
Statistical Debugging
Ben Liblit, University of Wisconsin–Madison



What’s This All About?

Statistical Debugging & Cooperative Bug Isolation
Observe deployed software in the hands of real end users
Build statistical models of success & failure
Guide programmers to the root causes of bugs
Make software suck less

Lecture plan
1. Motivation for post-deployment debugging
2. Instrumentation and feedback
3. Statistical modeling and (some) program analysis
4. Crazy hacks, cool tricks, & practical considerations



Credit Where Credit is Due

Alex Aiken
David Andrzejewski
Piramanayagam 
Arumuga Nainar
Ting Chen
Greg Cooksey
Evan Driscoll
Jason Fletchall
Michael Jordan
Anne Mulhern
Garrett Kolpin

Akash Lal
Junghee Lim
Mayur Naik
Jake Rosin
Umair Saeed
Alice Zheng
Xiaojin Zhu
… and an anonymous 
cast of thousands!

Or maybe just hundreds?
I don’t really know



Motivations: Software
Quality in the Real World



Bill Gates, quoted in FOCUS Magazine

“There are no significant
bugs in our released software

that any significant number
of users want fixed.”



A Caricature of Software Development

Requirements

Architecture & Design

Implementation

Testing & Verification

Maintenance



A Caricature of Software Development

Requirements

Architecture & Design

Implementation

Testing & Verification

Maintenance



Software Releases in the Real World

[Disclaimer: this may also be a caricature.]



Software Releases in the Real World

1. Coders & testers in tight feedback loop
Detailed monitoring, high repeatability
Testing approximates reality

2. Testers & management declare “Ship it!”
Perfection is not an option
Developers don’t decide when to ship



Software Releases in the Real World

3. Everyone goes on vacation
Congratulate yourselves on a job well done!
What could possibly go wrong?

4. Upon return, hide from tech support
Much can go wrong, and you know it
Users define reality, and it’s not pretty

Where “not pretty” means “badly approximated by testing”



Testing as Approximation of Reality

Microsoft’s Watson error reporting system
Crash reports from 500,000 separate programs
x% of software errors cause 50% of user crashes
Care to guess what x is?

1% of software errors cause 50% of user crashes

Small mismatch Î big problems (sometimes)

Big mismatch Î small problems? (sometimes!)
Perfection is usually not an economically viable option



Always One More Bug

Imperfect world with imperfect software
Ship with known bugs
Users find new bugs

Bug fixing is a matter of triage + guesswork
Limited resources: time, money, people
Little or no systematic feedback from field

Our goal: reality-directed debugging
Fix bugs that afflict many users



The Good News: Users Can Help

Important bugs happen often, to many users 
User communities are big and growing fast
User runs à testing runs
Users are networked

We can do better, with help from users!
Users know define what bugs matter most

Common gripe: “Software companies treat their 
users like beta testers”

OK, let’s make them better beta testers



Measure Reality and Respond

Software quality as an empirical science
Observed trends rather than absolute proofs
Biologists do pretty well, even without source code

Observational science requires … observation!
7,600 Ad-Aware 2007 downloads during today’s lecture
500,000,000 Halo 2 games in 20 months
Plenty to observe, provided we can get at the data



Bug and Crash Reporting Systems

Snapshot of Mozilla’s Bugzilla bug database
Entire history of Mozilla; all products and versions
60,866 open bug reports
109,756 additional reports marked as duplicates

Snapshot of Mozilla’s Talkback crash reporter
Firefox 2.0.0.4 for the last ten days
101,812 unique users
183,066 crash reports
6,736,697 hours of user-driven “testing”



Real Engineers Measure Things;
Are Software Engineers Real Engineers?



Real Engineering Constraints
Millions of lines of code

Loose semantics of buggy programs

Limited performance overhead

Limited disk, network bandwidth

Incomplete & inconsistent information

Mix of controlled, uncontrolled code

Threads

Privacy and security



High-Level Approach

1. Guess “potentially interesting” behaviors
Compile-time instrumentation

2. Collect sparse, fair subset of complete info
Generic sampling transformation
Feedback profile + outcome label

3. Find behavioral changes in good/bad runs
Statistical debugging



Instrumentation Framework



Douglas Adams, Mostly Harmless

“The major difference between a 
thing that might go wrong and a 

thing that cannot possibly go wrong 
is that when a thing that cannot 

possibly go wrong goes wrong, it 
usually turns out to be impossible 

to get at or repair.”



