The Next 700 Data Description Languages

Kathleen Fisher
AT&T Labs Research
Yitzhak Mandelbaum, David Walker
Princeton

Review: Technical Challenges of Ad Hoc Data

- Data arrives “as is.”
- Documentation is often out-of-date or nonexistent.
 - Hijacked fields.
 - Undocumented “missing value” representations.
- Data is buggy.
 - Missing data, human error, malfunctioning machines, race conditions on log entries, “extra” data, …
 - Processing must detect relevant errors and respond in application-specific ways.
 - Errors are sometimes the most interesting portion of the data.
- Data sources often have high volume.
 - Data may not fit into main memory.

Many Data Description Languages

- PacketTypes (SIGCOMM ’00)
 - Packet processing
- DataScript (GPCE ’02)
 - Java jar files, ELF object files
- Erlang Binaries (ESOP ’04)
 - Packet processing
- PADS (PLDI ’05)
 - General ad hoc data

The Next 700 Programming Languages

The languages people use to communicate with computers differ in their intended aptitudes, towards either a particular application area, or a particular phase of computer use (high level programming, program assembly, job scheduling, etc.). They also differ in physical appearance, and more important, in logical structure. The question arises, do the idiosyncrasies reflect basic logical properties of the situation that are being catered for? Or are they accidents of history and personal background that may be obscuring fruitful developments? This question is clearly important if we are trying to predict or influence language evolution.

Continued…

The Next 700 Programming Languages, cont.

To answer it we must think in terms, not of languages, but families of languages. That is to say we must systematize their design so that a new language is a point chosen from a well-mapped space, rather than a laboriously devised construction.

— J. P. Landin
The Next 700 Programming Languages, 1965.

The Next 700 Data Description Languages

- What is the family of data description languages?
- How do existing languages related to each other?
- What differences are crucial, which “accidents of history”?
- What do the existing languages mean, precisely?

To answer these questions, we introduce a semantic framework for understanding data description languages.
Contributions

- A core data description calculus (DDC)
 - Based on dependent type theory
 - Simple, orthogonal, composable types
 - Types transcode external data source to internal representation.
- Encodings of high-level DDLs in low-level DDC

Outline

- Introduction
- A Data Description “| Calculus” (DDC)
- But what does DDC mean?
 - Well-typed judgment
 - Representation, parse descriptor, and parser generation
- But what do data description languages (DDLs) mean?
 - Idealized PADS (PADS)
 - Features from other DDLs.
- Applications of the semantics

A Data Description Calculus

Base Types and Sequences

- \(C(e) \): base type parameterized by expression \(e \).
- \(\Sigma x: \tau. \tau' \): dependent product describes sequence of values.
 - Variable \(x \) gives name to first value in sequence.
 - Note syntactic sugar: \(\tau * \tau' \) if \(x \) not in \(\tau' \).
- Examples:

| "123hello" | int * string("\""") * char | (123, "hello", ")
| "3513" | Equal.int_fix(1).int_fix(sndht) | (3,513)
| "hello" | Equal.char.string(term) * char | ("\"", "hello", ")

Candidate DDC Primitives

- Base types parameterized by expressions (Pairing(C[|]))
 - Type constructor constants
- Pair of fields with cascading scope (Putruct)
 - Dependent products
- Additional constraints (Pprefdef, Pwhere, field constraints).
 - Set types
- Alternatives (Punion, Popo)
 - Sums
- Open-ended sequences (Parray)
 - Some kind of list?
- User-defined parameterized types
 - Abstraction and application
- "Active types": compute, absorb, and scanning
 - Built-in functions

