
XML and XML and
Web Application Web Application
ProgrammingProgramming

Copyright © 2007 Anders Møller <amoeller@brics.dk>

2

OverviewOverview

� Schema languages
for XML
� XML in programming

languages
�Web application

frameworks

� Schema languages
for XML
� XML in programming

languages
�Web application

frameworks

3

Part IPart I

� Schema languages for XML
– what is the essence of DTD /

XML Schema / RELAX NG ?

• expressiveness of schema languages
• formal models, variations of

regular tree grammars

• foundation for Part II

4

Part IPart I

� Schema languages for XML
– what is the essence of DTD /

XML Schema / RELAX NG ?

• expressiveness of schema languages
• formal models, variations of

regular tree grammars

• foundation for Part II

“W3C XML Schema is one spec where your

eyes will still twitch and your head still go

buzzZZZ even when you read it for the tenth

time. Except that you will no longer be

surprised by surprises.”

– Michael Kay, editor of W3C’s XSLT 2.0

“W3C XML Schema is one spec where your

eyes will still twitch and your head still go

buzzZZZ even when you read it for the tenth

time. Except that you will no longer be

surprised by surprises.”

– Michael Kay, editor of W3C’s XSLT 2.0

5

Part IIPart II

� XML in programming languages
– how can we integrate XML processing

in programming languages?

• XML schemas as types in
programming languages

• research projects:
– XDuce
– XACT

6

Part IIIPart III

�Web application frameworks
– why is Web programming so complicated?

• Java Servlets and JSP
• JWIG
• Google Web Toolkit

7

Part IIIPart III

�Web application frameworks
– why is Web programming so complicated?

• Java Servlets and JSP
• JWIG
• Google Web Toolkit

» Wow ! Thanks for releasing another Java Web application development framework. The 31,918 frameworks currently available don't offer enough choice.You know, I was just saying to my friend the other day that we really do not have enough Java web development frameworks. "Why," I said to him, "it's been three days since I read about a new web development framework on TSS ! Is the pace of innovation slowing in the Java world? Are we that far along the road to obsolescence ? Can death be far away ?"
But now I feel better. [...] when I saw the AJAX word I knew that the richness and agileness of the end-user experience would be exceeded only by the usability, scaleability, and, most important of all, testability of applications produced by the [<useless thing name>] .
You are some wild and crazy guys, and I, for one, am going to nominate [<useless thing name>] for the Web Application Development Framework of the Week. No, I'm serious ! You've earned it ! Stand up and take a bow ! «

– on theserverside.com as a comment to a tool announcement

» Wow ! Thanks for releasing another Java Web application development framework. The 31,918 frameworks currently available don't offer enough choice.You know, I was just saying to my friend the other day that we really do not have enough Java web development frameworks. "Why," I said to him, "it's been three days since I read about a new web development framework on TSS ! Is the pace of innovation slowing in the Java world? Are we that far along the road to obsolescence ? Can death be far away ?"
But now I feel better. [...] when I saw the AJAX word I knew that the richness and agileness of the end-user experience would be exceeded only by the usability, scaleability, and, most important of all, testability of applications produced by the [<useless thing name>] .
You are some wild and crazy guys, and I, for one, am going to nominate [<useless thing name>] for the Web Application Development Framework of the Week. No, I'm serious ! You've earned it ! Stand up and take a bow ! «

– on theserverside.com as a comment to a tool announcement

8

ObjectivesObjectives

� These topics illustrate a few areas in
(XML∪WWW) ∩ Programming Languages
� At different stages:

• XML and schemas: now well-understood,
essential to other areas of XML/WWW

• XML programming: many proposals,
(still) no “silver bullet”

• Web programming: new frameworks appear
frequently, needs consolidation

� Lots of remaining research opportunities!

9

PrerequisitesPrerequisites

� I assume that you have
a basic knowledge of

• Regular languages

• Java (and ML)

• WWW and XML/HTML

A tour of schema languages for XML:A tour of schema languages for XML:

DTDDTD, , XML SchemaXML Schema, and , and RELAX NGRELAX NG

11

OverviewOverview

� Motivation
� DTD
� XML Schema
� RELAX NG

– focus on language constructs that
are essential to expressiveness

12

Example: XML for Example: XML for business cardsbusiness cards

� An XML-based language is
a set of XML documents (with some semantics)

<card>

<name>John Doe</name>

<title>CEO, Widget Inc.</title>

<email>john.doe@widget.inc</email>

<phone>(202) 555-1414</phone>

<logo uri="widget.gif"/>

</card>

<card>

<name>John Doe</name>

<title>CEO, Widget Inc.</title>

<email>john.doe@widget.inc</email>

<phone>(202) 555-1414</phone>

<logo uri="widget.gif"/>

</card> cardcard

namename titletitle ...

John DoeJohn Doe CEO, ...CEO, ...

XML document

XML tree

the contents
of the card
element

13

Schemas for XMLSchemas for XML

Validation of XML documents:
• A schema describes the syntax of an

XML-based language
• A schema language (DTD / XML Schema /

RELAX NG / ...) is a formal notation for
specifying schemas
– like BNF for programming language syntax

• A schema processor checks validity
of a document, relative to a schema

14

This presentation is based on...This presentation is based on...

� Anders Møller and Michael Schwartzbach, An
Introduction to XML and Web Technologies,
Addison-Wesley, 2006

� Makoto Murata, Dongwon Lee, Murali Mani, and
Kohsuke Kawaguchi, Taxonomy of XML
schema languages using formal language
theory, ACM Trans. Internet Techn. 5(4): 660-
704, 2005

15

XML in XML in programmingprogramming languageslanguages

� Many recent programming languages and
APIs are designed for processing XML data

� Type checking?
Type inference??

� We need formal models
of schemas and
schema languages!

schema ~ type

16

OverviewOverview

� Motivation

� DTD
� XML Schema
� RELAX NG

17

DTD DTD –– Document Type DefinitionDocument Type Definition

� Introduced with XML 1.0
� Focuses on elements and attributes
� Little control of attribute values

and chardata
� No support for

namespaces
� Widely used (still!)

18

Element Element declarationsdeclarations

where content-model is generally a
restricted regular expression over
element names and #PCDATA

Observations:
� the content model of a particular element

only depends on its name!
� content models must be deterministic
� limited control over chardata

<!ELEMENT element-name content-model ><!ELEMENT element-name content-model >

19

Attribute Attribute declarationsdeclarations

Each attribute definition consists of
• an attribute name
• an attribute type (CDATA, enum, ID, IDREF, ...)
• a default declaration (#REQUIRED, #IMPLIED, ...)

Observations:
� the requirements for a particular attribute only

depends on its name and the name of the element!
� limited control over attribute values

<!ATTLIST element-name attribute-definitions ><!ATTLIST element-name attribute-definitions >

20

ExampleExample

<!ELEMENT card (name,title,email,phone?,logo?)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT logo EMPTY>

<!ATTLIST logo uri CDATA #REQUIRED>

<!ELEMENT card (name,title,email,phone?,logo?)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT logo EMPTY>

<!ATTLIST logo uri CDATA #REQUIRED>

21

General observationsGeneral observations

� DTD can only express
“local” properties
on XML trees!

� An XML document
can be validated by
checking the element nodes in any order

cardcard

namename titletitle ...

John DoeJohn Doe CEO, ...CEO, ...

22

OverviewOverview

� Motivation
� DTD

� XML Schema
� RELAX NG

23

XML SchemaXML Schema

� W3C’s design goal: make “a better DTD”...

� Successes:
• Namespace support
• Modularization
• Data types
• Type derivation mechanism

� Critique:
• lots... it’s an easy prey ☺

24

Types and declarationsTypes and declarations

� Simple type definition:
defines a family of Unicode text strings (i.e. no markup)

� Complex type definition:
defines a content and attribute model

� Element declaration:
associates an element name with a simple or complex type

� Attribute declaration:
associates an attribute name with a simple type

25

Example (1/2)Example (1/2)

<schema xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:b="http://businesscard.org"

targetNamespace="http://businesscard.org">

<element name="card" type="b:card_type"/>

<element name="name" type="string"/>

<element name="title" type="string"/>

<element name="email" type="string"/>

<element name="phone" type="string"/>

<element name="logo" type="b:logo_type"/>

<attribute name="uri" type="anyURI"/>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:b="http://businesscard.org"

targetNamespace="http://businesscard.org">

<element name="card" type="b:card_type"/>

<element name="name" type="string"/>

<element name="title" type="string"/>

<element name="email" type="string"/>

<element name="phone" type="string"/>

<element name="logo" type="b:logo_type"/>

<attribute name="uri" type="anyURI"/>

26

Example (2/2)Example (2/2)

<complexType name="card_type">
<sequence>
<element ref="b:name"/>
<element ref="b:title"/>
<element ref="b:email"/>
<element ref="b:phone" minOccurs="0"/>
<element ref="b:logo" minOccurs="0"/>

</sequence>
</complexType>

<complexType name="logo_type">
<attribute ref="b:uri" use="required"/>

</complexType>

</schema>

<complexType name="card_type">
<sequence>
<element ref="b:name"/>
<element ref="b:title"/>
<element ref="b:email"/>
<element ref="b:phone" minOccurs="0"/>
<element ref="b:logo" minOccurs="0"/>

</sequence>
</complexType>

<complexType name="logo_type">
<attribute ref="b:uri" use="required"/>

</complexType>

</schema>

27

Complicated structural featuresComplicated structural features

� Type derivation by restriction or extension
� Substitution groups
� Overloading with local declarations
� ...

– many of these features are not essential
to the formal expressiveness

28

Overloading with local declarationsOverloading with local declarations

<element name=”cardlist”>

<complexType><sequence>

<element name=”title” type=”string”/>

<element ref=”x:card” .../>

</sequence></complexType>

</element>

<element name=”card”>

<complexType><sequence>

<element name=”title” type=”x:Title”/>

...

</sequence></complexType>

</element>

<element name=”cardlist”>

<complexType><sequence>

<element name=”title” type=”string”/>

<element ref=”x:card” .../>

</sequence></complexType>

</element>

<element name=”card”>

<complexType><sequence>

<element name=”title” type=”x:Title”/>

...

</sequence></complexType>

</element>

29

The The Element Declarations ConsistentElement Declarations Consistent rulerule

If a content model contains two or more element
declarations with the same element name then
they must have the same type definition

Simplifies implementation,
central for formal modeling of schemas...

<element name=”E”>
<complexType>
<choice>
<element name=”F” type=”X”/>
<element name=”F” type=”Y”/>

</choice>
</complexType>

</element>

<element name=”E”>
<complexType>
<choice>
<element name=”F” type=”X”/>
<element name=”F” type=”Y”/>

</choice>
</complexType>

</element>

30

Unique interpretationsUnique interpretations

� For some applications, an important
side-effect of validation is that
each tree node is assigned a schema type
(i.e. an interpretation)

� Aka. the “post-schema-validation infoset”

� The EDC rule in XML Schema ensures
unique interpretations!

31

WhatWhat’’s being used in practice?s being used in practice?

A study of 819 schemas shows:
� simple types and restrictions are heavily used!
� complex type extensions used in only 20%
� substitution groups used in only 6%
� only 27% pass the Schema Quality Check

• of those, the element structure could in 85% be
expressed using DTD! (i.e. no overloading)

• in most of the remaining 15%, types only depend
on the parent context!

– Any good explanations?

[Martens et al., TODS]

32

General observationsGeneral observations

� The type associated with
an element may (only)
depend on the node
itself and its ancestors

� The crucial mechanisms are
• overloading with local declarations
• the EDC rule

cardcard

namename titletitle ...

John DoeJohn Doe CEO, ...CEO, ...

33

OverviewOverview

� Motivation
� DTD
� XML Schema

� RELAX NG

34

RELAX NGRELAX NG

� OASIS + ISO competitor
to XML Schema

� Designed for simplicity
and expressiveness,
solid mathematical
foundation

35

Processing Processing modelmodel

� For a valid instance document, the root
element must match a designated pattern

� A pattern may match elements,
attributes, or character data

� Element patterns can contain sub-
patterns that describe contents and
attributes

36

PatternsPatterns

� <element name=”...”> ... </element>

� <attribute name=”...”> ... </attribute>

� <text/>

� <group> ... </group> (concatenation)
� <choice> ... </choice> (union)
� <zeroOrMore> ... </zeroOrMore> (Kleene star)

� <oneOrMore> ... </oneOrMore>

� <optional> ... </optional>

� <empty/>

� ...

37

ExampleExample

<element name="card">

<element name="name"><text/></element>

<element name="title"><text/></element>

<element name="email"><text/></element>

<optional>

<element name="phone"><text/></element>

</optional>

<optional>

<element name="logo">

<attribute name="uri"><text/></attribute>

</element>

</optional>

</element>

<element name="card">

<element name="name"><text/></element>

<element name="title"><text/></element>

<element name="email"><text/></element>

<optional>

<element name="phone"><text/></element>

</optional>

<optional>

<element name="logo">

<attribute name="uri"><text/></attribute>

</element>

</optional>

</element>

38

GrammarsGrammars

� Pattern definitions and references
allow description of recursive structures

<grammar ...>

<start>
...

</start>

<define name="...">
...

</define>

...

</grammar>

<grammar ...>

<start>
...

</start>

<define name="...">
...

</define>

...

</grammar>

39

Grammar simplificationGrammar simplification

� The spec explains a simplification process

� §4.19:
• every element is the child of a define
• the child of every define is an element
(i.e. we may assume a 1-1 correspondence between
named pattern definitions and element patterns)

� ...

(we need this later...)

40

No surprising restrictions!No surprising restrictions!

<element name=”X">

<choice>

<group>

<element name=”X”>

<optional><ref name=”P”/></optional>

</element>

<optional>

<attribute name=”A”><text/></attribute>

<attribute name=”B”><text/></attribute>

</optional>

</group>

<element name=”X”><empty/></element>

</choice>

</element>

<element name=”X">

<choice>

<group>

<element name=”X”>

<optional><ref name=”P”/></optional>

</element>

<optional>

<attribute name=”A”><text/></attribute>

<attribute name=”B”><text/></attribute>

</optional>

</group>

<element name=”X”><empty/></element>

</choice>

</element>

41

General observationsGeneral observations

� RELAX NG schemas
can express many
“non-local”
properties
on XML trees!

� Validation is more difficult but can be performed
in linear time (in the size of the XML tree)!

� Unique-interpretations property fails!

� We shall later examine the formal model
underlying the design of RELAX NG...

cardcard

namename titletitle ...

John DoeJohn Doe CEO, ...CEO, ...

42

Translating Translating schemasschemas

DTD

RELAX NG

XML Schema

Trang

Trang

Trang dk.brics.schematools

Trang: http://www.thaiopensource.com/relaxng/trang.html

dk.brics.schematools: http://www.brics.dk/schematools/

Trang
Trang

Σ δε ⇒
∀

Formal models of XML schemas:Formal models of XML schemas:
regular tree grammars and subclassesregular tree grammars and subclasses

44

Schemas as formal languagesSchemas as formal languages

� Let S be a schema (written in DTD, XML
Schema, or RELAX NG)

� Define L(S) as the set of XML documents
that are valid relative to S:

L(S) = { X | X is valid relative to S }

45

Decision problemsDecision problems

[membership] The problem “given a schema
S and an XML document X, is X∈ L(S) ?”
is (fortunately) decidable

How about the following?
[equality] “given two schemas S1 and S2,

is L(S1) = L(S2) ?”
[subset] “given two schemas S1 and S2,

is L(S1) ⊆ L(S2) ?”
[emptiness] “given a schema S, is L(S)=Ø ?”

46

Closure propertiesClosure properties

� Is DTD (or XML Schema or RELAX NG)
closed under union?
... intersection?
... complement?

All these decision problems and
closure properties are relevant when
considering schemas as types in
programming languages!

All these decision problems and
closure properties are relevant when
considering schemas as types in
programming languages!

47

OverviewOverview

regular tree grammars

single-type tree grammars

local tree grammars

all sets of XML trees

~ RELAX NG

~ XML Schema

~ DTD

[Murata et al., TOIT 2005]

48

Regular languagesRegular languages

� You know about regular languages on
strings... (finite automata, regular
grammars, etc.)

� We shall now work with
regular languages on trees

49

Which kinds of trees?Which kinds of trees?

� Labeled, ordered, unranked trees
• each node has a label (i.e. the element name;

we ignore attributes and character data...)
• each node has an ordered sequence

of child nodes
• the child sequences

may have
different lengths

cardcard

namename titletitle ...

John DoeJohn Doe CEO, ...CEO, ...

50

ContextContext--free grammars (over strings)free grammars (over strings)

� A context-free grammar is a 4-tuple
G = (N, T, S, P) where
• N is a finite set of nonterminals
• T is a finite set of terminals
• S is a set of start symbols, where S ⊆ N
• P is a finite set of production rules of the form

X → α where X ∈ N and α ∈ (T∪N)*

� The language of G, denoted L(G), is the set of strings
over T that can be derived from a start symbol
(with the usual definition of “derived”...)

51

Regular tree grammarsRegular tree grammars

� A regular tree grammar is a 4-tuple
G = (N, T, S, P) where
• N is a finite set of nonterminals
• T is a finite set of terminals
• S is a set of start symbols, where S ⊆ N
• P is a finite set of production rules of the form

X → a[r] where X∈N, a∈T, and r is a
regular expression over N

� The language of G, denoted L(G), is the set of trees
over T that can be derived from a start symbol
(with the obvious definition of “derived”...)

N : types
T : element names

N : types
T : element names

52

ExampleExample

� A tree that can be derived from G :
(The corresponding XML document:
<doc><para/><para>text chunk</para></doc>)

� What is L(G)?

doc

para para

pcdata

Let G = (N, T, S, P) be defined by
•N = {Doc, Para1, Para2, Pcdata}
•T = {doc, para, pcdata}
•S = {Doc}
•P = { Doc → doc[Para1,Para2*],

Para1 → para[ε],
Para2 → para[Pcdata],
Pcdata → pcdata[ε] }

Let G = (N, T, S, P) be defined by
•N = {Doc, Para1, Para2, Pcdata}
•T = {doc, para, pcdata}
•S = {Doc}
•P = { Doc → doc[Para1,Para2*],

Para1 → para[ε],
Para2 → para[Pcdata],
Pcdata → pcdata[ε] }

N : types
T : element names

N : types
T : element names

53

Regular tree grammars and Regular tree grammars and
finitefinite--state automatastate automata

� Everything you know about regular languages
and finite automata on strings
generalizes elegantly to trees!
• grammars vs. automata
• automata operations
• closure properties
• decision procedures
• ...

– and (hopefully) also your intuition about
expressibility and limitations!

54

Regular tree grammars vs. RELAX NGRegular tree grammars vs. RELAX NG

� From (simplified) RELAX NG schema to
regular tree grammar*:

• named pattern ⇒ nonterminal

• element name ⇒ terminal

* Ignoring name classes, interleave, attributes, and chardata...

55

ExampleExample

<grammar ...>
<start><ref name=”Start”/></start>

<define name=”Start”>
<element name=”addressBook”>
<zeroOrMore>
<ref name=”Card”/>

</zeroOrMore>
</element>

</define>

<define name=”Card”>...</define>
...

</grammar>

<grammar ...>
<start><ref name=”Start”/></start>

<define name=”Start”>
<element name=”addressBook”>
<zeroOrMore>
<ref name=”Card”/>

</zeroOrMore>
</element>

</define>

<define name=”Card”>...</define>
...

</grammar>

Start → addressBook[Card*]
Card → ...
...

Start → addressBook[Card*]
Card → ...
...

56

Local tree grammarsLocal tree grammars

� A local tree grammar is a regular tree
grammar G = (N, T, S, P) where P
contains no two productions on the form

X → a[r]
Y → a[r’]

where X≠Y, a∈T, and r and r’ are
regular expressions over N

– in other words, the terminal (=element name)
uniquely determines the regular expression
(=content model)

57

ExampleExample

– is G a local tree grammar?

Let G = (N, T, S, P) be defined by
•N = {Doc, Para1, Para2, Pcdata}
•T = {doc, para, pcdata}
•S = {Doc}
•P = { Doc → doc[Para1,Para2*],

Para1 → para[ε],
Para2 → para[Pcdata],
Pcdata → pcdata[ε] }

Let G = (N, T, S, P) be defined by
•N = {Doc, Para1, Para2, Pcdata}
•T = {doc, para, pcdata}
•S = {Doc}
•P = { Doc → doc[Para1,Para2*],

Para1 → para[ε],
Para2 → para[Pcdata],
Pcdata → pcdata[ε] }

58

Local tree grammars vs. DTDLocal tree grammars vs. DTD

� In DTD, the element name uniquely
determines the content model !

� From DTD schema to local tree grammar*:

<!ELEMENT foo (bar|baz+)>
<!ELEMENT bar ...>
<!ELEMENT baz ...>

<!ELEMENT foo (bar|baz+)>
<!ELEMENT bar ...>
<!ELEMENT baz ...>

Foo → foo[Bar|Baz+]
Bar → bar[...]
Baz → baz[...]

Foo → foo[Bar|Baz+]
Bar → bar[...]
Baz → baz[...]

* Ignoring attributes and chardata...

59

Regular tree grammars vs. XML SchemaRegular tree grammars vs. XML Schema

� [Murata et al., TOIT 2005] explains how
XML Schema can be modeled with
regular tree grammars

• complex type ⇒ nonterminal
• element declaration ⇒ terminal

� We omit the (many) details.....

60

SingleSingle--type tree grammarstype tree grammars

� Let G = (N, T, S, P) be a regular tree grammar
� Two different nonterminals X,Y∈N compete if P

contains two productions on the form
X → a[...]
Y → a[...] for some a∈T

� G is a single-type tree grammar if
• for each production rule in P, no two

nonterminals on the right-hand-side compete,
and

• start symbols in S do not compete
� G local ⇒ G single-type

61

ExampleExample

– is G a single-type tree grammar?

Let G = (N, T, S, P) be defined by
•N = {Doc, Para1, Para2, Pcdata}
•T = {doc, para, pcdata}
•S = {Doc}
•P = { Doc → doc[Para1,Para2*],

Para1 → para[ε],
Para2 → para[Pcdata],
Pcdata → pcdata[ε] }

Let G = (N, T, S, P) be defined by
•N = {Doc, Para1, Para2, Pcdata}
•T = {doc, para, pcdata}
•S = {Doc}
•P = { Doc → doc[Para1,Para2*],

Para1 → para[ε],
Para2 → para[Pcdata],
Pcdata → pcdata[ε] }

62

SingleSingle--type tree grammars vs. XML Schematype tree grammars vs. XML Schema

Why the restriction of
nonterminal competition?

• it implies that types can be uniquely
determined from element names when
processing a child sequence!

• it exactly corresponds to the infamous
“Element Declarations Consistent”
restriction in XML Schema!

63

Example of violationExample of violation

<element name=”E”>
<complexType>

<choice>
<element name=”F” type=”X”/>
<element name=”F” type=”Y”/>

</choice>
</complexType>

</element>

<element name=”E”>
<complexType>

<choice>
<element name=”F” type=”X”/>
<element name=”F” type=”Y”/>

</choice>
</complexType>

</element>

... → E[F1|F2]
F1 → F[X]
F2 → F[Y]

... → E[F1|F2]
F1 → F[X]
F2 → F[Y]

violates
EDC!

F1 and F2
compete!

64

A design bug... A design bug... //

� XML Schema can essentially be modeled as
single-type tree grammars, but...

� the any constructs in XML Schema
makes it possible to express certain
non -single-type tree grammars!

� See example in [Murata et al., TOIT 2005]

65

Closure propertiesClosure properties

÷÷9local
(DTD)

÷÷9single-type
(XML Schema)

999regular
(RELAX NG)

\∪∩

[Murata et al., TOIT 2005]

66

SummarySummary

regular tree grammars

single-type tree grammars

local tree grammars

all sets of XML trees

~ RELAX NG

~ XML Schema

~ DTD

– foundation for treating XML schemas as
types in XML programming languages

