Scalable Defect Detection

Manuvir Das, Zhe Yang, Daniel Wang
Center for Software Excellence
Microsoft Corporation

Part |

Lightweight Specifications for Win32
APIs

Center for Software Excellence
daniwang@microsoft.com

mailto:daniwang@microsoft.com
mailto:daniwang@microsoft.com

The Win32 API

Win32 APl is the layer on
which all modern
Windows applications
are built

.NET is built on top, and
contains many managed
classes that wrap Win32
functionality

Programming Model
Native Hybrid Managed
Applications Applications Applicatians

.NET Framework 3.0

Win 32

Native Managed

Business Goals

Significantly reduce the number
of exploitable buffer overruns in
Windows Vista

Change development process so
products after Vista are more
secure

Standard Annotation Language

* Created in summer June 2002 joint effort with
product groups and CSE

* Specifies programmer intent which leads to:
— Better coverage (reduce false negatives)
— Reduced noise (reduce false positives)
— Ecosystem of tools
— High impact results

Measured Outcomes

Mutable
String
Arguments

Total 1096 20,928
Annotated 1031 6,918

Headers for toy application
only expose 1/5% of all
Win32 APlIs

Developers did more than
the minimum required for
security!

#include<tchar.h>
#include<windows.h>
#include<wincrypt.h>
#include<wininet.h>
#include<shlwapi.h>
#include<shlobj.h>

int tmain(..)

{
}

return 9;

How We Got There!

\YETVEL

Lock in
progress!

Annotation

SALInfer
Compiler

espX, 10, MSRC,
Prefast,

Triage Warnings

Code Fixes

Prefix, Truscan, ...

=)

Drive these

Warnings
g \/% to zero!

SAL Fixes

Focus of This Talk (i

Code

SALInfer
> MIDL

Ve
.

~
J

Compiler |

Ve

b

espX, 10, MSRC,
Prefast,
Prefix, Truscan, ...

Warnings _\/

(

-

Triage Warnings

Annotation

]

-/

J

Code Fixes

SAL Fixes

"%
:’>
A

Technical Design Goals

mproves coverage and accuracy of static tools
Locks in progress for the future

Usable by an average windows developer

Cannot break existing Win32 public APIs or
force changes in data-structures (i.e. no fat
pointers)

Technical Design Non-Goals

No need to guarantee safety

No need to be efficiently checked as part of
normal foreground “edit-debug-compile”
loop

No need to handle all the corner cases
No need to be “pretty”

10

Take a Peek Yourself!

For MSDN documented Win32 APIs start here
http://msdn2.microsoft.com/en-us/library/aal39672.aspx

or Geegle- “Live Search” for them

Annotated headers can be download from

Vista SDK
first search hit for “Vista SDK”

11

http://msdn2.microsoft.com/en-us/library/aa139672.aspx
http://msdn2.microsoft.com/en-us/library/aa139672.aspx
http://msdn2.microsoft.com/en-us/library/aa139672.aspx
http://www.microsoft.com/downloads/details.aspx?familyid=C2B1E300-F358-4523-B479-F53D234CDCCF

MSDN Documentation for an

Run-Time Library Reference

memcpy, wmemcpy

Copies bytes between buffers. These functions are deprecated because more secure versions are available; see
memcpy =, wmemepy = [http://msdn2.microsoft.com/en-us/library/wes2t00f(vs.80).aspx] .

void =memcpy
void *dest,
const void #*src,
size_t count

bH

wchar_t =wmemcpy
wchar_t =dest,
const wchar_t =src,
size_t count

Parameters
dest

New buffer.
src

Buffer to copy from.

count
Mumber of characters to copy.

] Return Value
The value of dest.
] Remarks
memcpy copies count bytes from sec to dest; wmemcpy copies count wide characters (two bytes). If the

zource and destination overlap, the behavior of memcpy is undefined. Use memmowe to handle overlapping
regions.

Security Mote Malke =ure that the destination buffer is the same =ize or larger than the source buffer. For more
information, see Avoiding Buffer Owverruns [http://msdn2.microsoft.com/en-us/library/ms717795(vS.80).aspx] .

