Programming in Omega
Part 3

Tim Sheard
Portland State University

Monotonic sorting functions

Sort :: [Nat’ n] -> Dss m

* Two problems

— First, a list with type [Nat n] has elements all the same
size, so sorting is unnecessary. What we want is
* [existsn.Nat'n]

— Second we can’t know the size of the largest element
of the sorted list in advance.

Sort :: [exists n . Nat’ n] -> (exists m . Dss m)

Covert Types

data Covert:: (Nat ~> *0) ~> *0 where

Hide: : (t x) -> Covert t
inputList :: [Covert Nat']
inputlList =

[Hide #1,Hide #2,Hide #4, Hide #3]

msort :: [Covert Nat'] -> Covert Dss

Merge Sort

split [] pair = pair
split [x] (xs,ys) = (x:xs,ys)
split (x:y:zs) (xs,ys) = split zs (x:xs,y:ys)

msort :: [Covert Nat'] -> Covert Dss
msort [] = Hide Dnil
msort [Hide x] = Hide (Dcons x Base Dnil)

msort xs = let (y,z) = split xs ([]1,I[])
(Hide ys) = msort y
(Hide zs) = msort z
in case merge ys zs of
Left z -> Hide =z
Right z -> Hide =z

Test it!

inputlList =
[Hide #1,Hide #2,Hide #4, Hide #3]

ans = msort inputList

Hide (Dcons #4 (Step (Step (Step Base)))
(Dcons #3 (Step (Step Base))
(Dcons #2 (Step Base)
(Dcons #1 Base Dnil))))

Problems

* Do we really need to store the (LE a b)
witness in the cons cell?

* It's large, its costly to compute, and we
must produce it at run-time

* Can we push these costs into compile-
time activities

The prop declaration

prop LE :: Nat ~> Nat ~> *0 where
Base:: LE Z a
Step:: LE a b -> LE (S a) (S b)

* Exactly like a data declaration. Introduces the type LE
and the constructor functions Base and Step

* (LE a b) is also introduced as a constraint like (Eq Int) or
(Show Bool).

* prop introduces the prolog like discharging rules:
— Base: LE Z a
— Step: LE (S a) (S b) :- LE a b

* These follow directly from the type of the constructor
functions.

Static Sorted Sequences

data Sss:: Nat ~> *0 where
Snil:: Sss #0
Scons:: LE a b => Nat' b -> Sss a -> Sss b

* We make the (LE a b) proof be a static obligation,
that must be discharged at compile time

* Constrained type system just like Haskell

\ x Y 2 -> Scons x (Scons y z)
(LE a b,LE b ¢) => Nat' ¢ -> Nat' b -> Sss a -> Sss c

Unit size withesses

* Once we have static propositions we can build unit size
witness objects.

data LE' :: Nat ~> Nat ~> *(
where LE:: (LE m n) => LE' m n

le23 :: LE #2 #3 /Step and Base are\
le23 = Step(Step Base) constructors of LE
LE is the only

Le23’ :: LE’ #2 #3 constructorofLE’/
Le23’ = LE \V

Unit size withess save space

compare :: Nat' a -> Nat' b -> Either (LE' a b) (LE' b a)

compare Z Z = Left LE
compare Z (S x) =
case compare Z x of
Left LE -> Left LE
Right LE -> Left LE
compare (S x) Z =
case compare x Z of
Right LE -> Right LE
Left LE -> Right LE
compare (S x) (S y) =
case compare x y of
Right LE -> Right LE
Left LE -> Left LE

How does it work?

compare (a@(S x)) (bQ(S y)) =
case compare x y of
Right (p@QLE) -> Right LE
Left LE -> Left LE

a :: Nat' #(1+ _c)
*b :: Nat' #(1+_d)
x :: Nat' c

y

:: Nat' d

* compare x y :: Either(LE' c¢ d)(LE' d c)
‘*p :: LE' d c

Static Merging

merge2 :: Sss n -> Sss m -> Either(Sss n) (Sss m)
merge2 Snil ys = Right ys
merge2 xs Snil = Left xs
merge2 (a@(Scons x xs)) (bQ(Scons y ys)) =
case compare x y of
Left LE -> case merge2 a ys of
Left ws -> R(Scons y ws)

Right ws -> R(Scons y ws)
Right LE -> case merge2 b xs of

Left ws -> Left(Scons x ws)

Right ws -> Left(Scons x ws)

