentially) correct in
abstract semantics

Abstract semantics make reduction possible

14

Busy Acquire

atomic void busy_acquire() {
while (true) {
pure { if (CAS(m,0,1)) break; }

}
}

15

Abstract Execution of Busy Acquire

atomic void busy_acquire() {
while (true) {
pure { if (CAS(m,0,1)) break; }

}
}

CAS(m,0,1) CAS(m,0,1) CAS(m,0,1)

(Concrete)

skip CAS(m,0,1)skip

(Abstract)

(Reduced Abstract)

16

alloc
atomic int alloc() {

int i = 0;
while (i < MAX) {

pure {
acquire(m[i]);
if (b[i]) {

b[i] = false;
release(m[i]);
return i;

}
release(m[i]);

}
i++;

}
return -1;

}

17

Abstract Execution of alloc

acq(m[0]) rel(m[0])test(b[0]) acq(m[1]) test(b[1]) b[1]=false rel(m[1])

skip acq(m[1]) b[1]=falsetest(b[1]) rel(m[1])

(Abstract)

(Reduced Abstract)

18

Abstraction

Abstract semantics admits more executions

Can still reason about important properties
– "alloc returns either the index of a freshly

allocated block or -1"
– cannot guarantee "alloc returns smallest possible

index"
• but what does this really mean anyway???

skip acq(m[1]) test(b[1]) rel(m[1])b[1]=false

(Abstract)

free(0) free(1)

19

To Atomicity and Beyond ...

20

21

Commit-Atomicity

Reduction
– Great if can get serial execution via commuting

Reduction + Purity
– Great if non-serial execution performs extra

pure loops

Commit Atomicity
– More heavyweight technique to verify if some

corresponding serial execution has same behavior
• can take different steps

22

Checking Commit Atomicity

Run normal and serial executions of program
concurrently, on separate stores
Normal execution runs as normal
– threads execute atomic blocks
– each atomic block has commit point

Serial execution
– runs on separate shadow store
– when normal execution commits an atomic block,

serial execution runs entire atomic block serially
Check two executions yield same behavior

23

Commit-Atomic

Normal execution
commit

atomic block

...

...

compare
states

Serial execution

24

Preliminary Evaluation

Some small benchmarks
– Bluetooth device driver

• atomicity violation due to error
– Busy-waiting lock acquire

• acquire1: 1 line of code in critical section
• acquire100: 100 lines of code in critical section

Hand translated to PROMELA code
– Two versions, with and without commit-atomic
– Model check with SPIN

25

Performance: Bluetooth device driver

Bluetooth driver benchmark

10

100

1000

10000

100000

1000000

2 3 4 5 6

Number of Threads

Si
ze

 o
f s

ta
te

 s
pa

ce

Normal
Commit-Atomic

26

Performance: acquire1 and acquire100

Busy-waiting lock acquire

100

1000

10000

100000

1000000

2 3 4 5 6 7

Number of threads

Si
ze

 o
f s

ta
te

 s
pa

ce

acquire1: normal
acquire1: commit-atomic
acquire100: normal
acquire100: commit-atomic

27

Summary

Atomicity
– concise, semantically deep partial specification
– aka serializability

Reduction
– lightweight technique for verifying atomicity
– can verify with types, or dynamically
– plus purity, for complex cases

Commit-Atomicity
– more general technique

28

Summary

Atomicity
– concise, semantically deep partial specification

Reduction
– lightweight technique for verifying atomicity

Commit-Atomicity
– more general technique

Future work
– combine reduction and commit-atomic
– generalizing atomicity

• temporal logics for determinism?

	Beyond Reduction ...
	Busy Acquire
	Busy Acquire
	alloc
	alloc
	alloc is not Atomic
	Extending Atomicity
	Pure Code Blocks
	Purity and Abstraction
	Abstraction
	Busy Acquire
	Abstract Execution of Busy Acquire
	alloc
	Abstract Execution of alloc
	Abstraction
	To Atomicity and Beyond ...
	
	Commit-Atomicity
	Checking Commit Atomicity
	Commit-Atomic
	Preliminary Evaluation
	Performance: Bluetooth device driver
	Performance: acquire1 and acquire100
	Summary
	Summary

