
Language Tools for
Distributed Computing (II)

J-Orchestra:
Automatic Java Application Partitioning

Yannis Smaragdakis
University of Oregon

Yannis Smaragdakis
UOregon

2

These Lectures

� NRMI: middleware offering a natural
programming model for distributed computing

� solves a long standing, well- known open problem!

� J-Orchestra: execute unsuspecting programs
over a network, using program rewriting

� led to key enhancements of a major open- source
software project (JBoss)

� Morphing: a high-level language facility for
safe program transformation

� “bringing discipline to meta- programming”

Yannis Smaragdakis
UOregon

3

Partitioning: Start with a
Centralized Application

GUI

Computation

DB

Yannis Smaragdakis
UOregon

4

Convert it to a Distributed
Application

GUI
Computation

DB

Network

Yannis Smaragdakis
UOregon

5

Automatic Program
Partitioning

� How can we do this with tools instead of
manually?
� write a centralized program
� select elements (at some granularity) and assign

them to network locations
� let an automatic tool (compiler) transform the

program so that it runs over a network, using a
general purpose run-time system
� correctness and efficiency concerns addressed by

compiler—though not always possible

Yannis Smaragdakis
UOregon

6

J-Orchestra
� For the past 5 years, J-Orchestra has been

one of my major research projects
� an automatic partitioning system for Java
� works as a bytecode compiler
� think of result as “applets on steroids”

� “code near resource”

Application
bytecode

Network

Yannis Smaragdakis
UOregon

7

J-Orchestra

Application
bytecode

Network

user-designated
partition

� For the past 5 years, J-Orchestra has been
one of my major research projects
� an automatic partitioning system for Java
� works as a bytecode compiler
� think of result as “applets on steroids”

� “code near resource”

Yannis Smaragdakis
UOregon

8

J-Orchestra Executive
Summary

� Partitioned program is equivalent to the
original centralized program for a very large
subset of Java.
� we handle synchronization, all OO language

features, object construction, ...
� nice analysis and compilation technique for

dealing with native code
� result: most scalable automatic partitioning system

in existence
� have partitioned many unsuspecting applications

� including 8MB third- party bytecode only (JBits)

Yannis Smaragdakis
UOregon

9

Example Partitioning

Yannis Smaragdakis
UOregon

10

Example Partitioning

Network

Yannis Smaragdakis
UOregon

11

Example Partitioning

Network

Benefit: 3.4MB +
1.8MB + 3.5MB

transfers eliminated
for view updates!

Benefit: 1.28MB
vs, 1.68MB per

simulation step!

Yannis Smaragdakis
UOregon

12

J-Orchestra Techniques
Summary

� Program generation and program transformation at
the bytecode level
� “virtualizing” execution through bytecode transformation

� creating a “virtual” virtual machine

� existing classes get transformed into RMI remote objects
� client code is redirected through proxies
� for each class, about 8 different proxy types (for mobility,

access to native code, etc.) may need to be generated
� user input is at class level, but how objects are passed

around determines where code executes

J-Orchestra Program
Transformation Techniques

Neo: Programs hacking
programs. Why?

[Matrix Reloaded]

Yannis Smaragdakis
UOregon

14

The Problem Technically

� Emulate a shared memory abstraction for
unsuspecting applications without
changing the runtime system.
� Complicating assumption: a pointer-based

language.
� Resembles DSM but different in objectives.

� DSM – distribution for parallelism.

� Auto Partitioning – functional distribution.

Yannis Smaragdakis
UOregon

15

The Approach:
User Level Indirection
� We cannot change the VM to change the notion of

“pointer”/“reference”
� Can we do it by careful rewriting of the entire

program?
� any reference, method call, etc. is through a proxy

� where an original program reference would be to an object
of type A, the same reference will now be to a proxy for As

� For example:
� “new A() ” creates proxy for A instead of instance of

original class A
� a.field becomes a.getField() or a.putField()

Yannis Smaragdakis
UOregon

16

User Indirection (Proxy)
Approach

r

alias1

alias2

� All clients (aliases) should view the same object
regardless of location

� Change all references from direct to indirect

Yannis Smaragdakis
UOregon

17

The Proxy Approach

r

alias1

alias2

� Changing all references from direct to indirect
ensures correct behavior in the presence of aliases

� A remote object can have several proxies on
different network sites

proxy

object

Yannis Smaragdakis
UOregon

18

The Proxy Approach

r

alias1

alias2

� Proxies hide the location of the actual object:
objects can move at will to exploit locality