Bug Isolation Architecture

Program
Source

Compiler

Shipping
ApplicationSampler

Predicates

Counts
& ☺//

Statistical
Debugging

Top bugs with
likely causes



Our Model of Behavior

Each behavior is expressed as
a predicate P on program state
at a particular program point.

Count how often “P observed true”
and “P observed” using sparse but fair 
random samples of complete behavior.



Predicate Injection:
Guessing What’s Interesting

Program
Source

Compiler

Shipping
ApplicationSampler

Predicates

Counts
& ☺//

Statistical
Debugging

Top bugs with
likely causes



Branch Predicates Are Interesting

if (p)
…

else
…



Branch Predicate Counts

if (p)
// p was true (nonzero)

else

// p was false (zero)

Syntax yields instrumentation site
Site yields predicates on program behavior
Exactly one predicate true per visit to site



Returned Values Are Interesting

n = fprintf(…);

Did you know that fprintf() returns a value?
Do you know what the return value means?
Do you remember to check it?



Returned Value Predicate Counts

n = fprintf(…);

// return value < 0 ?
// return value == 0 ?
// return value > 0 ?

Syntax yields instrumentation site
Site yields predicates on program behavior
Exactly one predicate true per visit to site



Pair Relationships Are Interesting

int i, j, k;
…
i = …;



Pair Relationship Predicate Counts

int i, j, k;
…
i = …;

// compare new value of i with…
// other vars: j, k, …
// old value of i
// “important” constants



Many Other Behaviors of Interest
Assert statements

Perhaps automatically introduced, e.g. by CCured

Unusual floating point values
Did you know there are nine kinds?

Coverage of modules, functions, basic blocks, …

Reference counts: negative, zero, positive, invalid
I use the GNOME desktop, but it terrifies me!

Kinds of pointer: stack, heap, null, …

Temporal relationships: x before/after y

More ideas? Toss them all into the mix!



Summarization and Reporting
Observation stream Î observation count

How often is each predicate observed true?
Removes time dimension, for good or ill

Bump exactly one counter per observation
Infer additional predicates (e.g. ≤, ≠, ≥) offline

Feedback report is:
1. Vector of predicate counters
2. Success/failure outcome label

Still quite a lot to measure
What about performance?



Fair Sampling Transformation

Program
Source

Compiler

Shipping
ApplicationSampler

Predicates

Counts
& ☺//

Statistical
Debugging

Top bugs with
likely causes



Sampling the Bernoulli Way

Decide to examine or ignore each site…
Randomly
Independently
Dynamically

8 Cannot use clock interrupt: no context
8 Cannot be periodic: unfair temporal aliasing
8 Cannot toss coin at each site: too slow



Amortized Coin Tossing

Randomized global countdown
Small countdown Î upcoming sample

Selected from geometric distribution
Inter-arrival time for biased coin toss
How many tails before next head?
Mean sampling rate is tunable parameter



Geometric Distribution

D = mean of distribution
= expected sample density

1
)1log(
))1,0(log(

1
+⎥

⎦

⎥
⎢
⎣

⎢
−

=
D

randnext



Weighing Acyclic Regions

Break CFG into 
acyclic regions

Each region has:
Finite number of paths
Finite max number of 
instrumentation sites

Compute max weight 
in bottom-up pass

1

2 1

1

1

2

3

4



Weighing Acyclic Regions

Clone acyclic regions
“Fast” variant
“Slow” variant

Choose at run time

Retain decrements on 
fast path for now

Stay tuned…

>4?



