

Programming in Omega
Part 1

Tim Sheard
Portland State University

• Tim Sheard

• Computer Science
Department

• Portland State University

• Portland, Oregon

PSU

PL Research at Portland State University

• The Programming Language Group at PSU.
– Sergio Antoy (Curry)
– Andrew Black (Emerald)
– Mark Jones (Hugs, Constrained Types)
– Jim Hook (PacSoft)
– Tim Sheard (MetaML, Template Haskell, Omega)
– Andrew Tolmach (House)
– Galois Connections (John Launchbury) 3 train stops

away
• We are looking for new students. Come Join us,

or send your good graduates our way!
www.cs.pdx.edu

http://www.cs.pdx.edu/

Omega
• Omega is modeled after Haskell
• Additions

– Unbounded number of computational levels
• values (*0), types (*1), kind (*2), sorts (*3), …

– Data-structures at all levels
– Generalized Algebraic Datatypes
– Functions at all levels
– Staging

• Subtractions
– The class system
– Laziness

end-to-end example
– Unbounded number of computational levels

• values (*0), types (*1), kind (*2), sorts (*3), …
– Data-structures at all levels
– Functions at all levels

An object with Structure at the type Level

data Nat:: *1 where
 Z:: Nat
 S:: Nat ~> Nat the *1 means Nat is a

kind, and S and Z are
types

 Type functions

plus:: Nat ~> Nat ~> Nat
{plus Z m} = m
{plus (S n) m} = S {plus n m}

We write functions by using
pattern matching equations.

Every type function must have
a prototype.

At the type level
and above we

surround
function

application with
brackets

At the type level and
above, type constructor

application uses
juxatposition.

Using kinds to index types

data Seq:: *0 ~> Nat ~> *0 where
 Snil :: Seq a Z
 Scons:: a -> Seq a n -> Seq a (S n)

The second
argument to Seq

is a natural
number

*0 means Seq is
a type, and Snil
and Scons are

values

We explicitly classify both
Seq, and its constructor

functions, Snil and Scons,
with their full classification

Type indexed data
data Seq:: *0 ~> Nat ~> *0 where
 Snil :: Seq a Z
 Scons:: a -> Seq a n -> Seq a (S n)

• Parameters of data types, that are not of kind *0,
are type indexes.

• Indexes describe an invariant of the data.
• Consider a value of type
 (Seq Int (S Z))

This is a parameter,
we expect things of

type Int inside

This is an index, we don’t expect
things of type (S Z) inside, instead it

tells us the list has length 1

A value-level function whose type mentions
a type-level function

app:: Seq a n -> Seq a m -> Seq a {plus n m}
app Snil ys = ys
app (Scons x xs) ys = Scons x (app xs ys)

We write value-level
functions by using pattern

matching equations.

The plus function
appears in the type

of app

Type Checking

• Type checking is compile-time
computation.

Γ |- f : c → d Γ |- x : b b ≅ c
 Γ |- f x : d

b ≅ c means b is mutually consistent

Mutually consistent

• Pascal
– b ≅ c means b and c are structurally equal

• Haskell
– b ≅ c means b and c unify

• Java
– b ≅ c means b is a subtype of c

• Dependent typing
– b ≅ c means b and c “mean the same thing”

Type checking by constraint solving

• Every function leads to a set of constraints
• If the constraints have a solution, the

function is well typed.
• In Omega (as in dependent typing),

Constraints are all about the semantic
equality of type expressions.

Computing Equations

n = S b

Seq a (S b)

app (Scons x xs)

Seq a n

{plus n m} =
S{plus b m}

⇒equalities

Seq a (S{plus b m})Seq a mcomputed
type

Scons x (app xs ys)=ysequation

Seq a {plus n m}→Seq a m→expected
type

app:: Seq a n -> Seq a m -> Seq a {plus n m}
app Snil ys = ys
app (Scons x xs) ys = Scons x (app xs ys)

Exercise 1
• Write an Omega function that defines the length function

over sequences.
length:: Seq a n -> Int
• You will need to create a file, and paste the definition for Seq into the file, as well as write the length function.The Nat kind is predefined. You will need to include the

function prototype, above, in your file (type inference is
limited in Omega).