Site 1 Site 2

proxy

object

Yannis Smaragdakis
UOregon

19

J-Orchestra Sample
Transformations

For each original class A

Remote class A__remote

Local class A__local

Interface A__iface

class A__static_delegator

Interface A__static_iface

class A becomes a proxy

Yannis Smaragdakis
UOregon

20

Generated Code

A__interface is generated:

interface A__iface
extends java.rmi.Remote

{
public void foo(A p)
throws Remote Exception ;

public proxy.io.File get_file()
throws RemoteException;

}

For each original class A:

class A {
java.io.File _file;

public void foo(A p) {
_file.read();
p._file.read();

}
}

Yannis Smaragdakis
UOregon

21

Generated Code

For each original class A:

class A {
java.io.File _file;

public void foo(A p) {
_file.read();
p._file.read();

}
}

proxy is generated:

class A {
A__iface _ref;

public void foo(A p) {
_ref.foo(p);

}
}

Yannis Smaragdakis
UOregon

22

Generated Code

For each original class A:

class A {
java.io.File _file;

public void foo(A p) {
_file.read();
p._file.read();

}
}

class A is binary-modified:

class A__remote
extends UnicastRemoteObject
implements A__iface
{

proxy. java.io.File _file;

public void foo(A p) {
_file.read();
p.get_file(). read();

}
public proxy.java.io.File
get_file() { return _file; }

}

Complexities

Overheads, Grouping Objects,
System Code

Yannis Smaragdakis
UOregon

24

Proxy Indirection Overhead

17%73.32s62.50s10

22%51.30s42.06s4

35%47.52s35.17s2

OverheadRewritten
Time

Original
Time

Work (test,
multiply,
increment)

� Micro benchmark
� A function of average work per method call
� 1 billion calls total

Yannis Smaragdakis
UOregon

25

Optimizing Proxy Indirection

sensor

DB

GUI

Yannis Smaragdakis
UOregon

26

Optimizing Proxy Indirection

object

direct call

sensor

DB

GUI

Yannis Smaragdakis
UOregon

27

Optimizing Proxy Indirection

proxy

object

direct call

proxy callsensor

DB

GUI

Yannis Smaragdakis
UOregon

28

Optimizing Proxy Indirection

proxy

object

opt.
proxy call

proxy call
mobile
object

sensor

DB

GUI

direct call

Yannis Smaragdakis
UOregon

29

Optimizing Proxy Indirection

sensor

DB

GUI

proxy

object

opt.
proxy call

proxy call
mobile
object

direct call

Yannis Smaragdakis
UOregon

30

How is This Implemented?

� Two kinds of references: direct and indirect
� Direct: for code statically guaranteed to refer

to the object itself
� i.e., object on the same site

� Indirect: maybe we are calling a method on
the object, maybe on a proxy

Yannis Smaragdakis
UOregon

31

System Code

� The same idea applies to dealing with system
classes
� system classes are split in groups

� we assume that groups are consistent with what
native code does (more later)

� code accesses objects in the same group directly
� other objects accessed indirectly

Yannis Smaragdakis
UOregon

32

Wrapping / Unwrapping

� For this approach to work, we need to inject
code in many places to convert direct
references to indirect and vice-versa
� dynamic “wrapping/unwrapping”
� code injected at compile time,

wrapping/unwrapping takes place at run time

Yannis Smaragdakis
UOregon

33

Example: Pass a Reference to
System Code

� What if a system object is passed from
user code to system code?

B

button window

{ window.add(button); }

button’
W

Network

Yannis Smaragdakis
UOregon

34

Wrapping/Unwrapping at the
Proxy

� The easy case: callee can tell wrapping is
needed
� applies to system code

Caller

(Mobile code)

Callee

(Anchored code)

Proxy_Of_p

Stub_Of_p p
foo (Proxy_Of_p); //unwrap

proxy_Of_p = bar (); //wrap

Yannis Smaragdakis
UOregon

35

Wrapping/Unwrapping at Call
Site

� The harder case: sometimes we need to
wrap/unwrap at call site
� either to keep proxy simple, or because we’d end

up with overloaded methods only differing in
return type
� a problem since our proxies are generated in source,

although the rest of the transforms are in bytecode

� need to reconstruct call stack, inject code

Example: “this”
//original code
class A { void foo (B b) { b.baz (this); } }
class B { void baz (A a) {...} }
//generated remote object for A
class A__remote {

void foo (B b) { b.baz (this); } //”this” is of typ e A__remote!
}

//rewritten bytecode for foo
aload_0 //pass “this” t o locateProxy method
invokestatic Runtime.locateProxy
checkcast “A” //locateProxy returns O bject, need a cast to “A”
astore_2 //store the lo cated proxy object for future use
aload_1 //load b
aload_2 //load proxy (of type A)
invokevirtual B.baz

“How Do You
Handle...?”