Static Sorting

msort2 :: [Covert Nat'] -> Covert Sss
msort2 [] = Hide Snil
msort2 [Hide x] = Hide(Scons x Snil)

msort2 xs =
let (y,z) = split xs ([1,[])
(Hide ys) = msort2 y
(Hide zs) = msort2 z
in case merge2 ys zs of
Left z -> Hide z
Right z -> Hide z

ans2 = msort2 inputList

Hide (Scons #4 (Scons #3
(Scons #2 (Scons #1 Snil))))

Logics and Languages

* Logical Languages
— Logical part (quantifiers and connectives)

— Extra-logical (constants, functions, predicates)
* These are the domain of discourse in the logic

* Curry-Howard provides a good mechanism for the first
part. But we often lack extra-logical operations that relate
directly to the programs we are trying to reason about.

* GADT's, Kinds, Witnesses, Singletons, are the extra-
logical terms, and are semantically connected to the
program.

Strategy

* Extend your favorite language (Haskell)
— New constructs to encode propositions as types
* GADTs (forexample:O(E (O Z)))

— New constructs to build extra-logical operators that
relate directly to the programs of interest

* Extensible Kinds (for example: 0dd (1+1+1+0))

— New use of the constrained type system of Haskell to
manage and solve constraints
 Static propositions and constraint solving rules

* The logic and the language become 1 entity.

Benefits

* New constructs (GADTs and Kinds)
provide a direct link between a program
and its properties

* Each of the new constructs has semantic
meaning within the language.
— The connection between the property and the

program is not clouded by an imprecise
encoding

Benefits (continued)

* Management of constraints is performed
inside the language, they cannot be |lost,
forgotten, mislaid, or forged

* Constraint solving can be either dynamic
(flexible) or static (efficient). The
framework provides a mechanism for
effortlessly sliding between the two
mechanisms, even in the same program.

Pattern Review

Indexed Datatypes (List a n)

Witness types (LE n m)

Singleton Types (Nat’ n)

Dynamically Creating Witnesses (compare)
One point types (LE’)

Storing Proofs in Data (Dss)

Using type functions to relate properties of
inputs and outputs (app)

Other Examples we have done

Typed, staged interpreters

— For languages with binding, with patterns, algebraic datatypes
Type preserving transformations

— Simplify :: Exp t -> Exp t

— Cps:: Exp t -> Exp {trans t}

Proof carrying code

Data Structures
— Red-Black trees, Binomial Heaps , Static length lists

Languages with security properties

Typed self-describing databases, where meta data in the
database describes the database schema

Programs that slip easily between dynamic and statically
typed sections. Type-case is easy to encode with no
additional mechanism

Some other examples

* Typed Lambda Calculus
* A Language with Security Domains

* A Language which enforces an interaction
protocol

Typed lambda Calculus
Exp with type t in environment s

data V:: *0 ~> *0 ~> * 0 where
Z:: V (t,m) t
S:: (Vm¢t) ->V (x,m) t

data Exp:: *0 ~> *0 ~> * 0 where
IntC:: Int -> Exp s Int
BoolC:: Bool -> Exp s Bool
Plus:: (Exp s Int) -> (Exp s Int) -> Exp s Int
Lteq:: (Exp s Int) -> (Exp s Int) -> Exp s Bool
Var:: (V. s t) -> Exp s t

Language with Security Domains
Exp with type t in env s in domain d

kind Domain = High | Low

data D t
= Lo where t = Low
| Hi where t = High
data Dless x y
= LH where x = Low , y = High
| LL where x = Low, y = Low
| HH where x = High, y = High

data Exp s d t
= Int Int where t = Int
| Bool Bool where t = Bool
| Plus (Exp s d Int) (Exp s d Int) where t Int
I
I

Bool

Lteq (Exp s d Int) (Exp s d Int) where t
forall d2 . Var (V s d2 t) (Dless d2 d)

Language with interaction prototcol

Command with store st starting in state x,

ending in state y

kind State = Open | Closed
open
data V s t
= forall st . Z where s = (t,st)
| forall st t1 . S (V st t)
where s = (tl,st) close

data Com st x y
forall t .

write

Set (V st t) (Exp st t) where x=y

forall a . Seq (Com st x a)

(Com st a y)

If (Exp st Bool)

(Com st x y)

(Com st x y)

(Com st x y) where x =y

forall t . Declare (Exp st t)

(Com (t,st) x y)

I
I
| While (Exp st Bool)
I
I
I
I

Open where x = Closed, y = Open
Close where x = Open, y = Closed
Write (Exp st Int) where x = Open, y = Open

Next time

* Building structures to parameterize over
for generic programming

Generic Programming in Omega
Part 3

Tim Sheard
Portland State University

What is Generic Programming?

