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PL Research at Portland State University

• The Programming Language Group at PSU.
– Sergio Antoy (Curry)
– Andrew Black (Emerald)
– Mark Jones (Hugs, Constrained Types)
– Jim Hook (PacSoft)
– Tim Sheard (MetaML, Template Haskell, Omega)
– Andrew Tolmach (House)
– Galois Connections (John Launchbury) 3 train stops 

away
• We are looking for new students. Come Join us, 

or send your good graduates our way!  
www.cs.pdx.edu

http://www.cs.pdx.edu/


  

Omega
• Omega is modeled after Haskell
• Additions

– Unbounded number of computational levels
• values (*0), types (*1), kind (*2), sorts (*3), …

– Data-structures at all levels 
– Generalized Algebraic Datatypes
– Functions at all levels
– Staging

• Subtractions
– The class system
– Laziness



  

end-to-end example
– Unbounded number of computational levels

• values (*0), types (*1), kind (*2), sorts (*3), …
– Data-structures at all levels 
– Functions at all levels

An object with Structure at the type Level

data Nat:: *1 where
  Z:: Nat
  S:: Nat ~> Nat the *1 means Nat is a 

kind, and S and Z are 
types



  

                 Type functions 

plus:: Nat ~> Nat ~> Nat
{plus Z m} = m
{plus (S n) m} = S {plus n m}

We write functions by using 
pattern matching equations.

Every type function must have 
a prototype.

At the type level 
and above we 

surround 
function 

application with 
brackets

At the type level and 
above, type constructor 

application uses
juxatposition. 



  



  

Using kinds to index types

data Seq:: *0 ~> Nat ~> *0 where
  Snil :: Seq a Z
  Scons:: a -> Seq a n -> Seq a (S n)

The second 
argument to Seq 

is a natural 
number

*0 means Seq is 
a type, and Snil 
and Scons are 

values

We explicitly classify both 
Seq, and its constructor 

functions, Snil and Scons, 
with their full classification



  

Type indexed data
data Seq:: *0 ~> Nat ~> *0 where
  Snil :: Seq a Z
  Scons:: a -> Seq a n -> Seq a (S n)

• Parameters of data types, that are not of kind *0, 
are type indexes. 

• Indexes describe an invariant of the data.
• Consider a value of type 
   (Seq Int (S Z))

This is a parameter, 
we expect things of 

type Int inside

This is an index, we don’t expect 
things of type (S Z)  inside, instead it 

tells us the list has length 1



  

A value-level function whose type mentions 
a type-level function

app:: Seq a n -> Seq a m -> Seq a {plus n m}
app Snil ys = ys
app (Scons x xs) ys = Scons x (app xs ys)

We write value-level 
functions by using pattern 

matching equations.

The plus function 
appears in the type 

of app



  

Type Checking

• Type checking  is  compile-time 
computation.

Γ |- f : c → d      Γ |- x : b    b ≅  c
              Γ |- f  x : d

b ≅  c   means  b is mutually consistent



  

Mutually consistent

• Pascal
–   b ≅  c   means  b and  c  are structurally equal

• Haskell
–   b ≅  c   means  b and  c unify

• Java
– b ≅  c   means  b  is a subtype of  c

• Dependent typing
– b ≅  c   means  b and  c  “mean the same thing”



  

Type checking by constraint solving

• Every function leads to a set of constraints
• If the constraints have a solution, the 

function is well typed.
• In Omega (as in dependent typing), 

Constraints are all about the semantic 
equality of type expressions.



  

Computing Equations

n = S b

Seq a (S b)

app (Scons x xs)

Seq a n

{plus n m} = 
S{plus b m}

⇒equalities

Seq a (S{plus b m})Seq a mcomputed 
type

Scons x (app xs ys)=ysequation

Seq a {plus n m}→Seq a m→expected 
type

app:: Seq a n -> Seq a m -> Seq a {plus n m}
app Snil ys = ys
app (Scons x xs) ys = Scons x (app xs ys)



  

Exercise 1
• Write an Omega function that defines the length function 

over sequences.
length:: Seq a n -> Int
• You will need to create a file, and paste the definition for Seq into the file, as well as write the length function.The Nat kind is predefined. You will need to include the 

function prototype, above, in your file (type inference is 
limited in Omega).