The memcpy and wmemcpy functicns will only be deprecated if the constant
_CRT_SECURE_DEPRECATE_MEMORY i= defined prior to the inclusion statement in order for the functions to be
deprecated, such as in the example below:

12

memcpy, wmemcpy, (cont)

Parameters
dest For every APl there’s
New buffer. usually a wide version.
Src
Buffer to copy from. Many (?rrors are
confusing “byte” versus
count
Number of characters to copy. “element” counts

[F] Return Value
The wvalue of dest.

[F] Rema rks

memcpy copies count bytes from src to dest; wmemcpy copies count wide characters (two bytes). If the
source and destination overlap, the behavior of memcpy s undefined. Use memmovwve to handle overlapping

regions.

Security Note Make sure that the destination buffer is the same size or I§ ‘er than the source buffer. For mare
information, see Avoiding Buffer Overruns [http://msdn2.microsoft.com/en Yibrary/ms717795(V5.80).aspx] .

The memcpy and wmemcpy functions will only be deprecated if the const
_CRT_SECURE_DEPRECATE_MEMORY i= defined prior to the inclusion sta \in order for the functions to be

deprecated, such as in /he example below:

P Not all the information is relevant
Just say “No” to bad APIs. t6 buffer overruns.

13

msdn ©2007 Microsoft Corporation. All rights
P reserved.

International Features

MultiByteToWideChar

Maps a character string to a wide character (Unicode UTF-16) string. The character string mapped by this
function is not necessarily from a multibyte character set.

int MultiByteTowWideChar(
UINT CodePage,
DWORD dwF/ags,
LPCSTR /pMultiBytestr,
int cbMultiByte,
LPWSTR JpWideCharstr,
int cchwideChar

This unfortunately is a typical Win32 API

14

int MultiByteTowWideChar(
UINT CodePage,
DWORD dwF/ags,
LPCSTR /pMultiBytestr,
int cbMultiByte,
LPWSTR JpWideCharstr,
int cchwideChar

lpMultiByteStr
[in] Pointer to the character string to convert.

cbMultiByte
[in] Size, in bytes, of the string indicated by the IpMultiByteStr parameter. Alternatively, this
parameter can be set to -1 if the string is null-terminated. Note that, if cbMultiByte is 0, the function
fails.
If this parameter is -1, the function processes the entire input string, including the null terminator.
Therefore, the resulting wide character string has a null terminator, and the length returned by the
function includes the terminating null character.

If this parameter is set to a positive integer, the funche =rocesses exactly the specified number of

bytes. If the provided size does not include a null terminaw.. “=resulting wide character string is not
null-terminated, and the returned length does not include the w “ng null character.
IpWideCharStr

[out] Pointer to a buffer that receives the converted string Not so common pattern

cchWideChar
[in] Size, in WCHAR values, of the buffer indicated by lpWideCharStr. If this value is 0, the function
returns the required buffer size, in WCHAR wvalues, including any terminating null character, and makes
no use of the IpWideCharStr buffer.

Return Values

Returns the number of WCHAR values written to the buffer indicated by lpWideCharStr if successful. If the
function succeeds and cchWideChar is 0, the return value is the required size for the buffer indicated by
IpWideCharStr.

A common pattern 15

How to Solve a Problem like
MultiByteToWideChar?

Start with an approximate specification
See how much noise and real bugs you find

Power up the tools and refine until you find
the next thing to worry about

Need conditional null termination to handle
case when cbMultiByte is -1

Buffer size weakening handles cbMultiByte O
case

16

msdn ©2007 Microsoft Corporation. All rights
~P reserved.

BCryptResolveProviders

The BCryptResolveProviders function obtains a collection of all of the providers that meet the specified criteria.

NTSTATUS WINAPI BCryptResolveProviders(
LPCWSTR pszContext,
ULONG dwInterface,
LPCWSTR pszFunction,
LPCWSTR pszProvider,
ULONG duwMode,
ULONG dwFlags,
ULONG* pcbBuffer,
PCRYPT_PROVIDER_REFS* ppBuffer

17

NTSTATUS WINAPI BCryptResolveProviders(
LPCWSTR pszContext,
ULONG dwInterface,
LPCWSTR pszFunction,
LPCWSTR pszProvider,
ULONG dwMode,
ULONG dwFlags,
ULONG* pchBuffer,
PCRYPT_PROVIDER_REFS* ppBuffer

s

pchbBuffer
[in, out] A pointer to a ULONG value that, on entry, contal
the ppBuffer parameter. On exit, this value receives either
required size, in bytes, of the buffer.

ppBuffer
[in, out] The address of A~ COVFSPROVIDER REFES [http://msdn2.microsoft.com/en-
us/librany’aa376232.as5px] pointer that receives the collection of providers that meet the specified criteria.
If this parameter is NULL, this function will return STATUS_BUFFER_TOO_SMALL and place in the value pointed
to by the pcbBuffer parameter, the required size, in bytes, of all the data.