* Generic programming is writing one algorithm
that can run on many different datatypes.

* Saves effort because a function need only be
written once and maintained in only one place.

* Examples:
—equal :: a -> a -> Bool
—display :: a -> String
—marshall :: a -> [Int]

—unmarshall :: [Int] -> a

Flavors of Generic programming

| know of several different ways to implement Generics all
of which depend on representing types as data

Universal type embedding
Shape based type embeddings

* With isomorphism based equality proofs
* With leibniz based equality proofs (Ralf Hinze’s example)
* With Omega style Eq proofs

Cast enabling embeddings

In this world

*equal :: Rep a -> a -> a -> Bool
* display :: Rep a -> a -> String

* marshall :: Rep a -> a -> [Int]

°* unmarshall :: Rep a -> [Int] -> a

Getting started

* We'll start with the explicit Rep based
approach where the representation type is
passed as an explicit argument to generic
functions

* How do we represent types as data”

* That depends in what you want to do with
the types.

Ralf Hinze showed a shape based approach

* Declare a type that represent the shape of
values

data Type:: *0 ~> *0 where
Int:: Type Int
Char:: Type Char
Unit:: Type ()
Pair:: Type a -> Type b -> Type (a,b)
Sum:: Type a -> Type b -> Type (a + b)
List:: Type a -> Type [a]
Type:: Type a -> Type (Type a)
Dynamic:: Type Dynamic
Typed:: Type a -> Type (Typed a)

Pair values with shapes

data Typed:: *0 ~> *0 where
With:: Type a -> a -> Typed a

data Dynamic :: *0 where
Dyn:: Typed t -> Dynamic

val (Dyn (With t r)) =r
typef (Dyn (With t r)) =t

Type Is a singleton

* Note that Type is a singleton type.
— Only one element inhabits (Type a) .

— The shape of that value is in 1-to-1 correspondance
with its type index a

* Pair Int Char :: Type(Int,Char)
— If you know the type of (x: : Type a), you know its
shape.

— You can discover the type of a value (x:: Type a)
by exploring its shape.

Inspect Shape to write generic functions
equal:: Type a -> a -> a -> Bool

equal Int x y = x==y

equal Char x y = eqStr [x] [y]

equal Unit () () = True

equal (Pair a b) (w,x) (y,z) =
equal a w y && equal b

equal (Sum a b) (L x) (L y)

equal (Sum a b) (R x) (R y)

equal (Sum a b) = = False

equal (List a) x y = equall (equal a) x y

Z
equal a x y
equal b x y

1

equall £ [] [] = True
equall. £ (x:xs) (y:ys) = f x y && equallL f xs ys

Are two reps equal?

data Equal:: *0 ~> *0 ~> *0 where
Eq :: Equal a a

test :: Type a -> Type b -> Maybe (Equal a b)
test Int Int = return Eq
test Char Char = return Eq
test Unit Unit = return Eq
test (Pair x y) (Pair a b) =
do { Eq <- test x a; Eq <- test y b; return Eq }
test (Sum x y) (Sum a b) =
do { Eq <- test x a; Eq <- test y b; return Eq }
test (List x) (List y) =
do { Eq <- test x y; return Eq }
test = = Nothing

Really exploiting the singleton properties here!

Explore the type checking

test (Pair x y) (Pair a b) =
check
do { Eqg <- test x a
; Egq <- test y b
; check (return Eq) }

*** Checkido { (pl @ Egq) <- test x a
; (p2 @ Eg) <- test y b
; Check (return Eq)}

**x* expected type: Maybe (Equal (c+d) (e+f))

check> x

x :: Type cC

check> y

y :: Type d

check> a

a :: Type e

check> b

b :: Type £

check> :g

*** Check: return Eqg
**x* expected type: Maybe (Equal (c+d) (c+d))
check> x

x :: Type c

check> y

y :: Type d

check> a

a :: Type c

check> b

b :: Type d

check> pl

pl :: Equal c c
check> p2

P2 :: Equal d d

Universal Embedding Approach

* Let there be a universal type that can encode all values
of the language (a datatype that uses dynamic tags
(constructor functions) to distinguish different kinds of
values. Embedding Lisp into Omega.

data Val
= Vint Int -- basic types

Vchar Char
Vunit
Vfun (Val -> val) -- functions
Vdata String [Val] -- datatypes
Vtuple [Val] -- tuples
Vpar Int Val

