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These Lectures

� NRMI: middleware offering a natural 
programming model for distributed computing

� solves a long standing, well- known open problem!

� J-Orchestra: execute unsuspecting programs 
over a network, using program rewriting

� led to key enhancements of a major open- source 
software project (JBoss)

� Morphing: a high-level language facility for 
safe program transformation

� “bringing discipline to meta- programming”
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Partitioning: Start with a 
Centralized Application

GUI

Computation

DB
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Convert it to a Distributed 
Application

GUI
Computation

DB

Network
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Automatic Program 
Partitioning

� How can we do this with tools instead of 
manually?
� write a centralized program
� select elements (at some granularity) and assign 

them to network locations
� let an automatic tool (compiler) transform the 

program so that it runs over a network, using a 
general purpose run-time system
� correctness and efficiency concerns addressed by 

compiler—though not always possible
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J-Orchestra
� For the past 5 years, J-Orchestra has been 

one of my major research projects
� an automatic partitioning system for Java
� works as a bytecode compiler
� think of result as “applets on steroids”

� “code near resource”

Application 
bytecode

Network
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J-Orchestra

Application 
bytecode

Network

user-designated 
partition

� For the past 5 years, J-Orchestra has been 
one of my major research projects
� an automatic partitioning system for Java
� works as a bytecode compiler
� think of result as “applets on steroids”

� “code near resource”
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J-Orchestra Executive 
Summary

� Partitioned program is equivalent to the 
original centralized program for a very large 
subset of Java.
� we handle synchronization, all OO language 

features, object construction, ...
� nice analysis and compilation technique for 

dealing with native code
� result: most scalable automatic partitioning system 

in existence
� have partitioned many unsuspecting applications

� including 8MB third- party bytecode only (JBits)
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Example Partitioning
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Example Partitioning

Network
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Example Partitioning

Network

Benefit: 3.4MB + 
1.8MB + 3.5MB  

transfers eliminated 
for view updates!

Benefit: 1.28MB 
vs, 1.68MB per 

simulation step!
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J-Orchestra Techniques 
Summary

� Program generation and program transformation at 
the bytecode level
� “virtualizing” execution through bytecode transformation

� creating a “virtual” virtual machine

� existing classes get transformed into RMI remote objects
� client code is redirected through proxies
� for each class, about 8 different proxy types (for mobility, 

access to native code, etc.) may need to be generated
� user input is at class level, but how objects are passed 

around determines where code executes



J-Orchestra Program 
Transformation Techniques

Neo: Programs hacking 
programs. Why?

[Matrix Reloaded]
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The Problem Technically

� Emulate a shared memory abstraction for 
unsuspecting applications without 
changing the runtime system.
� Complicating assumption: a pointer-based 

language.
� Resembles DSM but different in objectives.

� DSM – distribution for parallelism.

� Auto Partitioning – functional distribution.



Yannis Smaragdakis
UOregon

15

The Approach:
User Level Indirection
� We cannot change the VM to change the notion of 

“pointer”/“reference”
� Can we do it by careful rewriting of the entire 

program?
� any reference, method call, etc. is through a proxy

� where an original program reference would be to an object 
of type A, the same reference will now be to a proxy for As

� For example:
� “new A() ” creates proxy for A instead of instance of 

original class A
� a.field becomes a.getField() or a.putField()
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User Indirection (Proxy) 
Approach

r

alias1

alias2

� All clients (aliases) should view the same object 
regardless of location

� Change all references from direct to indirect
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The Proxy Approach

r

alias1

alias2

� Changing all references from direct to indirect 
ensures correct behavior in the presence of aliases

� A remote object can have several proxies on 
different network sites

proxy

object
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The Proxy Approach

r

alias1

alias2

� Proxies hide the location of the actual object: 
objects can move at will to exploit locality

Site 1 Site 2

proxy

object
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J-Orchestra Sample 
Transformations