Constraints

- \(\{ x: \tau | e \} \): set types add constraints to the type \(\tau \) and express relationships between elements of the data.
- Examples:

| \(a \) | \(\{ x: \text{char} | x = 'a' \} \) (abbrev: \(S_f(a') \)) | ‘a’
| "101", "82" | \(\{ x: \text{int} | x > 100 \} \) | 101, 82
| "43\text{[105]67}" | \(\Sigma x: \text{int}.S(x)[\{ | \Sigma x: \text{int}.S(x)[\{ | \Sigma x: \text{int}.S(x)[\{ | \text{min} \leq x \} \} \} \} \} \} \} \} \} \} \} \} \} \} | 43, \text{int} \}, \text{int} \{105, \text{int} \}, \text{int} \{67\}
Unions and the Empty String

- \(\tau + \tau \)' deterministic, exclusive or
 - try \(\tau \); on failure, try \(\tau ' \)
- unit: matches the empty string.
- Examples:
 - "54", "a/a"
 - \(\text{int} + \text{S}(\"a/a\") \)
 - \(\text{int} 54, \text{int} \"a/a\" \)
 - "2341", """
 - \(\text{int} + \text{unit} \)
 - \(\text{int} 2341, \text{int} () \)

Array Features

- What features do we need to handle data sequences?
 - Elements
 - Separator between elements
 - Termination condition ("Are we done yet?")
 - Terminator after sequence
- Examples:
 - "192.168.1.1"
 - "HarryRoo(HermioneGinny;"

Bottom and Arrays

- \(\tau \text{ seq}(\tau; e, \tau) \) specifies:
 - Element type \(\tau \)
 - Separator type \(\tau e \)
 - Termination condition \(\tau \)
 - Terminator type \(\tau \)
- bottom: reads nothing, flagging an error.
- Example: IP address.
 - "192.168.1.1"
 - \(\text{int seq}(\text{S}(\tau); \text{len} 4, \text{bottom}) \)
 - [192,168,1,1]

Abstraction and Application

- Can parameterize types over values: \(\lambda x. \tau \)
- Correspondingly, can apply types to values: \(\tau e \)
- Example: IP address with terminator

<table>
<thead>
<tr>
<th>none</th>
<th>(\lambda \text{term} \text{seq}(\text{S}(\tau); \text{len} 4, \text{S}(\text{term})))</th>
<th>none</th>
</tr>
</thead>
<tbody>
<tr>
<td>"1.2.3.4"</td>
<td>(\text{IP}_\text{addr} [\tau] * \text{S}(\tau))</td>
<td>([1,2,3,4], \text{int}[\tau])</td>
</tr>
</tbody>
</table>

Absorb, Compute and Scan

- Absorb, Compute and Scan are active types.
 - absorb\((\)\): consume data from source; produce nothing.
 - compute\((\tau e)\): consume nothing; output result of computation \(e \).
 - scan\((\tau)\): scan data source for type \(\tau \).
- Examples:
 - """"
 - absorb\((\text{S}(\tau)) \)
 - "1012"
 - \(\Sigma \text{width} \text{int}, \text{S}(\tau), \text{length} \text{int}, \)\text{compute}(\text{width} \times \text{length}; \text{int})\)
 - \((10, 12, 20) \)
 - "\&\&x\"\&\"y"
 - \(\text{scan}(\text{S}(\tau)) \)
 - \(\text{int}[\tau] \)

DDC Example: Idealized Web Server Log

\[
\begin{align*}
S &= \lambda x.r [x: \text{string} \mid x = x] \\
\text{authid}_t &= S(\"\") + \text{string}(\"\") \\
\text{response}_t &= \lambda x. [y: \text{int16}_\text{FW}(x) \mid 100 < y < 600) \\
\text{entry}_t &= \\
&\Sigma \text{client}_t : \text{ip} \quad S(\"\") + \\
&\Sigma \text{requested}_t : \text{authid}_t \quad S(\"\") + \\
&\Sigma \text{response}_t : \text{response}_13 \\
&\text{compute}(\text{getdomain} \text{client} = \text{"edu"}; \text{bool}) \\
\text{entry}_t &= \text{seq}(S(\"\"), \lambda x. \text{false}, \text{bottom}) \\
\end{align*}
\]