• How might we reflect the fact that the resulting Int
should have size n?

Guide to the rest of Lecture 1
• New Features

– Kinds
– Functions at the type level
– GADTs – Generalized algebraic datatypes

• New Patterns
– witnesses
– comparing type functions and witnesses
– singleton types
– Nat’ (a pun)

Kinds

Objects with Structure at the type Level

data Nat:: *1 where
 Z:: Nat
 S:: Nat ~> Nat

• A kind of natural numbers
– Classifies types Z, S Z, S (S Z)…
– Such types don’t classify values

*1 means a kind

Z and S are
types

5

Int

*0

*1

[5]

[Int]

*0

[]

*0 ~> *0

Succ

Nat ~> Nat

Zero

Nat

*2 A hierarchy of
values, types, kinds,
sorts, …

values

types

kinds

sorts

Haskell portion
of the

hierarchy

Example Kinds
data State:: *1 where
 Locked:: State
 Unlocked:: State
 Error:: State
data Color:: *1 where
 Red:: Color
 Black:: Color

More Examples

data Boolean:: *1 where
 T:: Boolean
 F:: Boolean

data Shape :: *1 where
 Tp:: Shape
 Nd:: Shape
 Fk:: Shape ~> Shape ~> Shape

Exercise 3
• Write a data declaration introducing a new kind

called Color with types Red and Black.
Are there any values with type Red? Now write
a data declaration introducing a new type Tree
which is indexed by Color (this will be similar
to the use of Nat in the declaration of Seq).

• There should be some values classified by the
type (Tree Red),and others classified by
the type (Tree Black).

GADTS

• How do GADTs generalize ADTS?
– at every level (instead of just at level *0)
– ranges are not restricted to distinct variables

• How are they declared?
• What kind of expressive power do they

add?

ADT Declaration
• Structures

– data Person = P Name Age Address
• Unions

– data Color = Red | Blue | Yellow
• Recursive

– data IntList = None
– | Add Int IntList

• Parameterized (polymorhphic)
– data List a = Nil | Cons a (List a)

Algebraic Datatypes

• Inductively formed structured data
– Generalizes enumerations, records & tagged

variants
• Well typed constructor functions are used

to prevent the construction of ill-formed
data.

• Pattern matching allows abstract high level
(yet still efficient) access

ADT’s provide an
abstract interface to heap data.

• Data Tree a
 = Fork (Tree a) (Tree a)
 | Node a
 | Tip

• Fork :: Tree a -> Tree a -> Tree a
• Node :: a -> Tree a
• Tip :: Tree a

Note the “data” declaration
introduces values and functions
that construct instances of the new
type.

We can define
parametric

polymorphic data

Inductivley defined
data allows
structures of

unbounded size

Deconstruction by pattern matching
Fork

Fork Node
6

Tip Tip
Sum :: Tree Int -> Int
Sum Tip = 0
Sum (Node x) = x
Sum (Fork m n) = sum m + sum n

We observe the tags by
using pattern matching

Constructors are
tags on data

ADT Type Restrictions
• Data Tree a
 = Fork (Tree a) (Tree a)
 | Node a
 | Tip

• Fork :: Tree a -> Tree a -> Tree a
• Node :: a -> Tree a
• Tip :: Tree a Restriction: the range of

every constructor
matches exactly the
type being defined

GADTS at every level

data Shape :: *1 where
 Tp:: Shape
 Nd:: Shape
 Fk:: Shape ~> Shape ~> Shape

The range of the introduced type selects the levels that
the GADT introduces its constructors.

Shape is a kind, Tp, Nd, and Fk are types

Recall he
kind shape

GADTs remove the range restriction

data Tree :: Shape ~> *0 ~> *0 where
 Tip:: Tree Tp a
 Node:: a -> Tree Nd a
 Fork:: Tree x a -> Tree y a -> Tree (Fk x y) a

• Instead of indicating the arity of a type constructor

by naming its parameters, give an explicit kind

• Give the explicit type for every constructor to
remove the range restriction.

Note the
different range

types!

Trees are indexed by Shape
Tree :: Shape ~> *0 ~> *0 where
Tip:: Tree Tp a
 Node:: a -> Tree Nd a
 Fork:: Tree x a -> Tree y a -> Tree (Fk x y) a

The kind index tells us about the shape of the tree. We can exploit this invariant

data Path:: Shape ~> *0 ~> *0 where
 None :: Path Tp a
 Here :: b -> Path Nd b
 Left :: Path x a -> Path (Fk x y) a
 Right:: Path y a -> Path (Fk x y) a

We can write functions whose
types tells us important properties

find:: (a -> a -> Bool) -> a ->
 Tree s a -> [Path s a]
find eq n Tip = []
find eq n (Node m) =
 if eq n m then [Here n] else []
find eq n (Fork x y) =
 map Left (find eq n x) ++
 map Right (find eq n y)

Exercises 7-8
• Write an Omega function with type

– extract:: Path sh a -> Tree sh a -> a
 which extracts the value of type a, stored in the tree at the location

pointed to by the path. This function will pattern match over two
arguments simultaneously. Some combinations of patterns are not
necessary. Why? See section 3.10 for how you can document this
fact.

• Replicate the shape index pattern for lists. Write two Omega
GADTs. One at the kind level which encodes the shape of lists, and
one at the type level for lists indexed by their shape. Also, write a
find function for your new types.
 find:: (a -> a -> Bool) -> a ->
 List sh a -> Maybe(ListPath sh a)

 which returns the first path, if one exists.

Functions over types
even :: Nat ~> Boolean
{even Z} = T
{even (S Z)} = F
{even (S (S n))} = {even n}

More examples
and:: Boolean ~> Boolean ~> Boolean
{and T x} = x
{and F x} = F

le:: Nat ~> Nat ~> Boolean
{le Z n} = T
{le (S n) Z} = F
{le (S n) (S m)} = {le n m}

Exercise 4-6
• Write the function mult, which is the multiplication

function at the type level over natural numbers. It should
be classified by the kind
– mult:: Nat ~> Nat ~> Nat

• Write the odd function classified by
– Nat ~> Boolean

• Write the or and not functions, that are classified by the
kinds
– or:: Boolean ~> Boolean ~> Boolean
– not:: Boolean ~> Boolean

• Which arguments of or should you pattern match over?
Does it matter? Experiment, Omega won't allow some
combinations. See Appendix 2 on inductively sequential
definitions and narrowing for the reason why.

Employing type functions
app:: Seq a n -> Seq a m -> Seq a {plus n m}
app Snil ys = ys
app (Scons x xs) ys = Scons x (app xs ys)

• Normal functions at the value level are given function
prototypes by the programmer, that use functions at the type
level.

• The type-functions relate (in a functional manner) the type
indexes of the inputs and outputs. They relate the invariants,
and hence say something about what the function does.

Curry-Howard isomorphism

• The Curry-Howard isomorphism states
that there is an isomorphism between
programs/types and proofs/propositions

• What does this mean?
• How can we put this powerful idea to work

in practical ways?

Curry-Howard

O(E (O Z)) :: Odd (1+1+1+0)

program type

proof property

O(E(O z)) :: Odd 3

E(O Z):: Even 2

O Z :: Odd 1

Z :: Even 0

Odd 3

What is a proof?

Properties or Propositions

3

Am I odd
or even?

3 is odd, if
2 is even, if

1 is odd, if
 0 is even

Requirements for a legal proof

•Even is always stacked above odd

•Odd is always stacked below even

•The numeral decreases by one in each stack

•Every stack ends with 0

Introduce new data indexed by Nat

data Even:: Nat ~> *0 where …
Z:: Even 0
E:: Odd m -> Even (m+1)

data Odd:: Nat ~> *0 where …
O:: Even m -> Odd (m+1)

Note the
different range
types! GADTS
are essential

here!

Properties as Functional Programs

data Even m = …
Z:: Even 0
E:: Odd m -> Even (m+1)

data Odd m = …
O:: Even m -> Odd (m+1)

O(E (O Z))
 :: Odd (1+1+1+0)

O(E(O z)) :: Odd 3

E(O Z):: Even 2

O Z :: Odd 1

Z :: Even 0

Note Even and Odd are type
constructors, Z,E, and O are
data constructors

Observation: Proofs are
Data!

Relationships between types
data LE :: Nat ~> Nat ~> *0 where
 Base:: LE Z x
 Step:: LE x y -> LE (S x) (S y)

le23 :: LE #2 #3
le23 = Step(Step Base)

le2x :: LE #2 #(2+a)
le2x = Step(Step Base)

Type Functions v.s. Witnesses
even:: Nat ~> Boolean
{even Z} = T
{even (S Z)} = F
{even (S (S n))} =
 {even n}

le:: Nat ~> Nat
 ~> Boolean
{le Z n} = T
{le (S n) Z} = F
{le (S n) (S m)} =
 {le n m}

data Even:: Nat ~> *0
where

 EvenZ:: Even Z
 EvenSS:: Even n ->
 Even (S (S n))

data LE:: Nat ~> Nat ~> *0
where

 LeZ:: LE Z n
 LeS:: LE n m ->
 LE (S n) (S m)

Relating functions & witnesses

data Proof:: Boolean ~> *0 where
 Triv:: Proof T

Exercises 10-11
Consider:

data Plus:: Nat ~> Nat ~> Nat ~> *0 where
 PlusZ:: Plus Z m m
 PlusS:: Plus n m z -> Plus (S n) m (S z)
• Construct terms with the types (Plus 2t 3t 5t), (Plus 2t 1t 3t), and (Plus 2t 6t 8t). What did you discover?

• Write an Omega function with the following type:
summandLessThanSum:: Plus a b c -> LE a c

 Hint: it is a recursive function. Can you write a similar function
with type (Plus a b c -> LE b c)?

Singleton Types
• GADTs allow us to reflect the structure of types

as structure (data) at the value level

data Nat’ :: Nat ~> *0 where
 Z :: Nat’ Z
 S :: Nat’ x -> Nat’ (S x)

Exploits the separation between the value
name space and the type name space.
Because of this declaration Z and S are

added to the value name space.
Z
(S Z)

Values

(Nat’ Z)
Z
(S Z)

Types

NatKinds

Properties of Singleton Types
• Only one element inhabits any singleton type.
• The shape of that value is in 1-to-1

correspondance with the type index of the type
of that value
– S(S(S Z)) :: Nat‘ (S(S(S Z))

• If you know the type of a singleton, you know its
shape.

• You can discover the type of a singleton value
by exploring its shape.

Exercise 13-14
• Write the two Omega functions with types:

same:: Nat' n -> LE n n
 and

predLE:: Nat' n -> LE n (S n)
 Hint they are simple recursive functions.

• Write the Omega function which witnesses the transitivity

of the less-than-or-equal to predicate.
trans:: LE a b -> LE b c -> LE a c

 Hint: it is a recursive function with pattern matching over
both arguments. One of the cases is not reachable.

Exercise 9
• Consider the GADT below.

data Rep :: *0 ~> *0 where
 Int :: Rep Int
 Prod :: Rep a -> Rep b -> Rep (a,b)
 List :: Rep a -> Rep [a]

• Construct a few terms. Do you note any thing interesting
about this type? Write a function with the following type:
showR:: Rep a -> a -> String

• which given values of type (Rep a) and a, displays the
second as a string. Extend this GADT with a few more
constructors, then extend your showR function as well.

Why can’t we do this in traditional
languages like C or even in more
modern languages like Haskell?

• Most traditional languages like C don’t have strong type
systems that enforce the discipline necessary,

• Even in Haskell, we can’t create data structures whose
types can capture the types of Z, E, and O.

• We can’t parameterize types (like Even and Odd) with
objects like Z and (S Z) since these are values not types.

Next time

• We will discover how to use all these new
tools.