. 0 by
Optional reference argument! .’

If this parameter is the address of a NULL pointer, this function will allocate the required memory, fill the
memory with the information about the providers, and place the pointer to this memory in this parameter.
When you have finished using this memory, free it by passing this pointer to the BCryptFreeBuffer

[http://msdn2.microsoft.com/en-us/library/aa375445.aspx] function.

If this parameter is the address of a non-NULL pointer, this function will copy the provioes i |
buffer. The pcbBuffer parameter must contain the size, in bytes, of the entire buffer. If t Optlonal buffer!
enough to hold all of the provider information, this function will return STATUS_BUFFER_TOO_SMALL.

Remarks A common pattern to communicate

BCryptResolveProviders can be called ¢ buffer sizes to callee e callers must be

executing at PASSIVE_LEVEL [IRQL [http://msdn2.microsoft.com/en-us/library/ms721588.aspx | .
18

msdn ©2007 Microsoft Corporation. All rights
P reserved.

GetEnvironmentStrings

Retrieves the environment variables for the current process.

LPTCH WINAPI GetEnvironmentStrings(void);

Parameters

This function has no parameters.

Return Value

If the function succeeds, the return value is a pointer to the environment block of the current process.
If the function fails, the return value is NULL.

Remarks

The GetEnvironmentStrings function returns a pointer to a block of memory that contains the environment
variables of the calling process. Each environment block contains the environment variables in the following format:

Varl =Valuei\0
VarZ2=Value2\0
Var3=Value3\0

Vari=ValueN\0\D

Double null termination!
19

Does Your Head Hurt Yet?

20

Does Your Head Hurt Yet?

If only C had exceptions, garbage
collection, and a better string type
the Win32 APIs would be much

simpler!

21

Does Your Head Hurt Yet?

| WISH IT
DID!

The Next Best Thing

Use the .NET Win32 bindings
until it does!

23

The Next Best Thing

So when are they going to
rewrite Vista in C#?

24

So That’s Why It Took Five Years!

Read up about the "Longhorn Reset"
http://en.wikipedia.org/wiki/Developme

nt of Windows Vista

25

http://en.wikipedia.org/wiki/Development_of_Windows_Vista
http://en.wikipedia.org/wiki/Development_of_Windows_Vista

So That’s Why It Took Five Years!

Intel and AMD will solve
this problem eventually!
Until then we have SAL.

26

MultiByteToWideChar

WINBASEAPI
int
WINAPI
MultiByteToWideChar(
_in UINT CodePage,

~_in DWORD dwFlags,

~_in bcount(cbMultiByte) LPCSTR 1lpMultiByteStr,
__in int cbMultiByte,

__out _ecount opt(cchWideChar) LPWSTR 1lpWideCharStr,
__in int cchiWideChar);

27

BCryptResolveProvider

NTSTATUS WINAPI
BCryptResolveProviders(

~_in opt LPCWSTR pszContext,

~_in opt ULONG dwInterface,

~in opt LPCWSTR pszFunction,

~in opt LPCWSTR pszProvider,

~_in ULONG dwMode,

~_in ULONG dwFlags,

~_inout ULONG* pcbBuffer,

__deref_opt_inout bcount part opt(*pcbBuffer,

PCRYPT_PROVIDER_REFS *ppBuffer);

*pcbBuffer)

28

GetEnvironmentStrings

WINBASEAPI

__out
__hullnullterminated
LPCH

WINAPI
GetEnvironmentStrings(

VOID
);

29

End of Section A

Questions?

From Types to Program Logics a
Recipe for SAL

A story inspired by true events

A Recipe for SAL

1) Start with a simple Cyclone like type system

2) Slowly shape it into a powerful program logic
for describing common Win32 APIs

3) Add some syntactic sugar and abstraction
facilities

4) Mix in a lot of developer feedback

5) Bake it until it’s properly done!

It’s getting there but still needs some cooking!