Interesting functions

* Note there are several interesting functions
on the universal domain Value

* Equality
* Mapping
* Showing

Show

plist sh start xs sep end = start++ £ xs ++ end
where £ [] = ""
f [x] = sh x
f (x:xs) = sh x ++ sep ++ £ xs

showV :: Val -> String

showV (Vint n) = show n
showV (Vchar c¢) = show c
showV Vunit = " ()"

showV (Vfun £) = "£n"

showV (Vdata s []) = s
showV (Vdata s xs) =
"("++ s ++ plist showV " " xs " " ")"
showV (Vtuple xs) = plist showV " (" xs "," ")"
showV (Vpar n x) = showV x

Equality

equal (Vint n) (Vint m) = n==m
equal (Vchar n) (Vchar m) = eqStr [n] [m]
equal Vunit Vunit = True
equal (Vdata s xs) (Vdata t ys)
= eqStr s t && equall xs ys
equal (Vtuple xs) (Vtuple ys)
= equall xs ys
equal (Vpar n x) (Vpar m y)
equal = False

equal x y

equalLl [] [] = True

equall (x:xs) (y:ys) =
equal x y && equall xs ys

equall. = False

mapVal
mapVal
mapVal
mapVal
mapVal
mapVal

Mapping

(Val -> val) -> Vval -> Val
f (Vpar n a) = Vpar n (f a)
f (Vint n) = Vint n
f (Vchar c¢) = Vchar c
f Vunit = Vunit
£f (Vfun h)

error "can't mapVal Vfun"

mapVal

f (Vdata s xs) =

Vdata s (map (mapVal f) xs)

mapVal

f (Vtuple xs) =

Vtuple (map (mapVal f) xs)

Generic Functions

* Strategy:

3) Push (or pull) values into (out of) the universal
domain.

5) Then manipulate the “typeless” data

7) Pull the result (if necessary) out of the universal
domain.

A Rep is a pair of functions

data Rep t = Univ (t -> Val) (Val -> t)

* We represent a type t by a pair of functions that inject
and project from the universal type.

* Property (Univ £ g) :: Rep t
*For all x :: t . g(f x) == x
* Functions

Hh

into (Univ £ q)
out (Univ f qg)

Example Reps

int = Univ vint (\ (Vint n) -> n)

char = Univ Vchar (\ (Vchar c) -> c)

unit = Univ (const Vunit) (const ())

pair :: (Rep a) -> (Rep b) -> Rep (a,b)

pair (Univ tol froml) (Univ to2 from2) = Univ f£ g

where f (x,y) = Vtuple[tol x,to2 y]
g (Vtuple[x,y])= (froml x,from2 vy)

arrow rl r2 = Univ £ g
where £f h = Vfun(into r2 . h . out rl)

g (Vfun h) out r2 . h . into rl

Datatype Reps - List

list (Univ to from) = Univ h k
where
h [] = vdata "[]1" I[]
h (x:xs) = Vdata ":" [Vpar 1 (to x),h xs]
k (vdata "[]1" []) = []
k (Vdata ":" [Vpar 1 x,xs]) = (from x) : k xs

Datatype Reps - Either

either (Univ tol froml) (Univ to2 from2) = Univ h k
where
h (Left x) = Vdata "Left" [Vpar 1 (tol x)]
h (Right x) = Vdata "Right" [Vpar 2 (to2 x)]
k (Vdata "Left" [Vpar 1 x]) = Left (froml x)
k (Vdata "Right" [Vpar 2 x]) = Right (from2 x)

Marshall and Unmarshall

marshall (Univ to from) x =

reverse (flat (to x) [])

flat :: Val -> [Int] -> [Int]
flat (Vint n) xs =n : 1 : xs
flat (Vchar c¢) xs = ord ¢ : 2 : xs
flat Vunit xs = 3: xs
flat (Vfun f) xs = error "no Vfun in marshall”
flat (Vdata s zs) xs =
flatList zs (length zs : (flatString s (5: xs)))
flat (Vtuple zs) xs
flatList zs (length zs : 6 : xs)
flat (Vpar n x) xs = flat x (7 : xs)