Native code,
Synchronization

Yannis Smaragdakis
UOregon

38

Handling Java Language
Features

� Many language features need explicit handling, but
most complexities are just engineering
� static methods and fields
� inheritance hierarchies
� remote object creation
� inner classes
� System.in, System.out, System.exit, System.properties

� Some require more thought
� native code
� synchronization

Yannis Smaragdakis
UOregon

39

Native Code

� Recall how we split system classes into
groups

� These groups have to respect native code
behavior

� But we don’t know what native code does!
� The problem: we may let a proxy escape into

native code, and the native code will try to
access it directly
� e.g., read fields from the original object

Yannis Smaragdakis
UOregon

40

Heuristic Type-Based Analysis:
Group Based on Types

� class C extends S {
F f;
public native R meth (A a);

}
� Conservative, but still not safe

� nothing can be!
� type information can be disguised at the native

code interface level
� i.e., native code can do type casts

C S
F

R A

Yannis Smaragdakis
UOregon

41

How Safe?

� Studied native code in JDK 1.4.2 for Solaris
� Two analyses:

� 13 applications, dynamic analysis of execution
� code inspection of native code for Object , IsInstanceOf

� Overall, fairly safe—few violations
� PlainSocketImp.socketGetOption casts Object to InetAddress
� GlyphVector assumed to be StandardGlyphVector, Composite

assumed to be AlphaComposite
� native code respects types more than library code!

� JNI IsInstanceOf : 69 occurrences
Java instanceof : 5900 occurrences

� In practice, J-Orchestra works without (much)
intervention

Yannis Smaragdakis
UOregon

42

Synchronization

� We only handle monitor-style
synchronization: synchronized blocks and
methods, wait/notify/notifyAll

� not volatile variables, concurrent data structures,
atomic operations, etc.

� Two problems:
� thread identity is not maintained over the

network
� synchronization operations (synchronized, wait,

notify, etc.) do not get propagated by RMI

Yannis Smaragdakis
UOregon

43

Thread Identity Is Not Maintained
(The Zigzag Deadlock Problem)

synchronized void foo()
{

obj2.bar();
}

synchronized void baz()
{…}

void bar() {

obj1.baz();
}

thread-1

obj1 obj2

thread-1

Yannis Smaragdakis
UOregon

44

Thread Identity Is Not Maintained
(The Zigzag Deadlock Problem)

synchronized void foo()
{

obj2.bar();
}

synchronized void baz()
{…}

void bar() {

obj1.baz();
}

thread-1

Networkobj1 obj2

thread-1

Yannis Smaragdakis
UOregon

45

Thread Identity Is Not Maintained
(The Zigzag Deadlock Problem)

synchronized void foo()
{

obj2.bar();
}

synchronized void baz()
{…}

void bar() {

obj1.baz();
}

thread-1

Networkobj1 obj2

thread-2

thread-3 thread-2

Yannis Smaragdakis
UOregon

46

Synchronization Operations Don’t
Get Propagated Over the Network

� obj – a remote object, implementing interface RI and
remotely accessible through it

� RI ri – points to a local RMI “stub” object
� ri.foo(); //will be invoked on obj on a remote machine
� The stub serves as an intermediary, propagating

method calls to the obj object
� Only synchronized methods are propagated correctly
� Synchronized blocks might not work correctly

Yannis Smaragdakis
UOregon

47

Synchronized Blocks

Remote object

Network

RMI stub

synchronized(ri) { ... }

synchronized(obj) { ... }

� Even if obj and ri point to the same object,
synchronization will be on stub vs. true object.