For each original class A

Remote class A__remote

Local class A__local

Interface A__iface

class A__static_delegator

Interface A__static_iface

class A becomes a proxy
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Generated Code

A__interface is generated:

interface A__iface
extends java.rmi.Remote

{
public void foo(A p) 
throws Remote Exception ;

public proxy.io.File get_file()
throws RemoteException;

}

For each original class A:

class A {
java.io.File _file;

public void foo(A p) {
_file.read();
p._file.read();

}
}
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Generated Code

For each original class A:

class A {
java.io.File _file;

public void foo(A p) {
_file.read();
p._file.read();

}
}

proxy is generated:

class A {
A__iface _ref;

public void foo(A p) {
_ref.foo(p);

}
}
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Generated Code

For each original class A:

class A {
java.io.File _file;

public void foo(A p) {
_file.read();
p._file.read();

}
}

class A is binary-modified:

class A__remote
extends UnicastRemoteObject
implements A__iface
{

proxy. java.io.File _file;

public void foo(A p) {
_file.read();
p.get_file(). read();

} 
public proxy.java.io.File
get_file() { return _file; }

}



Complexities

Overheads, Grouping Objects, 
System Code
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Proxy Indirection Overhead

17%73.32s62.50s10

22%51.30s42.06s4

35%47.52s35.17s2

OverheadRewritten 
Time

Original 
Time

Work (test, 
multiply, 
increment)

� Micro benchmark
� A function of average work per method call
� 1 billion calls total
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Optimizing Proxy Indirection

sensor

DB

GUI
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Optimizing Proxy Indirection

object

direct call

sensor

DB

GUI
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Optimizing Proxy Indirection

proxy

object

direct call

proxy callsensor

DB

GUI
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Optimizing Proxy Indirection

proxy

object

opt. 
proxy call

proxy call
mobile
object

sensor

DB

GUI

direct call
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Optimizing Proxy Indirection

sensor

DB

GUI

proxy

object

opt. 
proxy call

proxy call
mobile
object

direct call
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How is This Implemented?

� Two kinds of references: direct and indirect
� Direct: for code statically guaranteed to refer 

to the object itself
� i.e., object on the same site

� Indirect: maybe we are calling a method on 
the object, maybe on a proxy
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System Code

� The same idea applies to dealing with system 
classes
� system classes are split in groups

� we assume that groups are consistent with what 
native code does (more later)

� code accesses objects in the same group directly
� other objects accessed indirectly
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Wrapping / Unwrapping

� For this approach to work, we need to inject 
code in many places to convert direct 
references to indirect and vice-versa
� dynamic “wrapping/unwrapping”
� code injected at compile time, 

wrapping/unwrapping takes place at run time
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Example: Pass a Reference to 
System Code

� What if a system object is passed from 
user code to system code?

B

button window

{ window.add(button); }

button’
W

Network
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Wrapping/Unwrapping at the 
Proxy

� The easy case: callee can tell wrapping is 
needed
� applies to system code

Caller

(Mobile code)

Callee

(Anchored code)

Proxy_Of_p

Stub_Of_p p
foo (Proxy_Of_p); //unwrap

proxy_Of_p = bar (); //wrap



Yannis Smaragdakis
UOregon

35

Wrapping/Unwrapping at Call 
Site

� The harder case: sometimes we need to 
wrap/unwrap at call site
� either to keep proxy simple, or because we’d end 

up with overloaded methods only differing in 
return type
� a problem since our proxies are generated in source, 

although the rest of the transforms are in bytecode

� need to reconstruct call stack, inject code



Example: “this”
//original code
class A { void foo (B b) { b.baz (this); } }
class B { void baz (A a) {...} }
//generated remote object for A
class A__remote {

void foo (B b) { b.baz (this); }     //”this” is of typ e A__remote!
}

//rewritten bytecode for foo
aload_0                              //pass “this” t o locateProxy method
invokestatic Runtime.locateProxy
checkcast “A”                   //locateProxy returns O bject, need a cast to “A”
astore_2                             //store the lo cated proxy object for future use
aload_1                              //load b
aload_2                              //load proxy ( of type A)
invokevirtual B.baz



“How Do You 
Handle...?”

