I Statistical Debugging

Ben Liblit, University of Wisconsin—-Madison

What’s This All About?

» Statistical Debugging & Cooperative Bug Isolation
Observe deployed software in the hands of real end users
Build statistical models of success & failure
Guide programmers to the root causes of bugs
Make software suck less

» Lecture plan
Motivation for post-deployment debugging
Instrumentation and feedback
Statistical modeling and (some) program analysis
Crazy hacks, cool tricks, & practical considerations

Credit Where Credit is Due

» Alex Aiken » Akash Lal

» David AndrzejewskKi » Junghee Lim

» Piramanayagam » Mayur Naik
Arumuga Nainar » Jake Rosin

» Ting Chen » Umair Saeed

» Greg Cooksey » Alice Zheng

» Evan Driscoll » Xiaojin Zhu

‘ Ja.son Fletchall » ... and an anonymous
» Michael Jordan cast of thousands!

» Anne Mulhern Or maybe just hundreds?
» Garrett Kolpin | don'’t really know

Motivations: Software
Quality in the Real World

“There are no significant
bugs In our released software
that any significant number
of users want fixed.”

Bill Gates, quoted in FOCUS Magazine

A Caricature of Software Development

Requirements

Architecture & Design

Implementation

' Testing & Verification

Maintenance

A Caricature of Software Development

[Requirements J

[Architecture & Design T

Software Releases in the Real World

[Disclaimer: this may also be a caricature.]

Software Releases in the Real World

1. Coders & testers in tight feedback loop
Detailed monitoring, high repeatability
Testing approximates reality

2. Testers & management declare “Ship it!”
Perfection is not an option
Developers don't decide when to ship

Software Releases in the Real World

3. Everyone goes on vacation

Congratulate yourselves on a job well done!
What could possibly go wrong?

4. Upon return, hide from tech support
Much can go wrong, and you know it
Users define reality, and it's not pretty

Where “not pretty” means “badly approximated by testing”

Testing as Approximation of Reality

» Microsoft’'s Watson error reporting system

Crash reports from 500,000 separate programs
x% of software errors cause 50% of user crashes
Care to guess what xis?

» 1% of software errors cause 50% of user crashes
» Small mismatch = big problems (sometimes)

» Big mismatch =» small problems? (sometimes!)
Perfection is usually not an economically viable option

Always One More Bug

» Imperfect world with imperfect software
Ship with known bugs
Users find new bugs

» Bug fixing is a matter of triage + guesswork
Limited resources: time, money, people
Little or no systematic feedback from field

» Our goal: reality-directed debugging
Fix bugs that afflict many users

The Good News: Users Can Help

» Important bugs happen often, to many users
User communities are big and growing fast
User runs > testing runs
Users are networked

» We can do better, with help from users!
Users know define what bugs matter most

» Common gripe: “Software companies treat their
users like beta testers”

OK, let’'s make them better beta testers

Measure Reality and Respond

» Software quality as an empirical science
Observed trends rather than absolute proofs
Biologists do pretty well, even without source code

» Observational science requires ... observation!

7,600 Ad-Aware 2007 downloads during today’s lecture
500,000,000 Halo 2 games in 20 months
Plenty to observe, provided we can get at the data

Bug and Crash Reporting Systems

» Snapshot of Mozilla’s Bugzilla bug database
Entire history of Mozilla; all products and versions
60,866 open bug reports
109,756 additional reports marked as duplicates

» Snapshot of Mozilla’s Talkback crash reporter
Firefox 2.0.0.4 for the last ten days
101,812 unique users
183,066 crash reports
6,736,697 hours of user-driven “testing”

Real Engineers Measure Things;
Are Software Engineers Real Engineers?

* Anju
Hle Edit Wiew Goto Project Buld Tools Debug VS Settings Help

Divew + B30~ (] @ & B B

@ Project = B £ Documents @ | Exfiles 2]
b @ ibanjuta-interfac * 4 breakpoints.c x | Changelog % | AUTHORS = | main.c = debuggerc X | phugine = b = & anpaa =
b libanjuta la 115 static void debugger class init (Debuggerclass *klass); =] ¢ [automdte cache
b @ ibanjuta-aqqa 116 static void debugger_instance init (Debugger *debugger): v Bacvs
0 . ur
b (@] test-multi-drag 18 Type b B3 data
&) test-tree-utils 119 debugger _get type (void) b G0 doc
= &) test-actions Ll b £ global-tags
ey 121 static GType obj_type = 8 r'_l"' o
&) test-actions.c 122 b B launcher
b (& test-union 123 if (tobj_type) = [ibanjuta
gl 124 = {
= & anjuta-tags o5
ey 125 static const GTypelnfo abj_info = v@
&) tm_global_tag] 126 - 1 b B3 inerfaces
b+ (&) anjuta_launcher 127 (&) anjuta-chidren.c
1 128 (GRaseInitFunc) MULL Y ot
b & test-scintilla L anjuta-chid L
= 120 (GBasePinalizePunc) NULL, 3) anjuta-chidren
[libanjuta-scintilla 138 (6ClassInitFunc) debugger class init, #| anjuta-chidren k
] anjuta 131 (GClassFinalizeFunc] NULL, # anjuta-chidren.c
Y 132 NULL, /* class_data »7 "
about 4 ¥
3] about ¢ A o (O, (B anjuta-detun.h
] abaut b 134 8. £* n_oreallocs *f = (&) anjuta-encoding:
. . » ¥ ai
&) action-callbacl + (8] anjuta-encoding: =
] 3 Documents Tasks . '
3 Symibole = B (gMessages = ®
Tree Search = Build 1: anjuta X
= “gClasses <] makel2]: Nothing to be done for *all. -|
= g Accassor LE_ALL=C fntool-merge Jpo anjuta desktop.in anjuta.desktop -d -u ¢ posntiool-merge-cache
¥ Accessor) Found cached translation database
¥ ColourTolunsigned int pos, int chattr)| | Merging translations inta anjuta.desktop.
esilltin position) Completed ... successful
& Flushi) - Total ime taken: 199 secs -
4 * 4 L3