•  How might we reflect the fact that the resulting Int 
should have size n? 



  

Guide to the rest of Lecture 1
• New Features

– Kinds 
– Functions at the type level
– GADTs – Generalized algebraic datatypes

• New Patterns
– witnesses
– comparing type functions and witnesses
– singleton types
– Nat’  (a pun)



  

Kinds

Objects with Structure at the type Level

data Nat:: *1 where
  Z:: Nat
  S:: Nat ~> Nat

• A kind of natural numbers
– Classifies types Z,    S Z,     S (S Z)…
– Such types don’t classify values

*1 means a kind

Z and S are 
types



  

5

Int

*0

*1

[5]

[ Int ]

*0

[ ]

*0 ~> *0

Succ

Nat ~> Nat

Zero

Nat

*2 A hierarchy of 
values, types, kinds, 
sorts, …

values

types

kinds

sorts

Haskell portion 
of the 

hierarchy



  

Example Kinds
data State:: *1   where
  Locked:: State
  Unlocked:: State
  Error:: State
data Color:: *1 where
  Red:: Color
  Black:: Color



  

More Examples

data Boolean:: *1 where
  T:: Boolean
  F:: Boolean 

data Shape :: *1 where 
  Tp:: Shape
  Nd:: Shape
  Fk:: Shape ~> Shape ~> Shape



  

Exercise 3
• Write a data declaration introducing a new kind 

called  Color with types  Red and  Black. 
Are there any values with type  Red? Now write 
a data declaration introducing a new type  Tree 
which is indexed by  Color (this will be similar 
to the use of  Nat in the declaration of Seq).

• There should be some values classified by the 
type  (Tree Red),and others classified by 
the type  (Tree Black).



  

GADTS

• How do GADTs generalize ADTS?
– at every level (instead of just at level *0)
– ranges are not restricted to distinct variables

• How are they declared?
• What kind of expressive power do they 

add?



  

ADT Declaration
• Structures

– data Person = P Name Age Address
• Unions

– data Color = Red | Blue | Yellow
• Recursive

– data IntList = None 
–              | Add Int IntList

• Parameterized (polymorhphic)
– data List a = Nil | Cons a (List a)



  

Algebraic Datatypes

• Inductively formed structured data
– Generalizes enumerations, records & tagged 

variants
• Well typed constructor functions are used 

to prevent the construction of ill-formed 
data.

• Pattern matching allows abstract high level 
(yet still efficient) access



  

ADT’s provide an 
abstract interface to heap data.

• Data Tree a 
   = Fork (Tree a) (Tree a) 
   | Node a 
   | Tip

• Fork :: Tree a -> Tree a -> Tree a
• Node :: a -> Tree a
• Tip :: Tree a

Note the “data” declaration
introduces values and functions 
that construct instances of the new 
type.

We can define 
parametric 

polymorphic data

Inductivley defined 
data allows 
structures of 

unbounded size



  

Deconstruction by pattern matching
Fork

Fork Node
6

Tip Tip
Sum :: Tree Int -> Int
Sum Tip = 0
Sum (Node x) = x
Sum (Fork m n) = sum m + sum n

We observe the tags by 
using pattern matching

Constructors are 
tags on data



  

ADT Type Restrictions
• Data Tree a 
   = Fork (Tree a) (Tree a) 
   | Node a 
   | Tip

• Fork :: Tree a -> Tree a -> Tree a
• Node :: a -> Tree a
• Tip :: Tree a Restriction:  the range of 

every constructor 
matches exactly the 
type being defined



  

GADTS at every level

data Shape :: *1 where 
  Tp:: Shape
  Nd:: Shape
  Fk:: Shape ~> Shape ~> Shape

The range of the introduced type selects the levels that 
the GADT introduces its constructors.

Shape is a kind, Tp, Nd, and Fk are types

Recall he 
kind shape



  

GADTs remove the range restriction 

 
data Tree :: Shape ~> *0 ~> *0 where
  Tip:: Tree Tp a
  Node:: a -> Tree Nd a
  Fork::  Tree x a -> Tree y a -> Tree (Fk x y) a
 
• Instead of indicating the arity of a type constructor 

by naming its parameters, give an explicit kind

• Give the explicit type for every constructor to 
remove the range restriction.