Native code,
Synchronization
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Handling Java Language 
Features

� Many language features need explicit handling, but 
most complexities are just engineering
� static methods and fields
� inheritance hierarchies
� remote object creation
� inner classes
� System.in, System.out, System.exit, System.properties

� Some require more thought
� native code
� synchronization
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Native Code

� Recall how we split system classes into 
groups

� These groups have to respect native code 
behavior

� But we don’t know what native code does!
� The problem: we may let a proxy escape into 

native code, and the native code will try to 
access it directly
� e.g., read fields from the original object
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Heuristic Type-Based Analysis: 
Group Based on Types

� class C extends S {
F f;
public native R meth ( A a);

}
� Conservative, but still not safe

� nothing can be!
� type information can be disguised at the native 

code interface level
� i.e., native code can do type casts

C S
F

R A
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How Safe?

� Studied native code in JDK 1.4.2 for Solaris
� Two analyses:

� 13 applications, dynamic analysis of execution
� code inspection of native code for Object , IsInstanceOf

� Overall, fairly safe—few violations
� PlainSocketImp.socketGetOption casts Object to InetAddress
� GlyphVector assumed to be StandardGlyphVector, Composite 

assumed to be AlphaComposite
� native code respects types more than library code!

� JNI IsInstanceOf : 69 occurrences
Java instanceof : 5900 occurrences

� In practice, J-Orchestra works without (much) 
intervention
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Synchronization

� We only handle monitor-style 
synchronization: synchronized blocks and 
methods, wait/notify/notifyAll

� not volatile variables, concurrent data structures, 
atomic operations, etc.

� Two problems:
� thread identity is not maintained over the 

network
� synchronization operations (synchronized, wait, 

notify, etc.) do not get propagated by RMI
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Thread Identity Is Not Maintained
(The Zigzag Deadlock Problem)

synchronized void foo() 
{

obj2.bar();
}

synchronized void baz() 
{…}

void bar() {

obj1.baz();
}

thread-1

obj1 obj2

thread-1



Yannis Smaragdakis
UOregon

44

Thread Identity Is Not Maintained
(The Zigzag Deadlock Problem)

synchronized void foo() 
{

obj2.bar();
}

synchronized void baz() 
{…}

void bar() {

obj1.baz();
}

thread-1

Networkobj1 obj2

thread-1
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Thread Identity Is Not Maintained
(The Zigzag Deadlock Problem)

synchronized void foo() 
{

obj2.bar();
}

synchronized void baz() 
{…}

void bar() {

obj1.baz();
}

thread-1

Networkobj1 obj2

thread-2

thread-3 thread-2
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Synchronization Operations Don’t 
Get Propagated Over the Network

� obj – a remote object, implementing interface RI and 
remotely accessible through it

� RI ri – points to a local RMI “stub” object
� ri.foo(); //will be invoked on obj on a remote machine
� The stub serves as an intermediary, propagating 

method calls to the obj object
� Only synchronized methods are propagated correctly
� Synchronized blocks might not work correctly
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Synchronized Blocks

Remote object

Network

RMI stub

synchronized( ri ) { ... }

synchronized( obj ) { ... }

� Even if obj and ri point to the same object, 
synchronization will be on stub vs. true object.
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Synchronization Operations Don’t 
Get Propagated Over the Network

� Monitor operations: Object.wait , 
Object.notify , Object.notifyAll don’t work 
correctly

� They are declared final in class Object and 
cannot be overridden in subclasses

� Calling any of them on an RMI stub does not 
get propagated over the network
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J-Orchestra Synchronization

� Maintain per-site “thread id equivalence 
classes”