124.207.15.27 - 234
12.24.208 kfisher 208
A data description calculus

- \(\text{C(e)} \): Atomic type parameterized by expression e
- \(\Sigma: \tau, \tau' \): Field sequence with cascading scope
- \(\{x: \tau|e\} \): Adding constraints to existing descriptions
- \(\tau + \tau' \): Alternatives
- \(\tau \circ \sigma(e, \tau, \tau') \): Open ended sequences
- \(\lambda e: \tau \): Parameterizing types by expressions.
- unit/bottom: Empty strings: ok/error
- absorb, compute, scan: "Active types"

Semantics Overview

- Well formed DDC type: \(\Gamma \vdash \tau : \kappa \)
- Representation for type \(\tau : [t]_{\text{typ}} \)
- Parse descriptor for type \(\tau : [t]_{\text{typ}} \)
- Parsing function for type \(\tau : [t] \)
 - \(\{ \tau \}: \text{bits} \rightarrow \text{offset} \rightarrow \text{offset} \times [t]_{\text{typ}} \times [t]_{\text{typ}} \)

Type Kinding

- Kinding ensures types are well formed.

\[
\begin{align*}
\Gamma \vdash \tau : \sigma & \Rightarrow \quad \Gamma \vdash e : \sigma \\
\Gamma \vdash \tau : \kappa & \\
\Gamma \vdash \tau \cdot \tau' : \tau &
\end{align*}
\]

\(\Gamma \vdash \tau : \text{type} \quad \Gamma \vdash \tau \cdot \tau' : \text{type} \)

\(\Gamma \vdash \tau : \text{type} \quad \Gamma, x : [t]_{\text{typ}} \times [t]_{\text{typ}} \vdash e : \text{bool} \)

\(\Gamma \vdash [x : \tau|e] : \text{type} \)

Selected Representation Types

- DDC: Host Language
- \([C(e)]_{\text{typ}} \): \(\{C\} + \text{noval} \)
- \([\Sigma: \tau, \tau']_{\text{typ}} \): \(\{\Sigma\} \times [\tau]_{\text{typ}} \)
- \(\{x: \tau|e\}_{\text{typ}} \): \(\{x\} \times [t]_{\text{typ}} \)
- \(\{t + \tau\}_{\text{typ}} \): \(\{t\} \times [t]_{\text{typ}} \)
- \(\{t \circ \sigma(e, \tau, \tau')\}_{\text{typ}} \): \(\{t\} \times [t]_{\text{typ}} \times [\tau]_{\text{typ}} \)
- \(\lambda x: \tau|\lambda e: \tau \): \(\{\lambda\} \times [\tau]_{\text{typ}} \)
- [unit]_{\text{typ}}: unit

Selected Parse Descriptor Types

- DDC: Host Language
- \(\text{pd}}_{\text{hdr}} = \text{int} \times \text{encode} \times \text{span}

Parsing Semantics of Types

- Semantics expressed as parsing functions written in the polymorphic \(\lambda \)-calculus.
 - \(\{\tau\}: \text{bits} \rightarrow \text{offset} \rightarrow \text{offset} \times [t]_{\text{typ}} \times [t]_{\text{typ}} \)
- Product case:

\[
\begin{align*}
\{\Sigma: \tau, \tau'\} &= \\
\lambda (\text{B, } \kappa). \\
\text{let } (\alpha_1, r_1, p_1) &= \{\tau\} (\text{B, } \kappa) \text{ in} \\
\text{let } x &= (t, p) \text{ in} \\
\text{let } (\alpha_2, r_2, p_2) &= \{\tau'\} (\text{B, } \kappa, \lambda) \text{ in} \\
(\alpha_2, R, (r_2, x, p), P, (p_1, p_2))
\end{align*}
\]
Properties of the Calculus

- **Theorem:** If \(\Gamma |- \tau : \kappa \) then
 - \(\Gamma |- [\tau] : \text{bin} \ast \text{offset} \rightarrow \text{offset} \ast [\tau]_{\text{up}} \ast [\tau]_{\text{down}} \)
 - Well-formed type \(\tau \) yields a parser that returns values with types corresponding to \(\tau \).
- **Theorem:** Parsers report errors accurately.
 - Errors in parse descriptor correspond to errors in representation.
 - Parsers check all semantic constraints.