Note the 
different range 

types!



  

Trees are indexed by Shape
Tree :: Shape ~> *0 ~> *0 where
Tip:: Tree Tp a
  Node:: a -> Tree Nd a
  Fork::  Tree x a -> Tree y a -> Tree (Fk x y) a
 
The kind index tells us about the shape of the tree. We can exploit this invariant

data Path:: Shape ~> *0 ~> *0 where
  None :: Path Tp a
  Here :: b -> Path Nd b
  Left :: Path x a -> Path (Fk x y) a
  Right:: Path y a -> Path (Fk x y) a



  

We can write functions whose 
types tells us important properties

find:: (a -> a -> Bool) -> a ->
        Tree s a -> [Path s a]
find eq n Tip = []
find eq n (Node m) =
  if eq n m then [Here n] else []
find eq n (Fork x y) = 
  map Left (find eq n x) ++ 
  map Right (find eq n y)



  

Exercises 7-8
• Write an Omega function with type

– extract:: Path sh a -> Tree sh a -> a
    which extracts the value of type a, stored in the tree at the location 

pointed to by the path. This function will pattern match over two 
arguments simultaneously. Some combinations of patterns are not 
necessary. Why? See section 3.10 for how you can document this 
fact.

• Replicate the shape index pattern for lists. Write two Omega 
GADTs. One at the kind level which encodes the shape of lists, and 
one at the type level for lists indexed by their shape. Also, write a 
find function for your new types. 
 find:: (a -> a -> Bool) -> a -> 
        List sh a -> Maybe(ListPath sh a)

     which returns the first path, if one exists.



  

Functions over types
even :: Nat ~> Boolean
{even Z} = T
{even (S Z)} = F
{even (S (S n))} = {even n}
 



  

More examples
and:: Boolean ~> Boolean ~> Boolean
{and T x} = x
{and F x} = F

le:: Nat ~> Nat ~> Boolean 
{le Z n} = T
{le (S n) Z} = F
{le (S n) (S m)} = {le n m}



  

Exercise 4-6
• Write the function mult, which is the multiplication 

function at the type level over natural numbers. It should 
be classified by the kind
– mult:: Nat ~> Nat ~> Nat

• Write the odd function classified by 
– Nat ~> Boolean

• Write the  or and not functions, that are classified by the 
kinds
– or:: Boolean ~> Boolean ~> Boolean
– not:: Boolean ~> Boolean

• Which arguments of or should you pattern match over? 
Does it matter? Experiment, Omega won't allow some 
combinations. See Appendix 2 on inductively sequential 
definitions and narrowing for the reason why.



  

Employing type functions
app:: Seq a n -> Seq a m -> Seq a {plus n m}
app Snil ys = ys
app (Scons x xs) ys  = Scons x (app xs ys)

• Normal functions at the value level are given function 
prototypes by the programmer, that use functions at the type 
level.

• The type-functions relate (in a functional manner) the type 
indexes of the inputs and outputs. They relate the invariants, 
and hence say something about what the function does.



  

Curry-Howard isomorphism

• The Curry-Howard isomorphism states 
that there is an isomorphism between 
programs/types and proofs/propositions

• What does this mean?
• How can we put this powerful idea to work 

in practical ways?



  

Curry-Howard

O(E (O Z))  :: Odd (1+1+1+0)

program type

proof property

O(E(O z)) :: Odd 3

E(O Z):: Even 2

O Z :: Odd 1

Z :: Even 0

Odd 3

What is a proof?



  

Properties or Propositions

3

Am I odd 
or even?

3 is odd,  if 
2 is even,  if 

1 is odd,  if 
 0 is even 

Requirements for a legal proof

•Even is always stacked above odd

•Odd is always stacked below even

•The numeral decreases by one in each stack

•Every stack ends with 0



  

Introduce new data indexed by Nat

data Even:: Nat ~> *0 where …
Z:: Even 0
E:: Odd m -> Even (m+1)

data Odd:: Nat ~> *0 where …
O:: Even m -> Odd (m+1)
 

Note the 
different range 
types! GADTS 
are essential 

here!



