
Statistical Debugging
Ben Liblit, University of Wisconsin–Madison

Bug Isolation Architecture

Program
Source

Compiler

Shipping
ApplicationSampler

Predicates

Counts
& ☺//

Statistical
Debugging

Top bugs with
likely causes

Winnowing Down the Culprits

1710 counters
3 × 570 call sites

1569 zero on all runs
141 remain

139 nonzero on at least
one successful run

Not much left!
file_exists() > 0
xreadline() == 0

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

Number of successful trials used

N
um

be
r o

f "
go

od
" f

ea
tu

re
s

le
ft

Multiple, Non-Deterministic Bugs

Strict process of elimination won’t work
Can’t assume program will crash when it should
No single common characteristic of all failures

Look for general correlation, not perfect prediction

Warning! Statistics ahead!

Ranked Predicate Selection

Consider each predicate P one at a time
Include inferred predicates (e.g. ≤, ≠, ≥)

How likely is failure when P is true?
(technically, when P is observed to be true)

Multiple bugs yield multiple bad predicates

Some Definitions

)()(
)()(

0 with runs successful #)(

0 with runsfailing #)(

PFPS
PFPBad

PPS

PPF

+
=

>=

>=

Are We Done? Not Exactly!

if (f == NULL) {
x = 0;
*f;

}

Bad(f = NULL) = 1.0

Are We Done? Not Exactly!

if (f == NULL) {
x = 0;
*f;

}

Predicate (x = 0) is innocent bystander
Program is already doomed

Bad(f = NULL) = 1.0

Bad(x = 0) = 1.0

Fun With Multi-Valued Logic

Identify unlucky sites on the doomed path

Background risk of failure for reaching this site,
regardless of predicate truth/falsehood

)()(
)()(

PPFPPS
PPFPContext

¬∨+¬∨
¬∨

=

Isolate the Predictive Value of P

Does P being true increase the chance of failure over
the background rate?

Formal correspondence to likelihood ratio testing

)()()(PContextPBadPIncrease −=

Increase Isolates the Predictor

if (f == NULL) {
x = 0;
*f;

}

Increase(f = NULL) = 1.0

Increase(x = 0) = 0.0

It Works!

…for programs with just one bug.

Need to deal with multiple bugs
How many? Nobody knows!

Redundant predictors remain a major problem

Goal: isolate a single “best” predictor
for each bug, with no prior

knowledge of the number of bugs.

Multiple Bugs: Some Issues

A bug may have many redundant predictors
Only need one, provided it is a good one

Bugs occur on vastly different scales
Predictors for common bugs may dominate, hiding
predictors of less common problems

Guide to Visualization

Multiple interesting & useful predicate metrics
Simple visualization may help reveal trends

Increase(P)

S(P)

error bound

log(F(P) + S(P))

Context(P)

Confidence Interval on Increase(P)

Strictly speaking, this is slightly bogus
Bad(P) and Context(P) are not independent
Correct confidence interval would be larger

() ()
)()(

)(1)(
)()(

)(1)(96.1
PPFPPS

PContextPContext
PFPS

PBadPBad
¬∨+¬∨

−⋅
+

+
−⋅

±

Bad Idea #1: Rank by Increase(P)

High Increase but very few failing runs
These are all sub-bug predictors

Each covers one special case of a larger bug
Redundancy is clearly a problem

Bad Idea #2: Rank by F(P)

Many failing runs but low Increase
Tend to be super-bug predictors

Each covers several bugs, plus lots of junk

A Helpful Analogy

In the language of information retrieval
Increase(P) has high precision, low recall
F(P) has high recall, low precision

Standard solution:
Take the harmonic mean of both
Rewards high scores in both dimensions

Rank by Harmonic Mean

Definite improvement
Large increase, many failures, few or no successes

But redundancy is still a problem

Redundancy Elimination

One predictor for a bug is interesting
Additional predictors are a distraction
Want to explain each failure once

Similar to minimum set-cover problem
Cover all failed runs with subset of predicates
Greedy selection using harmonic ranking

Simulated Iterative Bug Fixing

1. Rank all predicates under consideration

2. Select the top-ranked predicate P

3. Add P to bug predictor list

4. Discard P and all runs where P was true
Simulates fixing the bug predicted by P
Reduces rank of similar predicates

5. Repeat until out of failures or predicates

Case Study: MOSS

Reintroduce nine historic MOSS bugs
High- and low-level errors
Includes wrong-output bugs

