
Statistical Debugging
Ben Liblit, University of Wisconsin–Madison

Reconstruction of Failing Paths

Alex Aiken, as roughly remembered by me

“Just because it’s
undecidable doesn’t mean
we don’t need an answer.”

Practical Experiences With CBI

Bug predictor is often the smoking gun, but not
always

“Redundant” predicates actually carry clues
Especially when spread across source code

Bidirectional thinking can be very tricky
Debuggers only train us to think backwards

Putting Predictors in Context

Program
Source

Compiler

Shipping
ApplicationSampler

Predicates

Counts
& ☺//

Statistical
Debugging

Top bugs with
likely causes

A Debugging Scenario
int **a;

void main()
{
...
process_input(a);
...

}

void clear_array(int **a)
{
for (...)
a[i] = NULL;

}

void process_input(int **a)
{
cin >> input;
switch (input) {
case 'e':

clear_array(a);
break;

case 'p':
...

...
}
...
a[i][j]++;

}

A Debugging Scenario
int **a;

void main()
{
...
process_input(a);
...

}

void clear_array(int **a)
{
for (...)
a[i] = NULL;

}

void process_input(int **a)
{
cin >> input;
switch (input) {
case 'e':

clear_array(a);
break;

case 'p':
...

...
}
...
a[i][j]++;

}

A Debugging Scenario
int **a;

void main()
{
...
process_input(a);
...

}

void clear_array(int **a)
{
for (...)
a[i] = NULL;

}

void process_input(int **a)
{
cin >> input;
switch (input) {
case 'e':

clear_array(a);
break;

case 'p':
...

...
}
...
a[i][j]++;

}

Goal: Find Minimal Failure Path

Explore paths subject to constraints
Dynamic info (bug predictors, failure stack)
Static info (control flow, dataflow)
Interactive guidance from user

Want short, feasible path that exhibits bug
Undecidable /
But still a very interesting problem!

Weighted Pushdown Systems

PDS: finite automaton with stack
Describes control-feasible paths, including call/return

WPDS: track dataflow “payload” along each path
Weight as transfer function on dataflow facts

Instantiate WPDS by defining:
Initial weight associated with each PDS transition
Binary extend operator (⊗) for concatenating paths
Binary combine operator (⊕) for joining paths

Weight as Set of Bug Predictors

{A} ⊗ {B} = {A, B}

main() entry

n: x = y + z

foo() call foo() return

main() exit

foo() entry foo() exit

a = b

A
B

Weight as Set of Bug Predictors

Path weight is set of predictors touched

Singleton set at each bug predictor
Use “redundant” predictors suppressed earlier
Empty set at all other CFG nodes

Path extension is set union

Path merging: select path with biggest set?

How Good is a Path?

If two paths touch same bug predictors, which one
do we want?

Shortest one!

Need to reflect length in path weights
Weight = (set of bug predictors, path length)
Extend operator: union of sets, sum of lengths
Initial weights: length 1 for every transition

Path Weight Merging

A

B

C

D

F

E

{B},4 {B},3

Path Weight Merging

One path per set of
predictors touched

Exponential in
of predictors
Near linear in program
size

A

B

C

D

F

E

{B, C},4 {B},3

User Guidance & Interactivity

Ordering constraints: A before B
{A} ⊗ {B} = {A, B}
{B} ⊗ {A} = ⊥
Requires rebuild of solution automaton

Steer path by changing scoring of nodes & paths
Assign scores based on statistical metrics
Avoid selected nodes (anti-predictors)
No rebuild of solution automaton

Easy to mix in (most) dataflow analyses

Experiments: Siemens Test Suite

Each program contains a single bug
Chose three programs where the bug predictors “miss”
the true bug

Reconstructed failure paths pass through the buggy
lines of code

char *
xreadline(FILE *fin, char *name) {

int buflen = INITSIZE;

char *buf = xalloc(buflen, name);
char *res, *nl;

res = fgets(buf, INITSIZE, fin);
if (res == NULL) {

free(buf);
return NULL;