Yannis Smaragdakis
UOregon

48

Synchronization Operations Don’t
Get Propagated Over the Network

� Monitor operations: Object.wait ,
Object.notify , Object.notifyAll don’t work
correctly

� They are declared final in class Object and
cannot be overridden in subclasses

� Calling any of them on an RMI stub does not
get propagated over the network

Yannis Smaragdakis
UOregon

49

J-Orchestra Synchronization

� Maintain per-site “thread id equivalence
classes”

� Replace all the standard synchronization
constructs (monitorenter , Object.wait ,
Object.notify) with the corresponding calls to
a per-site synchronization library

Yannis Smaragdakis
UOregon

50

Thread Identity Is Not Maintained
(The Zigzag Deadlock Problem)

synchronized void foo()
{

obj2.bar();
}

synchronized void baz()
{…}

void bar() {

obj1.baz();
}

{thread-1}

Networkobj1 obj2

{thread-1,thread-2}

{thread-1,thread-2}{thread- 1,thread- 2,thread- 3}

Yannis Smaragdakis
UOregon

51

Maintaining Thread Id Equivalence
Classes Efficiently

� Updating thread equivalence classes only when the
execution of a program crosses the network
boundary

� This happens only after it enters a method in an RMI
stub

� Use bytecode instrumentation on standard RMI
stubs

� Equivalence classes’ representation is very compact
(encoded into a long int). Imposes virtually no
overhead on remote calls

A Specialized
Application

“Appletizing”

Yannis Smaragdakis
UOregon

53

Java Applets

� Execute on the client.
� Transfer all code to client.
� Provide “sandbox” secure execution environment.

client server
network

Yannis Smaragdakis
UOregon

54

Java Servlets

client server
network

• Execute on the server.

• Thin GUI through Web Forms.

Yannis Smaragdakis
UOregon

55

Appletizing

client server
network

� A hybrid between Applets and Servlets.
� Rich GUI client; full access to server resources.
� Safe and secure execution model.
� Ease of development and deployment.

Yannis Smaragdakis
UOregon

56

Sanitizing GUI Code

� Some code inside GUI classes is rejected
by the Applet Security Manager.

� E.g., System.exit, read/write graphical files
from the local hard drive, closing a frame.

� Two approaches to replacing unsafe code:
1. With different code.
2. With semantically similar (identical) code.

Yannis Smaragdakis
UOregon

57

//Creates an ImageIcon from
//the specified file
//will cause a security exception when
//a file on disk is accessed

javax.swing.ImageIcon icon =
new javax.swing.ImageIcon (“AnIconFile.gif”);

Sanitizing: Reading Image
From File

Yannis Smaragdakis
UOregon

58

//Sanitize by replacing with the
//following safe code

javax.swing.ImageIcon icon =
new jorch.rt.ImageIcon (“AnIconFile.gif”);

//will safely read the image from
//the applets’s jar file

Sanitizing: Reading Image
From File

Yannis Smaragdakis
UOregon

59

Sanitizing:
JFrame.setDefaultCloseOperation

� Method setDefaultCloseOperation in
system class javax.swing.JFrame.

� Applet Security Manager prevents it from taking
EXIT_ON_CLOSEparameter.

invokevirtual
JFrame.setDefaultCloseOperation

Yannis Smaragdakis
UOregon

60

pop //pop value on top of the stack

push 0 //param 0 is DO_NOTHING_ON_CLOSE

invokevirtual
JFrame.setDefaultCloseOperation

Sanitizing:
JFrame.setDefaultCloseOperation

Wrap up

Yannis Smaragdakis
UOregon

62

J-Orchestra Impact
� Although the J-Orchestra work is well-cited, its

greatest impact was unconventional
� in late 2002, we gave a demo to Marc Fleury, head of the

JBoss Group
� JBoss: probably the world’s most popular J2EE

Application Server—millions of downloads (open- source)
� Application Server: OS for server- side computing

� handles persistence, communication, authentication, ...
� imagine a web store, bank, auction site, etc.

� great excitement about using bytecode engineering to
generate and transform code, to turn Java classes into EJBs
� J2EE middleware has strict conventions (e.g., “each

session bean needs to implement local and remote
interfaces, such that...”)

Yannis Smaragdakis
UOregon

63

Program Transformation and
Generation in JBoss

� JBoss engineers had little expertise
� my M.Sc. student Austin Chau did the first implementation
� we fixed the bytecode generation platform (Javassist)
� JBoss contributors then took over

� Radical innovation in version 4: can use plain Java
objects as Enterprise Java Beans
� a general mechanism: “Aspect-Oriented Programming in

JBoss”
� JBoss can now produce automatically much of the tedious

J2EE code
� given plain Java code (together with user annotations)

� annotation mechanism in Java 5 largely motivated by
program generation tasks for J2EE code

Yannis Smaragdakis
UOregon

64

Publications

� Main paper: ECOOP’02
� Synchronization: Middleware ’04
� Appletizing: ICSM’05
� Dealing with native code: ECOOP’02 +

GPCE’06