Instrument with everything we’ve got
Branches, returns, variable value pairs, the works

32,000 randomized runs at 1/100 sampling

Effectiveness of Filtering

Scheme Total Retained Rate

branches 4170 18 0.4%

returns 2964 11 0.4%

value-pairs 195,864 2682 1.4%

Effectiveness of Ranking

Five bugs: captured by branches, returns
Short lists, easy to scan
Can stop early if Bad drops down

Two bugs: captured by value-pairs
Much redundancy

Two bugs: never cause a failure
No failure, no problem

One surprise bug, revealed by returns!

Analysis of exif

3 bug predictors from 156,476 initial predicates
Each predicate identifies a distinct crashing bug
All bugs found quickly using analysis results

Analysis of Rhythmbox

15 bug predictors from 857,384 initial predicates
Found and fixed several crashing bugs

How Many Runs Are Needed?

Failing Runs For Bug #n
#1 #2 #3 #4 #5 #6 #9

MOSS 18 10 32 12 21 11 20
ccrypt 26
bc 40
Rhythmbox 22 35
exif 28 12 13

Other Models, Briefly Considered

Regularized logistic regression
S-shaped curve fitting

Bipartite graphs trained with iterative voting
Predicates vote for runs
Runs assign credibility to predicates

Predicates as random distribution pairs
Find predicates whose distribution parameters differ

Random forests, decision trees, support vector
machines, …

Capturing Bugs and Usage Patterns

Borrow from natural language processing
Identify topics, given term-document matrix
Identify bugs, given feature-run matrix

Latent semantic analysis and related models
Topics ⇔ bugs and usage patterns
Noise words ⇔ common utility code
Salient keywords ⇔ buggy code

Probabilistic Latent Semantic Analysis

observed data:
Pr(pred, run)

P
r(pred | topic)

Pr(run | topic)

topic weights

[] []⋅⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
≈

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
O

Uses of Topic Models

Cluster runs by most probable topic
Failure diagnosis for multi-bug programs

Characterize representative run for cluster
Failure-inducing execution profile
Likely execution path to guide developers

Relate usage patterns to failure modes
Predict system (in)stability in scenarios of interest

Compound Predicates
for Complex Bugs

Edward John Moreton Drax Plunkett, Lord Dunsany,
“Weeds & Moss”, My Ireland

“Logic, like whiskey, loses its
beneficial effect when taken

in too large quantities.”

Limitations of Simple Predicates

Each predicate partitions runs into 2 sets:
Runs where it was true
Runs where it was false

Can accurately predict bugs that match this partition

Unfortunately, some bugs are more complex
Complex border between good & bad
Requires richer language of predicates

Motivation: Bad Pointer Errors

In function exif_mnote_data_canon_load:
for (i = 0; i < c; i++) {

…
n‐>count = i + 1;
…
if (o + s > buf_size) return;
…
n‐>entries[i].data = malloc(s);
…

}
Crash on later use of n‐>entries[i].data

ptr = junk *ptr

Motivation: Bad Pointer Errors

In function exif_mnote_data_canon_load:
for (i = 0; i < c; i++) {

…
n‐>count = i + 1;
…
if (o + s > buf_size) return;
…
n‐>entries[i].data = malloc(s);
…

}
Crash on later use of n‐>entries[i].data

Kinds of Predicate Best Predicate Score
Simple Only new len == old len 0.71
Simple & Compound o + s > buf_size

ר offset < len
0.94

Great! So What’s the Problem?

Too many compound predicates
22N functions of N simple predicates
N2 conjunctions & disjunctions of two variables
N ~ 100 even for small applications

Incomplete information due to sampling

Predicates at different locations

Conservative Definition

A conjunction C = p1 p2 is true in a run iff:
p1 is true at least once and
p2 is true at least once

Disjunction is defined similarly

Disadvantage:
C may be true even if p1, p2 never true simultaneously

Advantages:
Monitoring phase does not change
p1 ר p2 is just another predicate, inferred offline

Three-Valued Truth Tables

For each predicate & run, three possibilities:
1. True (at least once)
2. Not true (and false at least once)
3. Never observed

Conjunction: p1 ר p2

p1
p2

T F ?

T T F ?
F F F F
? ? F ?