Optimizations I

Identify and ignore “weightless” functions

Identify and ignore “weightless” cycles

Cache global countdown in local variable
Global Æ local at function entry & after each call
Local Æ global at function exit & before each call



Optimizations II

Avoid cloning
Instrumentation-free prefix or suffix
Weightless or singleton regions

Static branch prediction at region heads

Partition sites among several binaries

Many additional possibilities…



Path Balancing Optimization

Decrements on fast 
path are a bummer

Goal: batch them up
But some paths are 
shorter than others

Idea: add extra “ghost” 
instrumentation sites

Pad out shorter paths
All paths now equal

1

2 1

1

1

2

3

4



Path Balancing Optimization

Fast path is faster
One bulk counter 
decrement on entry
Instrumentation sites 
have no code at all

Slow path is slower
More decrements

Consume more 
randomness

1

2 1

1

1

2

3

4



Variations on Next-Sample Countdown

Fixed reset value
Biased, but useful for benchmarking

Skip sampling transformation entirely
Observe every site every time
Used for controlled, in-house experiments
Can simulate arbitrary sampling rates offline

Non-uniform sampling
Decrement countdown more than once
Multiple countdowns at different rates



What Does This Give Us?

Absolutely certain of what we do see
Subset of dynamic behavior
Success/failure label for entire run

Uncertain of what we don’t see

Given enough runs, samples ≈ reality
Common events seen most often
Rare events seen at proportionate rate



Statistical Debugging Basics



Penn Jillette

“What is luck?
Luck is probability taken personally.

It is the excitement of bad math.”



Playing the Numbers Game

Program
Source

Compiler

Shipping
ApplicationSampler

Predicates

Counts
& ☺//

Statistical
Debugging

Top bugs with
likely causes



Find Causes of Bugs

Gather information about many predicates
298,482 predicates in bc
857,384 predicates in Rhythmbox

Vast majority not related to any particular bug /

How do we find the useful bug predictors?
Data is incomplete, noisy, irreproducible, …



Sharing the Cost of Assertions

What to sample: assert() statements

Look for assertions which sometimes fail on bad 
runs, but always succeed on good runs

Overhead in assertion-dense CCured code
Unconditional: 55% average, 181% max
1/100 sampling: 17% average, 46% max
1/1000 sampling: 10% average, 26% max



Isolating a Deterministic Bug

Hunt for crashing bug in ccrypt‐1.2

Sample function return values
Triple of counters per call site: < 0, == 0, > 0

Use process of elimination
Look for predicates true on some bad runs,
but never true on any good run



Winnowing Down the Culprits

1710 counters
3 × 570 call sites

1569 zero on all runs
141 remain

139 nonzero on at least 
one successful run

Not much left!
file_exists() > 0
xreadline() == 0

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

Number of successful trials used

N
um

be
r o

f "
go

od
" f

ea
tu

re
s 

le
ft


	Statistical Debugging
	What’s This All About?
	Credit Where Credit is Due
	Motivations: Software�Quality in the Real World
	Bill Gates, quoted in FOCUS Magazine
	A Caricature of Software Development
	A Caricature of Software Development
	Software Releases in the Real World
	Software Releases in the Real World
	Software Releases in the Real World
	Testing as Approximation of Reality
	Always One More Bug
	The Good News: Users Can Help
	Measure Reality and Respond
	Bug and Crash Reporting Systems
	Real Engineers Measure Things;�Are Software Engineers Real Engineers?
	Real Engineering Constraints
	High-Level Approach
	Instrumentation Framework
	Douglas Adams, Mostly Harmless
	Bug Isolation Architecture
	Our Model of Behavior
	Predicate Injection:�Guessing What’s Interesting
	Branch Predicates Are Interesting
	Branch Predicate Counts
	Returned Values Are Interesting
	Returned Value Predicate Counts
	Pair Relationships Are Interesting
	Pair Relationship Predicate Counts
	Many Other Behaviors of Interest
	Summarization and Reporting
	Fair Sampling Transformation
	Sampling the Bernoulli Way
	Amortized Coin Tossing
	Geometric Distribution
	Weighing Acyclic Regions
	Weighing Acyclic Regions
	Optimizations I
	Optimizations II
	Path Balancing Optimization
	Path Balancing Optimization
	Variations on Next-Sample Countdown
	What Does This Give Us?
	Statistical Debugging Basics
	�Penn Jillette�
	Playing the Numbers Game
	Find Causes of Bugs
	Sharing the Cost of Assertions
	Isolating a Deterministic Bug
	Winnowing Down the Culprits