  

Properties as Functional Programs

data Even m = …
Z:: Even 0
E:: Odd m -> Even (m+1)

data Odd m = …
O:: Even m -> Odd (m+1)

O(E (O Z)) 
   :: Odd (1+1+1+0)

O(E(O z)) :: Odd 3

E(O Z):: Even 2

O Z :: Odd 1

Z :: Even 0

Note Even and Odd are type 
constructors, Z,E, and O are 
data constructors

Observation: Proofs are 
Data!



  

Relationships between types
data LE :: Nat ~> Nat ~> *0  where
  Base:: LE Z x
  Step:: LE x y -> LE (S x) (S y) 

le23 :: LE #2 #3
le23 = Step(Step Base)

le2x :: LE #2 #(2+a)
le2x = Step(Step Base)



  

Type Functions v.s. Witnesses
even:: Nat ~> Boolean
{even Z} = T
{even (S Z)} = F
{even (S (S n))} = 
    {even n}
 
le:: Nat ~> Nat 
     ~> Boolean 
{le Z n} = T
{le (S n) Z} = F
{le (S n) (S m)} = 
   {le n m}

data Even:: Nat ~> *0 
where

   EvenZ:: Even Z
   EvenSS:: Even n ->
            Even (S (S n))

data LE:: Nat ~> Nat ~> *0 
where

   LeZ:: LE Z n
   LeS:: LE n m -> 
         LE (S n) (S m)



  

Relating functions & witnesses

data Proof:: Boolean ~> *0 where
  Triv:: Proof T



  

Exercises 10-11
Consider:

data Plus:: Nat ~> Nat ~> Nat ~> *0  where
  PlusZ:: Plus Z m m
  PlusS:: Plus n m z -> Plus (S n) m (S z)
• Construct terms with the types (Plus 2t 3t 5t), (Plus 2t 1t 3t), and (Plus 2t 6t 8t).  What did you discover?
 

• Write an Omega function with the following type:
summandLessThanSum:: Plus a b c -> LE a c

    Hint: it is a recursive function. Can you write a similar function 
with type (Plus a b c -> LE b c)?



  

Singleton Types
• GADTs allow us to reflect the structure of types 

as structure (data) at the value level

data Nat’ :: Nat ~> *0 where
  Z :: Nat’ Z
  S :: Nat’ x -> Nat’ (S x)

Exploits the separation between the value 
name space and the type name space.
Because of this declaration Z and S are 

added to the value name space.
Z
(S Z)

Values

(Nat’ Z)
Z
(S Z)

Types

NatKinds



  

Properties of Singleton Types
• Only one element inhabits any singleton type.
• The shape of that value is in 1-to-1 

correspondance with the type index of the type 
of that value
– S(S(S Z)) :: Nat‘ (S(S(S Z))

• If you know the type of a singleton, you know its 
shape.

• You can discover the type of a singleton value 
by exploring its shape.



  

Exercise 13-14
• Write the two Omega functions with types: 

same:: Nat' n -> LE n n
    and

predLE:: Nat' n -> LE n (S n)
    Hint they are simple recursive functions.
 
• Write the Omega function which witnesses the transitivity 

of the less-than-or-equal to predicate.
trans:: LE a b -> LE b c -> LE a c

    Hint: it is a recursive function with pattern matching over 
both arguments. One of the cases is not reachable.  



  

Exercise 9
• Consider the GADT below.

data Rep :: *0 ~> *0 where
   Int :: Rep Int
   Prod :: Rep a -> Rep b -> Rep (a,b)
   List :: Rep a -> Rep [a]

• Construct a few terms. Do you note any thing interesting 
about this type? Write a function with the following type:
showR:: Rep a -> a -> String

• which given values of type (Rep a) and a, displays the 
second as a string. Extend this GADT with a few more 
constructors, then extend your showR function as well.



  

Why can’t we do this in traditional 
languages like C or even in more 
modern languages like Haskell?

• Most traditional languages like C don’t have strong type 
systems that enforce the discipline necessary,

• Even in Haskell, we can’t create data structures whose 
types can capture the types of Z, E, and O.

• We can’t parameterize types (like Even and Odd) with 
objects like Z and (S Z) since these are values not types.



  

Next time

• We will discover how to use all these new 
tools.