Disjunction: p1 p2

p1
p2

T

ש

F ?

T T T T
F T F ?
? T ? ?

Mixed Compound & Simple Predicates

Compute score of each conjunction & disjunction
C = p1 ר p2

D = p1 ש p2

Compare to scores of constituent simple predicates
Keep if higher score: better partition between good & bad
Discard if lower score: needless complexity

Integrates easily into iterative ranking & elimination

Still Too Many

Complexity: N2·R
N = number of simple predicates
R = number of runs being analyzed
20 minutes for N ~ 500, R ~ 5,000

Idea: early pruning optimization

Compute upper bound of score and discard if too low
“Too low” = lower than constituent simple predicates

Reduce O(R) to O(1) per complex predicate

Upper Bound On Score

↑ Harmonic mean

Upper Bound on C = p1 p2
Find ↑F(C), ↓S(C), ↓F(C obs) and ↑S(C obs)
In terms of corresponding counts for p1, p2

)obs ()obs (
)obs (

)()(
)()(

CSCF
CF

CSCF
CFCIncrease

↑+↓
↓

−
↓+↑

↑
=↑

NumF
CFCySensitivit

log
)(log)(↑

=↑

↑F(C) and ↓S(C) for conjunction

↑F(C): true runs completely overlap

↓S(C): true runs are disjoint

F(p1)
F(p2)

NumF

Min(F(p1), F(p2))

S(p1)
S(p2)

0either 0 or
S(p1)+S(p2) - NumS

NumS (whichever is maximum)

↑S(C obs)

Maximize two cases

C = true
True runs of p1, p2 overlap

C = false
False runs of p1, p2 are disjoint

NumS

S(p1)

S(p2)

S(¬p1)

S(¬p2)

Min(S(p1), S(p2))
+ S(¬p1) + S(¬p2)

or
NumS

(whichever is minimum)

Usability

Complex predicates can confuse programmer
Non-obvious relationship between constituents
Prefer to work with easy-to-relate predicates

effort(p1, p2) = proximity of p1 and p2 in PDG
PDG = CDG DDG
Per Cleve and Zeller [ICSE ’05]

Fraction of entire program
“Usable” only if effort < 5%
Somewhat arbitrary cutoff; works well in practice

Evaluation:
What kind of predicate has the top score?

Evaluation: Effectiveness of Pruning
Analysis time:
from ~20 mins
down to ~1 min

Evaluation: Impact of Sampling

Evaluation:
Usefulness Under Sparse Sampling

	Statistical Debugging
	Bug Isolation Architecture
	Winnowing Down the Culprits
	Multiple, Non-Deterministic Bugs
	Ranked Predicate Selection
	Some Definitions
	Are We Done? Not Exactly!
	Are We Done? Not Exactly!
	Fun With Multi-Valued Logic
	Isolate the Predictive Value of P
	Increase Isolates the Predictor
	It Works!
	Multiple Bugs: Some Issues
	Guide to Visualization
	Confidence Interval on Increase(P)
	Bad Idea #1: Rank by Increase(P)
	Bad Idea #2: Rank by F(P)
	A Helpful Analogy
	Rank by Harmonic Mean
	Redundancy Elimination
	Simulated Iterative Bug Fixing
	Case Study: Moss
	Effectiveness of Filtering
	Effectiveness of Ranking
	Analysis of exif
	Analysis of Rhythmbox
	How Many Runs Are Needed?
	Other Models, Briefly Considered
	Capturing Bugs and Usage Patterns
	Probabilistic Latent Semantic Analysis
	Uses of Topic Models
	Compound Predicates�for Complex Bugs
	Edward John Moreton Drax Plunkett, Lord Dunsany,�“Weeds & Moss”, My Ireland
	Limitations of Simple Predicates
	Motivation: Bad Pointer Errors
	Motivation: Bad Pointer Errors
	Great! So What’s the Problem?
	Conservative Definition
	Three-Valued Truth Tables
	Mixed Compound & Simple Predicates
	Still Too Many
	Upper Bound On Score
	↑F(C) and ↓S(C) for conjunction
	↑S(C obs)
	Usability
	Evaluation:�What kind of predicate has the top score?
	Evaluation: Effectiveness of Pruning
	Evaluation: Impact of Sampling
	Evaluation:�Usefulness Under Sparse Sampling