}
nl = strchr (buf, '\n');
…
return buf;

}

int prompt(void) {
…
line = xreadline(fin, cmd.name);
return (!strcmp(line, 'y') ||

!strcmp(line, "yes");
}

Experiments: ccrypt

prompt() xreadline()

Dataflow isolates call in
prompt() as culprit

/
1

Experiments: bc

Calculator tool with buffer overrun

Statistical model: two bug predictor lists
Suggests two bugs in the program

But reconstructed failure paths are identical!
Correctly reveals that only one bug is present

CBI in the Real World

Donald Knuth, Notes on the van Emde Boas construction
of priority deques: An instructive use of recursion

“Beware of bugs in
the above code;

I have only proved it
correct, not tried it.”

Bug Isolation Architecture Recap

Program
Source

Compiler

Shipping
ApplicationSampler

Predicates

Counts
& ☺//

Statistical
Debugging

Top bugs with
likely causes

Compiler
Tool Chain

Native Compiler Integration

Instrumentor must mimic native compiler
You don’t have time to port & annotate by hand

Our approach: source-to-source, then native
CIL: highly recommended, but for C only

Hooks for GCC:
Flag management via specs files
Stage wrapping via scripts

Program
Source

Compiler

Sampler

Predicates

Shipping
Application

GCC Specs File

Determines command-line flags to GCC stages
Used to be standalone file
Now built into gcc binary
View using “gcc ‐dumpspecs”

Some fragments from the standard specs file:
*cpp:
%{posix:‐D_POSIX_SOURCE} %{pthread:‐D_REENTRANT} …

*lib:
%{pthread:‐lpthread} %{shared:‐lc} …

Augmenting the Standard Flags

Augment built-in specs with custom specs file:
gcc ‐specs=myspecs …

Unrecognized “--xyz” flags prefixed with “‐fxyz”
‐‐sampler‐scheme=returns
‐fsampler‐scheme=returns

Pattern-match on custom flags in custom specs file
Can pattern-match on standard flags too, of course

Specs Customization Example

*cpp:
+ ‐DCIL \
%{fsampler‐scheme=returns:‐include sampler/returns.h%s} \
%{fsampler‐scheme=*:‐include sampler/unit.h%s}

%rename libgcc old_libgcc

*libgcc:
‐‐undefined=cbi_initialize \
%{fsampler‐scheme=*:‐lsampler‐%*} \
%(old_libgcc)

Stages of GCC Compilation

ld

Executable Shared library

collect2

Object code Object code for inits

as

Object code

cc1

Assembly source

cpp0

Preprocessed C source

human (?)

C source Many formats & stages
Many hooks!

Obvious injection point
Between cpp0 and cc1

Less obvious tweaks
also needed to other
stages

Tweak using specs only
where possible
Tweak using specs +
scripts for more complex
tasks

gcc ‐v ‐o main main.c

/usr/libexec/gcc/i686‐pc‐linux‐gnu/4.2.0/cc1 ‐quiet ‐v ‐iprefix

/usr/lib/gcc/i686‐pc‐linux‐gnu/4.2.0/ main.c ‐quiet ‐dumpbase main.c

‐mtune=generic ‐auxbase main ‐version ‐o /tmp/cc8DBZxI.s

as ‐V ‐Qy ‐o /tmp/ccUvMQMf.o /tmp/cc8DBZxI.s

/usr/libexec/gcc/i686‐pc‐linux‐gnu/4.2.0/collect2 ‐‐eh‐frame‐hdr ‐m

elf_i386 ‐dynamic‐linker /lib/ld‐linux.so.2 ‐o main /usr/lib/crt1.o

/usr/lib/crti.o /usr/lib/gcc/i686‐pc‐linux‐gnu/4.2.0/crtbegin.o

‐L/usr/lib/gcc/i686‐pc‐linux‐gnu/4.2.0 ‐L/usr/lib/gcc

‐L/usr/lib/gcc/i686‐pc‐linux‐gnu/4.2.0 ‐L/usr/lib/gcc/i686‐pc‐linux‐

gnu/4.2.0/../../.. ‐L/usr/lib/gcc/i686‐pc‐linux‐gnu/4.2.0/../../..