Making Use of the Calculus

IPADS

Example: Pswitch

\[
\begin{align*}
\ell_1 & : \tau_1 \ (i = 1 \ldots n) \\
\ell_2 & : \tau_2 \\
\ell_{\text{def}} & : \tau_{\text{def}}
\end{align*}
\]

\[
\text{Pswitch} \ \text{e of} \ \{ \ell_1 \Rightarrow t_1; \ ell_2 \Rightarrow t_2; \ ... \ t_{\text{def}} \} \Rightarrow (\lambda c. \{ x: \tau_1 \mid c = e_1 \} + \{ x: \tau_2 \mid c = e_2 \} + \ldots + \tau_{\text{def}}) \ e
\]

Example: Plit

\[
\begin{align*}
\ell & : \tau \\
c & : \text{char}
\end{align*}
\]

\[
\text{Plit} \ c \Rightarrow \text{scan(absorb} \ (x: \text{char} \mid x = c))
\]

Example: Pswitch

\[
\begin{align*}
\ell_1 & : \tau_1 \ (i = 1 \ldots n) \\
\ell_2 & : \tau_2 \\
\ell_{\text{def}} & : \tau_{\text{def}}
\end{align*}
\]

\[
\text{Pswitch} \ \text{e of} \ \{ \ell_1 \Rightarrow t_1; \ ell_2 \Rightarrow t_2; \ ... \ t_{\text{def}} \} \Rightarrow (\lambda c. \{ x: \tau_1 \mid c = e_1 \} + \{ x: \tau_2 \mid c = e_2 \} + \ldots + \tau_{\text{def}}) \ e
\]

But this encoding of \(g \) isn't exactly right, as it parses the data as each branch until it reaches the matching tag.
Encoding Conditionals

\[
\text{if } e \text{ then } t_1 \text{ else } t_2
\]

\[
t_1 \Rightarrow \tau_1 \quad t_2 \Rightarrow \tau_2
\]

\[
\text{if } e \text{ then } t_1 \text{ else } t_2 \Rightarrow \{(x: \text{unit | } e) \Rightarrow (x: \text{unit | } e) + \tau_1\}
\]

Pswitch Revisted

- Encode Pswitch as a sequence of conditionals

\[
P\text{switch } e \{ \begin{align*}
e_1 & \Rightarrow \tau_1 \\
\vdots \\
e_n & \Rightarrow \tau_n \\
t_{\text{def}}
\end{align*}
\Rightarrow \text{if } x = e_1 \text{ then } t_1 \text{ else } \ldots \text{ if } x = e_n \text{ then } t_n \text{ else } t_{\text{def}}\}
\]

Other Features

- **PacketTypes**: arrays, where clauses, structures, overlays, and alternation.
- **DataScript**: set types (enumerations and bitmask sets), arrays, constraints, value-parameterized types, and (monotonically increasing labels).

Other Uses of the Semantics

- Bug hunting!
 - Non-termination of array parsing if no progress made.
 - Inconsistent parse descriptor construction.
- Principled extensions
 - Adding recursion (done)
 - Adding polymorphism (done in PADS/ML)
- Distinguishing the essential from the accidental
 - Highlights places where PADS/C sacrifices safety.
 - Punit and Pcompute: much more useful than originally thought
 - Punion: what if correct branch has an error?

Summary

- Data description languages are well-suited to describing ad hoc data.
- No one DDL will ever be right. Different domains and applications will demand different languages with differing levels of expressiveness and abstraction.
- Our work defines the first semantics for data description languages.
- For more information, visit www.padsproj.org