Helper functins

flatList [] xs = xs
flatList (z:zs) xs =
flatList zs (flat z xs)

flatString s xs =
(reverse (map ord s)) ++
((length s) : xs)

unflatList 0 xs = ([],xs)
unflatList n xs = (v:vs,zs)
where (v,ys)= unflat xs
(vs,zs) = unflatList (n-1) ys

unmarshall (Univ to from) xs = from j

where (j,ks) = (unflat xs)

unflat :: [Int] -> (Val, [Int])
unflat (1: x : xs) = (Vint x,xs)
unflat (2: x : xs) = (Vchar (chr x),xs)

unflat (3: xs) = (Vunit, xs)
unflat (5: xs) = (Vdata s ws,zs)

where (s,n : ys) = unflatString xs

(ws,zs) = unflatList n ys

unflat (6: n : xs) =

(Vtuple ws,zs) where (ws,zs) = unflatlList n xs
unflat (7:n: xs) = (Vpar n x,ys)

where (x,ys) = unflat xs

unflat zs = error ("Bad unMarshal Case'"++ show zs)

Generic Map

gmap ::
Rep b -> Rep ¢ ->
(forall a . Rep a -> Rep(t a)) ->
(b ->c¢c) ->tb ->tc

gmap repB repC t £ x =
out replLC (help (into replB x))
where replB = t repB
repl.C = t repC
help xs = mapVal trans xs
trans x =
into repC (f(out repB x))

But is this safe?

Recall that anything can be made into a
value

Not all values actually represent real
things

There is “junk” in values

Use GADTs to get rid of the junk

Type indexed Values

data Constr :: *0 ~> *0 where
Con :: a -> String -> Constr a
A:: Constr(a -> b) -> Value a -> Constr b

data Value:: *0 ~> *0 where
IntV:: Int -> Value Int
CharV:: Char -> Value Char
UnitV:: Value ()
PairV :: Value a -> Value b -> Value (a,b)
ParV:: Int -> Value a -> Value a
ConV:: Constr a -> Value a
FunV:: Rep2 a -> (Value a -> Value b)
-> Value(a -> b)

to and from Values

data Rep2 t = Inject (t -> Value t)

to:: Rep2 t -> t -> Value t
to (Inject f) x = f x

from:: Value a -> a
from (IntV n) =n

from (CharV c) = c

from UnitV = ()

from (PairV x y) = (from x, from y)

from (ConV (Con x s)) = x

from (ConV (A c v)) = from (ConV c) (from v)

from (FunV (Inject inj) f£f) = \ v -> from (£f(inj v))

A rep Is just an injection

* Before, a (Rep a) was an injection and a
projection.

* Now only an injection is needed as
projection come for free.

Sample Reps

int2 = 1Inject IntVv
char2 = Inject CharV
unit2 = Inject (const UnitV)

list2 (Inject f) = Inject g

where
g [] = ConV (Con [] "[1")
g (x:xs) =

ConV ((Con (:) ":") A" (f x)

“an

(g xs))

Generic equality

equal2 :: Rep2 a -> a
equal2 (Inject f) x y

eq:: Value a -> Value
eq (IntvV n) (IntV m)

eq (CharV n) (CharV m)

eq UnitV UnitV = True
eq (ConV x) (ConV vy)

a

> a -> Bool
eq (f x) (f y)

-> Bool
n==m

= eqStr [n] [m]

eqCon x y

eq (PairV w x) (PairV y z) = egqwy && eq x z
eq (ParV n x) (ParVmy) = eq xy

eq = False

eqCon:: Constr a -> Constr a -> Bool
eqCon (Con x) (Con y) = eqgStr x y

eqCon (A w x) (A y z)

egqCon w y && eq x z

Overhead

* Note that both the Shape based approach and
the Universal embedding approach involve a
level of interpretation

— The universal value approach has more overhead
than the shape based approach

* Can we remove the interpretation?
* Stage the generic program

* equal :: Type a -> Code(a -> a -> Bool)

Code in Omega

Omega supports a notion of code

Programmers can generate code at
runtime

They can also execute the code they
generate

Programmers annotate their program to
express when they are generating code
and when they are directing the generator.

notation

[_]

1ift

code)

run

Staging Annotations

pronounced

brackets

escape

1ift

run

purpose

(build code)

(splice in code)

(turn values into

(execute runtime code)

Simple example

trip :: (Int, (Code Int,Code Int))
trip = (3+4,[| 3+4 |], 1lift (3+4))

f :: (a, (Code Int,b)) -> Code Int
f (x,y,z) =[] 8 - 8y |1

code :: Code Int
code = f trip

prompt> trip

— (7, ([3+ 4 |1,I1 7 11)) :: (Int, (Code Int,Code Int))
ans = run code prompt> £
<fn> :: (forall a b . (a, (Code Int,b)) -> Code Int)
prompt> code
[| 8 -3+ 4 |] :: Code Int

prompt> ans
1l :: Int

Larger Example

mult :: (Code Int) -> