Scalable Defect Detection

Manuvir Das, Zhe Yang, Daniel Wang
Center for Software Excellence
Microsoft Corporation

What this series covers

e \/arious techniques for static analysis
of large, real imperative programs

e L essons from our experience building
static analyses in the “real world”
- “real world” == Microsoft product teams

e A pragmatic methodology for mixing
specifications with static analysis

Who we are

e Microsoft Corporation

— Center for Software Excellence

e Program Analysis Group
— 10 full time people including 7 PhDs

e We are program analysis researchers
- But we measure our success by impact

— CSE impact on Windows Vista
e Developers fixed ~100K bugs that we found
e Developers added ~500K specifications we designed
e We answered thousands of developer emails

The real world

e Code on a massive scale
— 10s of millions of lines of code
— Many configurations & code branches

e Developers on a massive scale
- Small mistakes in tools are magnified
- Small developer overheads are magnified

e Defects on a massive scale
— Bug databases and established processes rule

— Defect classes repeat, both across code bases
and across defect properties

Code in the real world

Main
Branch
Team Team Team
Branch / Branch / Branch

Process in the real world - 1

Main
Branch

Team Team Team
Branch Branch Branch

e An opportunity for lightweight tools
- “always on” on every developer desktop
— issues tracked within the program artifacts
- enforcement by rejection at “quality gate”

Speed, suppression, determinism

Process in the real world - 2

Main
Branch

Team Team Team
Branch Branch Branch

e An opportunity for heavyweight tools
— run routinely after integration in main branch
— issues tracked through a central bug database
- enforcement by developer “bug cap”

Scale, uniqueness, defect management

Implications for analysis

e Scale, scale, scale
— Should be run routinely on massive scale

e High accuracy

— Ratio of bugs “worth fixing” should be high
e High clarity

— Defect reports must be understandable

e Low startup cost
— Developer effort to get results must be low

e High return on investment
— More developer effort should reveal more bugs
e High agility

- New defect detection tools should be easy to produce

Our solutions over time

e Gen 1: Manual Review
— Too many code paths to think about

e Gen 2: Massive Testing
— Inefficient detection of simple errors

e Gen 3: Global Program Analysis
— Delayed results

e Gen 4: Local Program Analysis
— Lack of calling context limits accuracy

e Gen 5: Formal interface specifications

Contrast this with ...

e Build it into the language
- e.g. memory management in Java/C#

e If not, then fix it with a type system
- e.g. memory safety in Cyclone

e If not, then add formal specifications
- e.g. memory defect detection in ESC/Java

o If not, then find bugs with static analysis
- e.g. memory defect detection in PREfix

o If not, then find bugs with dynamic analysis

Our approach to scale

e Scalable whole program analysis

— Combine lightweight analysis everywhere with
heavyweight analysis in just the right places

e Accurate modular analysis

— Assume availability of function-level pre-
conditions and post-conditions

- Powerful analysis + defect bucketing

e Programmer supplied specifications
— Designed to be developer friendly
— Automatically inferred via global analysis

... explained in 3 lectures

e Scalable whole program analysis
- ESP
— Manuvir Das

e Accurate modular analysis
- espX, USPACE
— Zhe Yang
e Programmer supplied specifications
- SAL, SALinfer
— Daniel Wang

Scalable
Whole Program Analysis

Safety properties

e Dynamic checking
— Instrument the program with a monitor
- Fail if the monitor enters a bad state

e What is a safety property?
— Anything that can be monitored

e Static checking

— Simulate all possible executions of the
instrumented program

Example

void main ()

{
if (dump)

if (p)

Print/Close
Open <:: :i>

Print G

Close
Open

*

9

Symbolic evaluation

e Execute multiple paths in the program
— Use symbolic values for variables
— Execution state = Symbolic state + Monitor state

e Assignments & function calls:
- Update execution state

e Branch points:
— Does execution state imply branch direction?
— Yes: process appropriate branch
- No: split & update state, process branches
e Merge points:
— Collapse identical states

Example

entry

I

[Closed]

By

[Closed | dump=F]
F

\

/

|
5

I8

[| dump=T, p=T, x=0] [| dump=T , p=F, x=1]
e
\

[Closed|dump=T,p=T, x=0] [Closed|dump=T,p=F, x=1]

Example

entry

I

[Closed]

By

[Closed | dump=F]
F

\

/

H
5

I8

[Closed |dump=F,p=T,x=0] [Closed|dump=F,p=F, x=1]

[Closed | dump=F,p=T,x=0] exit

D .
Dind(]

[Closed | dump=F,p=F,6x=1]

Assessment

i

] can make this arbitrarily precise
] can show debugging traces

i

-] may not scale (exponential paths)
-] may not terminate (loops)

PREfix (SP&E 2000)
— explore a subset of all paths

Dataflow analysis

e Merge points:
— Collapse all states
— One execution state per program point

Example

entry

I

[Cl
osed] T
i
~
I /| clnpedT]] [::] [Closed|dump=F]
S =,
~ .
[/CiroeedipeToxesq] . [/Closed|p=F,x=1]
‘////
T~
[Closed/Error]

Assessment

-] precision is limited
-] cannot show debugging traces

'+]| scales well
'+] terminates

CQual (PLDI 2002)
— apply to type-based properties

Property simulation

e Merge points:
— Do states agree on monitor state?
-Yes: merge states
— No: process states separately

e ESP
- PLDI 2002, ISSTA 2004

Example

entry

I

[Closed]

By

[Closed | dump=F]

.

g

I

=
H

A/\FA
\/

[| Bimp=T; peyR=0] [{CLosed bdmppTEp=F, x=1]
T
/
(close] |
\
[Closed]@lmped] [Closed | dump=F]

Assessment

is usually precise
can usually show debugging traces

usually scales well
usually terminates

ESP
—a pragmatic compromise

Multiple state machines

void main ()

{
if (dumpl)

if (dump2)

if (dumpl)

if (dump2)

e = fopen()

fclose (e)

Open (e)

Close (e)

Multiple state machines

void main ()

{
if (dumpl)

if (dump2)

if (dumpl)

if (dump2)

e = fopen()

fclose (e)

Open (e)
Close (e)

Bit vector analysis

void main ()

{

if (dumpl)

if (dump2)
ID;
if (dumpl)

if (dump2)
ID;

void main ()

{

if (dumpl)
ID;

if (dump2)
if (dumpl)
ID;

if (dump2)

Bit vector analysis

e Source to sink safety properties

— Sources: Object creation points or
function/component entry points

— Sinks: Transitions to error state
e Analyze every source independently
— Requires (exponentially) less memory

— Spans smaller segments of code
— Parallelizes easily

Memory aliasing

void main ()

{
if (dump)
fil =
pfil = &fil;
if (dump)

}

e Does Event(exp) invoke a transition
on the monitor for location 17

Value alias analysis

e Precise alias analysis is expensive

e Solution: value alias sets (ISSTA 04)

— For a given execution state, which syntactic
expressions refer to location 17

e Must and May sets for accuracy
e Transfer functions to update these

e Observation: We can make value alias
analysis path-sensitive by tracking
value alias sets as part of monitor state

Selective merging

e Property simulation is really an instance of a
more general analysis approach

e Selective merging

— Define a projection on symbolic states

— Define equality on projections

— Ensure that domain of projections is finite
e Merge points:

— Do states agree on projection?

- Yes: merge states

— No: process states separately

e Examples
— Value flow analysis, call graph analysis

ESP at Microsoft

Windows Vista

Issue Fixed | Noise
Security — RELOJ 386 4%
Security - Impersonation Token 135 10%
Security — OpenView 54 2%
Leaks — RegCloseHandle 63 0%
In Progress
Issue Found
Localization — Constant strings 1214
Security - ClientID 282

Summary

e Scalable whole program analysis

— Combine lightweight analysis everywhere with
heavyweight analysis in just the right places

e Accurate modular analysis

— Assume availability of function-level pre-
conditions and post-conditions

- Powerful analysis + defect bucketing
e Programmer supplied specifications

— Designed to be developer friendly
— Automatically inferred via global analysis

WMIICIOSOIt:

www.microsoft.com/cse
www.microsoft.com/cse/pa
research.microsoft.com/manuvir

© 2007 Microsoft Corporation. All rights reserved.
This presentation is for informational purposes only.
MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