Col: 005 Line: 0118 Project: anjuta Mode: INS Zoom: 0

Real Engineering Constraints
» Millions of lines of code

» Loose semantics of buggy programs

» Limited performance overhead

» Limited disk, network bandwidth

» Incomplete & inconsistent information
» Mix of controlled, uncontrolled code
» Threads

» Privacy and security

High-Level Approach

1. Guess “potentially interesting” behaviors
Compile-time instrumentation

2. Collect sparse, fair subset of complete info
Generic sampling transformation
Feedback profile + outcome label

3. Find behavioral changes in good/bad runs
Statistical debugging

Instrumentation Framework

“The major difference between a
thing that might go wrong and a
thing that cannot possibly go wrong
Is that when a thing that cannot
possibly go wrong goes wrong, it
usually turns out to be impossible
to get at or repair.”

Douglas Adams, Mostly Harmless

Bug Isolation Architecture

@ D
Program

— | Sampler| —
ﬂ Source

Predicates

—

= =

Shipping
Application

Compiler

o

likely causes

\ Top bugs with

\/4— : *
Statistical l«— Counts
—sem

Debugging

~_

Our Model of Behavior

Each behavior is expressed as
a predicate P on program state
at a particular program point.

Count how often “P observed true”
and “P observed” using sparse but fair
random samples of complete behavior.

Predicate Injection:
Guessing What’s Interesting

@)
Program

— | Sampler| —
ﬂ Source

Predicates

—

= =

Shipping
Application

Compiler

o

likely causes

\ Top bugs with

\/4— : *
Statistical l«— Counts
—sem

Debugging

~_

Branch Predicates Are Interesting

if (p)

else

Branch Predicate Counts

if (p)
// p was true (nonzero)
else

// p was false (zero)

» Syntax yields instrumentation site
» Site yields predicates on program behavior
» Exactly one predicate true per visit to site

Returned Values Are Interesting

n = fprintf(..);

» Did you know that fprintf() returns a value?
» Do you know what the return value means?
» Do you remember to check it?

Returned Value Predicate Counts

n = fprintf(..);

// return value < 9 °?
// return value == 0 ?
// return value > 9 °?

» Syntax yields instrumentation site
» Site yields predicates on program behavior
» Exactly one predicate true per visit to site

Pair Relationships Are Interesting

int 1, j, k;

Pair Relationship Predicate Counts
int 1, j, k;
1 = .3

// compare new value of 1 with..
// other vars: j, k, ..
// old value of 1

// “important” constants

Many Other Behaviors of Interest

» Assert statements
Perhaps automatically introduced, e.g. by CCured

v

Unusual floating point values
Did you know there are nine kinds?

v

Coverage of modules, functions, basic blocks, ...

» Reference counts: negative, zero, positive, invalid
| use the GNOME desktop, but it terrifies me!

» Kinds of pointer: stack, heap, null, ...
» Temporal relationships: x before/after y

» More ideas? Toss them all into the mix!

Summarization and Reporting

» Observation stream =» observation count
How often is each predicate observed true?
Removes time dimension, for good or ill

» Bump exactly one counter per observation
Infer additional predicates (e.g. <, #, 2) offline

» Feedback report is:
Vector of predicate counters
Success/failure outcome label

» Still quite a lot to measure
What about performance?

Fair Sampling Transformation

@ D
Program

— | Sampler| —
ﬂ Source

Predicates

—

= =

Shipping
Application

Compiler

o

likely causes

\ Top bugs with

\/4— : *
Statistical l«— Counts
—sem

Debugging

~_

Sampling the Bernoulli Way

» Decide to examine or ignore each site...
Randomly
Independently
Dynamically

« Cannot use clock interrupt: no context
« Cannot be periodic: unfair temporal aliasing
« Cannot toss coin at each site: too slow

Amortized Coin Tossing

» Randomized global countdown
Small countdown = upcoming sample

» Selected from geometric distribution
Inter-arrival time for biased coin toss
How many tails before next head?