/tmp/ccUvMQMf.o ‐lgcc ‐‐as‐needed ‐lgcc_s ‐‐no‐as‐needed ‐lc –lgcc

‐‐as‐needed ‐lgcc_s ‐‐no‐as‐needed /usr/lib/gcc/i686‐pc‐linux‐

gnu/4.2.0/crtend.o /usr/lib/crtn.o

Machine-Generated C Code

ld

Executable Shared library

collect2

Object code Object code for inits

as

Object code

cc1

Assembly source

cpp0

Preprocessed C source

human (?)

C source
Non-trivial projects
contain non-human
code

lex/flex, yacc/bison
Embedded icon data

Breaks many tools
Big-O complexity
matters!

What to do about it?
Fix tools
Exclude by filename
Exclude by symbol name

“Obvious” Injection Point?

ld

Executable Shared library

collect2

Object code Object code for inits

as

Object code

cc1

Assembly source

cpp0

Preprocessed C source

human (?)

C source

cpp0 is gone!
Fused with cc1
Performance, debug info
cc1 is the new cpp0 ☺

Steps for cc1 script:
1. Parse command line
2. Run cc1 –E
3. Transform
4. Run cc1

Temporary File Management

We need an extra temporary file
Output from preprocessor / input to our transformation

Actually, make that several extra temporaries
Preprocessor output / transformation input
Transformation output / compiler input
A few more to come later…

Could manage ourselves, but better to let GCC do it
Avoid reinventing the wheel
Retain expected behavior of “‐save‐temps”

GCC Specs Files to the Rescue!

Magic “%u.suffix” directive
Can be used multiple times for multiple stages’ flags
Always expands to a unique file name for a given suffix

Example:
*cc1:
+ \
‐finstrumentor‐input %u.i \
‐finstrumentor‐output %u.inst.i

Replacement cc1 script can look for this flag
Automatically does the right thing for “‐save‐temps”

Embedding Extra Static Info

Transformation produces several “outputs”:
1. Modified C code (duh)
2. Static information about instrumentation sites
3. Static dump of control-flow graph
4. Static dump of copy-constant data flow graph (default off)

Want to keep these together
“Together” must survive ar, mv, and other makefile insanity
Must be physically embedded in object file, or not a chance

Embedding massive literal strings doesn’t scale
Also, want to avoid intermixing static info with program data

A Winning Strategy

1. Source-to-source transformation writes out several
files

Extra static info sits around in temporaries
%u again!

2. Run real “cc1” and “as” to produce object file

3. Stash temporary file contents inside object file
ELF object files are collection of named sections
Several standard sections: .text, .data, .bss, …
Create new ELF sections with non-standard names
Hide our data inside!

Embedding Extra Static Information

ld

Executable Shared library

collect2

Object code Object code for inits

as

Object code

cc1

Assembly source

cpp0

Preprocessed C source

human (?)

C source cc1 and as scripts
Must agree on temp
names

Specs files to the
rescue!

-fsave-sites %u.sites \
-fsave-cfg %u.cfg

Same “%u” suffix, same
file

Even across stages

Custom as Script Steps

1. Parse command line
Make note of object file name
Make note of other temporary file names

2. Run real assembler to produce real object file
Remember, script starts with assembly source file

3. Run objcopy to add new section to object file
objcopy \
‐‐add‐section .debug_site_info=$sitefile \
$objectfile

Linker Tweaks

ld

Executable Shared library

collect2

Object code Object code for inits

as

Object code

cc1

Assembly source

cpp0

Preprocessed C source

human (?)