32

Types vs Program Logic

* Types are used to describe the representation of
a value in a given program state

* Program Logic describe transitions between
program states

Aside: Each execution step in a type-safe imperative
languages preserves types so types by
themselves are sufficient to establish a wide class
of properties without the need for program logic

33

Concrete Values

Scalars

.,-2,-1,0, 1, 2, ...

Pointers

o o6

Extent

IHI

Abstract Values

Some Scalar Some Cell

A,B, ... ,X,Y,Z

Some Pointer Some Extent

.Ill*

—

35

Program State

Roots Store
x 2> '3"
y 2> 1

36

Well-Typed Program State

Roots Store
char x - 'g'
inty 2 1

int* p 2

37

Well-Typed Program State

Roots Store
char x - 'g'
inty 2 1

int*p > @

38

Well-Typed Program States

Roots Store

char x - 'g'

inty 2 1

int* p > @

C types not descriptive enough to avoid errors

39

Well-Typed Program States

Roots Store

char x - 'g'

inty 2 1

@notnull int* p -

Use Cyclone style qualifiers to be more precise!

40

Generalizing @numelts

@numelts(3) int* buf -

int cbuf > N

@numelts(cbuf) int* buf -

What's wrong with this?

41

Is it Initialized or Not?

int* buf - 1 2

int* buf > 1 | ?

int* buf > 1 | ?

Define @numelts(e) as @extent(e,e)

@extent(3,3) int* buf = 11 2| 3

@extent(2,3) int* buf -2

@extent(??,3) int* buf -

Just give up here!

43

Refined Abstract Extent

m [Initialized count

A
(\

. wherem<=n

\ J

|
n

Extent capacity

44

Some Special Cases

m Fully initialized extent
A
(\
when m ==n
when m ==
\ l
!
n

Some allocated extent

45

@extent(count,capcity)

@extent(0,3) int* buf -

int cbuf > N

@extent(0,cbuf) int* buf -

46

Qualified Types Useful for Win32 APIs

t:=int | void | char [t* | q;..q, t

q:= @range(e,, e;) | @relop(e,op)

@notnull | @nullable | @null | @readonly
@numelts(e) | @alloced(e) | @extent(e,, e,)
@bsize(e) | @balloced(e) | @bextent(e,, e,)
@zeroterm | @zerozeroterm

47

A Qualifed Type for memcpy

@notnull @numelts(count)
void* memcpy(

@notnull @alloced(count)

void *dest,

@readonly @notnull @numelts(count)
const void *src,

size t count)

It seems to work? What's wrong?

48

Which One is Right?

void f(@notnull @alloced(1) int *p) {
Xk — 1 o
p = 1;

void f(@notnull @numelts(1l) int *p) {
Xk — 1 o
p=1;

Types don’t capture the state transition!

49

Program State Transitions

Pre-condition

@alloced(1) int* p -

@numelts(1) int* p >

Post-condition

Pre-post pair make a up a contract!

50

Contracts with Program Logics

void f(@Pre{ @notnull @alloced(1l) }
@Post{ @notnull @numelts(1l) }
int *p) {
*p = 1;

Contracts with Program Logics

void f(@Pre{ @notnull @alloced(1l) }
@Post{ @numelts(1l) }
int *p) {
*p = 1;
Simplify because C is
call by value!

52

Contracts with Program Logics

void f(@Pre{ @notnull @alloced(1l) }
@Post{ @numelts(1l) }

int *p) {
*p = 1;

Who in their right mind is going to write that!

53

Contracts with Program Logics

#define out \

@Pre{ @notnull @alloced(1l) } \
@Post{ @numelts(1l) }

void f(out int *p) {

¥

C Preprocessor macros to the rescue!
Defined to empty string for compatibility.

54

Single Element Contracts

#define in \
@Pre{ @readonly @notnull @numelts(1l) }

#define out \
@Pre{ @notnull @alloced(1l) } \
@Post{ @numelts(1l) }

#define _ inout \
@Pre{ @notnull @numelts(l) } \
@Post{ @numelts(1l) }

55

Single Element Contracts

#define in opt \
@Pre{ @readonly @nullable @numelts(1l) }

#define _ out opt \
@Pre{ @nullable @alloced(1) } \
@Post{ @numelts(1l) }

#define _ inout opt \
@Pre{ @nullable @numelts(1) } \
@Post{ @numelts(1l) }

56

Contracts for Element Extents

#define _ in ecount(e) \
@Pre{ @readonly @notnull @numelts(e) }

#define _ out _ecount part(cap,count) \
@Pre{ @notnull @alloced(cap)
@Post{ @extent(count,cap) } Note order of args

#define _ inout ecount part(cap,count) \
@Pre{ @notnull @extent(count,cap) >\

@Post{ @extent(count,cap) }
Note order of args

57

Contracts for Element Extents

#define out ecount full(e) \
__out_ecount_part(e,e)

#define _ inout_ecount full(e) ..