� Replace all the standard synchronization 
constructs (monitorenter , Object.wait , 
Object.notify ) with the corresponding calls to 
a per-site synchronization library
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Thread Identity Is Not Maintained
(The Zigzag Deadlock Problem)

synchronized void foo() 
{

obj2.bar();
}

synchronized void baz() 
{…}

void bar() {

obj1.baz();
}

{thread-1}

Networkobj1 obj2

{thread-1,thread-2}

{thread-1,thread-2}{thread- 1,thread- 2,thread- 3}
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Maintaining Thread Id Equivalence 
Classes Efficiently

� Updating thread equivalence classes only when the 
execution of a program crosses the network 
boundary

� This happens only after it enters a method in an RMI 
stub

� Use bytecode instrumentation on standard RMI 
stubs

� Equivalence classes’ representation is very compact 
(encoded into a long int). Imposes virtually no 
overhead on remote calls



A Specialized 
Application

“Appletizing”
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Java Applets

� Execute on the client.
� Transfer all code to client.
� Provide “sandbox” secure execution environment.

client server
network
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Java Servlets

client server
network

• Execute on the server.

• Thin GUI through Web Forms.
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Appletizing

client server
network

� A hybrid between Applets and Servlets.
� Rich GUI client; full access to server resources.
� Safe and secure execution model.
� Ease of development and deployment.
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Sanitizing GUI Code

� Some code inside GUI classes is rejected 
by the Applet Security Manager.

� E.g., System.exit, read/write graphical files 
from the local hard drive, closing a frame.

� Two approaches to replacing unsafe code: 
1. With different code.
2. With semantically similar (identical) code.
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//Creates an ImageIcon from 
//the specified file
//will cause a security exception when 
//a file on disk is accessed

javax.swing.ImageIcon icon = 
new javax.swing.ImageIcon (“AnIconFile.gif”);

Sanitizing: Reading Image 
From File
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//Sanitize by replacing with the
//following safe code

javax.swing.ImageIcon icon = 
new jorch.rt.ImageIcon (“AnIconFile.gif”);

//will safely read the image from
//the applets’s jar file

Sanitizing: Reading Image 
From File
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Sanitizing:
JFrame.setDefaultCloseOperation

� Method setDefaultCloseOperation in
system class javax.swing.JFrame.

� Applet Security Manager prevents it from taking 
EXIT_ON_CLOSEparameter.

invokevirtual
JFrame.setDefaultCloseOperation
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pop //pop value on top of the stack

push 0 //param 0 is DO_NOTHING_ON_CLOSE

invokevirtual
JFrame.setDefaultCloseOperation

Sanitizing:
JFrame.setDefaultCloseOperation



Wrap up
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J-Orchestra Impact
� Although the J-Orchestra work is well-cited, its 

greatest impact was unconventional
� in late 2002, we gave a demo to Marc Fleury, head of the 

JBoss Group
� JBoss: probably the world’s most popular J2EE 

Application Server—millions of downloads (open- source)
� Application Server: OS for server- side computing

� handles persistence, communication, authentication, ...
� imagine a web store, bank, auction site, etc.

� great excitement about using bytecode engineering to 
generate and transform code, to turn Java classes into EJBs
� J2EE middleware has strict conventions (e.g., “each 

session bean needs to implement local and remote 
interfaces, such that...”)
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Program Transformation and 
Generation in JBoss

� JBoss engineers had little expertise
� my M.Sc. student Austin Chau did the first implementation
� we fixed the bytecode generation platform (Javassist)
� JBoss contributors then took over

� Radical innovation in version 4: can use plain Java 
objects as Enterprise Java Beans
� a general mechanism: “Aspect-Oriented Programming in 

JBoss”
� JBoss can now produce automatically much of the tedious 

J2EE code 
� given plain Java code (together with user annotations)

� annotation mechanism in Java 5 largely motivated by 
program generation tasks for J2EE code
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Publications

� Main paper: ECOOP’02
� Synchronization: Middleware ’04
� Appletizing: ICSM’05
� Dealing with native code: ECOOP’02 + 

GPCE’06