Mean sampling rate is tunable parameter

Geometric Distribution

next =

log(rand(0,1))
log(1 - J7)

» D = mean of distribution
= expected sample density

+1

Weighing Acyclic Regions

» Break CFG into
acyclic regions

» Each region has:
Finite number of paths

Finite max number of
Instrumentation sites

» Compute max weight
In bottom-up pass

Weighing Acyclic Regions

» Clone acyclic regions
“Fast” variant
“Slow” variant

» Choose at run time

» Retain decrements on
fast path for now

Stay tuned...

Optimizations I

» ldentify and ignore “weightless” functions
» ldentify and ignore “weightless” cycles

» Cache global countdown in local variable
Global - local at function entry & after each call
Local - global at function exit & before each call

Optimizations II

» Avoid cloning
Instrumentation-free prefix or suffix
Weightless or singleton regions

» Static branch prediction at region heads
» Partition sites among several binaries

» Many additional possibilities...

Path Balancing Optimization

» Decrements on fast
path are a bummer
Goal: batch them up

But some paths are
shorter than others

7

» ldea: add extra “ghost
Instrumentation sites

Pad out shorter paths
All paths now equal

()

Path Balancing Optimization

» Fast path is faster

One bulk counter
decrement on entry

Instrumentation sites 2
have no code at all

» Slow path is slower
More decrements

» Consume more
randomness

Variations on Next-Sample Countdown

» Fixed reset value
Biased, but useful for benchmarking

» Skip sampling transformation entirely
Observe every site every time
Used for controlled, in-house experiments
Can simulate arbitrary sampling rates offline

» Non-uniform sampling
Decrement countdown more than once
Multiple countdowns at different rates

What Does This Give Us?

» Absolutely certain of what we do see
Subset of dynamic behavior
Success/failure label for entire run

» Uncertain of what we don’t see

» Given enough runs, samples = reality
Common events seen most often
Rare events seen at proportionate rate

Statistical Debugging Basics

"What is luck?

Luck Is probability taken personally.
It is the excitement of bad math.”

Penn Jillette

Playing the Numbers Game

@ D
Program

— | Sampler| —
ﬂ Source

Predicates

—

= =

Shipping
Application

Compiler

o

likely causes

\ Top bugs with

\/4— : *
Statistical l«— Counts
—sem

Debugging

~_

Find Causes of Bugs

» Gather information about many predicates
298,482 predicates in bc
857,384 predicates in Rhythmbox

» Vast majority not related to any particular bug ®

» How do we find the useful bug predictors?
Data is incomplete, noisy, irreproducible, ...

Sharing the Cost of Assertions

» What to sample: assert () statements

» Look for assertions which sometimes fail on bad
runs, but always succeed on good runs

» Overhead in assertion-dense CCured code
Unconditional: 55% average, 181% max
/.00 S@ampling: 17% average, 46% max
/1000 S@mMpling: 10% average, 26% max

[solating a Deterministic Bug

» Hunt for crashing bug in ccrypt-1.2

» Sample function return values
Triple of counters per call site: <0,==0,>0

» Use process of elimination

Look for predicates true on some bad runs,
but never true on any good run

Winnowing Down the Culprits

» 1710 counters
3 x 570 call sites

» 1569 zero on all runs
141 remain

» 139 nonzero on at least
one successful run

Number of "good" features left

» Not much left!
file exists() > ©
xreadline() ==

	Statistical Debugging
	What’s This All About?
	Credit Where Credit is Due
	Motivations: Software�Quality in the Real World
	Bill Gates, quoted in FOCUS Magazine
	A Caricature of Software Development
	A Caricature of Software Development
	Software Releases in the Real World
	Software Releases in the Real World
	Software Releases in the Real World
	Testing as Approximation of Reality
	Always One More Bug
	The Good News: Users Can Help
	Measure Reality and Respond
	Bug and Crash Reporting Systems
	Real Engineers Measure Things;�Are Software Engineers Real Engineers?
	Real Engineering Constraints
	High-Level Approach
	Instrumentation Framework
	Douglas Adams, Mostly Harmless
	Bug Isolation Architecture
	Our Model of Behavior
	Predicate Injection:�Guessing What’s Interesting
	Branch Predicates Are Interesting
	Branch Predicate Counts
	Returned Values Are Interesting
	Returned Value Predicate Counts
	Pair Relationships Are Interesting
	Pair Relationship Predicate Counts
	Many Other Behaviors of Interest
	Summarization and Reporting
	Fair Sampling Transformation
	Sampling the Bernoulli Way
	Amortized Coin Tossing
	Geometric Distribution
	Weighing Acyclic Regions
	Weighing Acyclic Regions
	Optimizations I
	Optimizations II
	Path Balancing Optimization
	Path Balancing Optimization
	Variations on Next-Sample Countdown
	What Does This Give Us?
	Statistical Debugging Basics
	�Penn Jillette�
	Playing the Numbers Game
	Find Causes of Bugs
	Sharing the Cost of Assertions
	Isolating a Deterministic Bug
	Winnowing Down the Culprits