/* opt versions */

#define _ in ecount opt(e) ..

#define _ out _ecount part opt(cap,count) ..

#define _ inout _ecount part opt(cap,count) ..

#define _ out ecount full opt(e) ..

#define _ inout _ecount full opt(e) ..

58

Contracts for Byte Extents

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

__in _bcount(e) ..
__out_bcount_part(cap,count) ..
__inout _bcount _part(cap,count) ..
__out _bcount _full(e) ..

__inout _bcount full(e) ..
__in_bcount_opt(e) ..
__out_bcount _part opt(cap,count) ..
__inout_bcount_part_opt(cap, count)
__out _bcount_full opt(e) ..

__inout _bcount full opt(e) ..

59

annotation % total % cum
__in

__out 10.37%
__in_opt 6.48%
__inout 5.42%
__RPC_in 2.70%
__out_ecount 2.57%
__in_ecount 2.55%
Developers can learn = rec o > 25%

__deref_out 2.17%

a S m a I I Set Of m a C rOS __RPC__deref out_opt 1.96%

l.i
w O
1§ 1
11

0 __out_opt 1.66%

and be productive o oot e
g override 0.85%

q u I C kly __RPC__in_opt 0.83%
__out_bcount 0.72%

“ __checkReturn 0.64%

__inout_opt 0.59%

__out_ecount_opt 0.56%

__RPC__deref _out 0.56%

__inout_ecount 0.51%

__nullterminated
__in_ecount_opt
__deref_out_ecount
__RPC__in_ecount_full
_inz
__out_bcount_opt
__deref_out_opt
__RPC__out_ecount_full
__in_bcount_opt
__resened

Distribution of macros used across Vista source base.

Contract for memcpy

~_out bcount full(count)

. 1%
void* memcpy/(lgnore meaningless

~_out bcount full(count) | pre-condition
void *dest,

__in_bcount(count)

const void *src,

size t count);

61

What about pointers to pointers?

void f(out (@nullable int*)* p) {
static int 1 = 3;
if(..) *p = NULL;
else *p = &l;

}
void f(deref out opt int **p) { .. }

Syntax makes applying automatically inferred
annotations to legacy code tractable!

62

How We Got There!
Annotation

Inference bootstrapped
SALInfer
Compiler

everything!
espX, 10, MSRC,

Prefast,

Prefix, Truscan, ...

Warnings v /

Triage Warnings

Code Fixes SAL Fixes

63

What about Nested Pointers?

#define deref out opt \
@Pre{ @notnull @alloced(1) } \
@Deref @Post { @nullable @numelt(l) }

Pushes context of
assertion down a
pointer level

64

Annotated Types for Win32 APIs

Annotated type split into

t::=int | char | void | t* | t annotations and type,

at :=a,..a,t Not mixed in as type qualifiers
p ::= @range(e,, e,) | ... | @zerozeroterm

a ;= @Derefa| @Pre{p;..p,} | @Post{p;..p,}|P
op ::= ...

e:=...

Actual primitive syntax is different. Just use
the macros! Your code will be non-portable
if you don't!

65

What About This Case?

bool f(out opt int *p) {
if(p != NULL) {
*p = 1;
return true;

}

return false

Need to introduce conditional contracts!

66

Adding success(cond)

* Most conditional behavior is related to error
handling protocols (i.e. exceptions via return
codes)

* Introduce specialized construct for this case

__success(expr) f(...); means Post-conditions only
hold when "expr" is true (non-zero) on return of

function.
* Full conditional support on the roadmap!

67

Using Success

~_success(return == true)
bool f(out opt int *p) {
if(p != NULL) %
*p = 1; Is _opt the right
return true; thing?

}

return false

68

Using Success Correctly!