C source Add support libraries
using specs file

Saw example earlier

ld combines non-
standard ELF sections

Pad with null bytes
Concatenate in link order
Design format carefully!

No replacement scripts
In my case, at least

Putting All the Pieces Together

Simple top-level gcc wrapper script: sampler‐cc
#!/bin/sh
exec gcc ‐B stagedir ‐specs=specsfile "$@"

Ready to hook into build systems
make CC=sampler‐cc …
./configure CC=sampler‐cc …

We’ve done it!
Source-to-source transformation pretending to be gcc
Good enough to “fool” millions of lines of real code

Multithreaded Programs

Global next-sample countdown
High contention, small footprint
Want to use registers for performance

⇒ Thread-local: one countdown per thread

Global random number generator
High contention, small footprint

⇒ Thread-local: one generator per thread

Global predicate counters
Low contention, large footprint

⇒ Optimistic atomic increment

Multi-Module Programs
Forget about global static analysis

Plug-ins, shared libraries
Instrumented & non-instrumented code

Self-management at compile time
Locally derive identifying object signature
Embed static site information within object file

Self-management at run time
On load, register self with global object registry
On normal unload, report feedback state and deregister
On fatal signal, walk global object registry

Keeping the User In Control

Database Poisoning

Not (yet) observed in practice
Not intentionally, at least

Methods are stable w.r.t. a few bad actors

TCPA/Palladium for stronger guarantees

Direct detection of bogus reports?

Privacy & Info Leakage

Information leaks, but at slow rate
So does calling tech support

Users’ interests align with developers’
You give me a little bit of information
I give you bug fixes that you care about

Privacy & Info Leakage

Some code should not be instrumented
Don’t track branches in unrolled RSA code

Attacker needs to aggregate reports
SSL makes eavesdropping harder
Database design to support safety in numbers

Lessons Learned

Can learn a lot from actual executions
Users are running buggy code anyway
We should capture some of that information

Great potential in hybrid approaches
Dynamic: reality-driven debugging
Statistical: best-effort with uncertainty
Static: use program structure to fill in the gaps

Vision for Statistical Debugging

Bug triage that directly reflects reality
Learn the most, most quickly, about the bugs that happen
most often

Variability is a benefit rather than a problem
Results grow stronger over time

Find bugs while you sleep!

The Cooperative Bug
Isolation Project

http://www.cs.wisc.edu/cbi/

Join the Cause!

	Statistical Debugging
	Reconstruction of Failing Paths
	Alex Aiken, as roughly remembered by me
	Practical Experiences With CBI
	Putting Predictors in Context
	A Debugging Scenario
	A Debugging Scenario
	A Debugging Scenario
	Goal: Find Minimal Failure Path
	Weighted Pushdown Systems
	Weight as Set of Bug Predictors
	Weight as Set of Bug Predictors
	How Good is a Path?
	Path Weight Merging
	Path Weight Merging
	User Guidance & Interactivity
	Experiments: Siemens Test Suite
	Experiments: ccrypt
	Experiments: bc
	CBI in the Real World
	Donald Knuth, Notes on the van Emde Boas construction�of priority deques: An instructive use of recursion
	Bug Isolation Architecture Recap
	Native Compiler Integration
	GCC Specs File
	Augmenting the Standard Flags
	Specs Customization Example
	Stages of GCC Compilation
	gcc -v -o main main.c
	Machine-Generated C Code
	“Obvious” Injection Point?
	Temporary File Management
	GCC Specs Files to the Rescue!
	Embedding Extra Static Info
	A Winning Strategy
	Embedding Extra Static Information
	Custom as Script Steps
	Linker Tweaks
	Putting All the Pieces Together
	Multithreaded Programs
	Multi-Module Programs
	Keeping the User In Control
	Database Poisoning
	Privacy & Info Leakage
	Privacy & Info Leakage
	Lessons Learned
	Vision for Statistical Debugging
	Join the Cause!