~_success(return == true)
bool f(out int *p) {
if(p != NULL) { Annotate for
*p o= 1; successful case!

return true;

}

return false

69

msdn ©2007 Microsoft Corporation. All rights
P reserved.

StringCchCat Function

StringCchCat is a replacement for strcat [http://msdn.microsoft.com/library/en-
us/vclib/html/_crt_strcat.2c_.wcscat.2c_._mbscat.asp | . The size, in characters, of the destination buffer is
provided to the function to ensure that StringCchCat does not write past the end of this buffer.

Syntax

HRESULT StringCchCat(
LPTSTR pszDest,
size_t cchDest,

; LPCTSTR pszsrc

Parameters

pszDest
[in, out] Pointer to a buffer containing the string to which pszSrc is concatenated, and which
contains the entire resultant string. The string at pszSrc is added to the end of the string at
pszDest.

cchDest
[in] Size of the destination buffer, in characters. This value must equal the length of pszSrc plus the
length of pszDest plus 1 to account for both strings and the terminating null character. The
maximum number of characters allowed is STRSAFE_MAX_CCH.

psz5rc
[in] Pointer to a buffer containing the source string that is concatenated to the end of pszDest. This
source string must be null-terminated.

70

Contracts For StringCchCat

HRESULT StringCchCat(
~_post nullterminated out
LPTSTR pszDect,
__range(0,STRSAFE_MAX_ CCH)
size t cchDest,
__nullterminated 1in
LPCTSTR pszSrc);

Much more verbose than we'd like!

71

Types with Contracts For StringCchCat

typedef nullterminated TCHAR* LPSTR;

typedef const LPSTR LPCSTR;

typedef range(©,STRSAFE MAX CCH) size t
STRSIZE;

HRESULT StringCchCat(
~_out LPTSTR pszDect,
~_1n STRSIZE cchDest,
~in LPCTSTR pszSrc);

Must mean null
terminated only in post
condition!

72

New primitive @valid

typedef @zeroterm TCHAR* LPSTR;
void f(@Pre{@notnull @alloced(1)}
@Post{@valid @numelts(1)}
LPSTR s) {
s[@]="\0";

¥ Annotations associated
with types only happen
when an extent is
"valid"

73

Memory Semantics Revisited

Allocated

Initialized

Valid

Can be written to but nothing is
known about its contents

The contents are in a known state

Type specific properties hold

74

Lifecycle of a LPTSTR

Allocated

@alloced(3) LPTSTR s -

Initialized

@extent(1,3) LPTSTR s =2

Valid

@valid @extent(2,3) LPTSTR s =2

75

Validity: Related Work

e Validity is a lot like the Boogie methodology used
In SpecH

— Not as general since validity is just baked into macros

— Many things are conditionally valid because of
__success

— Full conditional pre/post will allow more flexibility

* Even without it we can do some interesting with
Objects

— Treat them like structs!
— Added in a few defaults

76

Structure Annotations

* Describes properties of buffers embedded in
structs/classes

* Three scenarios supported
— Outlined structure buffers
— Structs with inline buffers
— Header structs
e Structure descriptions interact with __in,

__out, and __inout to determine pre/post
rules for functions using structure buffers

77

struct buf { n g\
int n; \\
__field ecount(n)
int *data;

}s w y,

struct ibuf {
int n;

__field ecount(n)
int data[1]; "

}s n

__struct _bcount(n * sizeof(int))
struct hbuf {
int n; we | N
int data[l]; C

}s M

78

Zero Sized Buffers and NULL

struct buf {
int n;

__field ecount(n)
int *data;

}s "\

_opt versions available but generally not needed
79

SAL Annotations for Classes

class Stack {

public:

Stack(int max); // Stack(out Stack *this,int max);
int Pop(); // int Pop(inout Stack *this);

void Push(int v); // void Push(inout Stack *this,int v);
~Stack(); // treated specially

private:

int m_max;

int m_top;

__field ecount part(m _max,m top)
int *m_buf;

}s

80

Conclusions

* Developers will accept the use of appropriate
light weight specifications!

 But must understand the problem and tailor
custom solutions

* Generic recipe:
1) Write the problem down.
2) Think real hard.
3) Write the solution down.
4) Repeat!

81

Questions?

Microsoft

http://www.microsoft.com/cse

© 2007 Microsoft Corporation. All rights reserved.
This presentation is for informational purposes only.
MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

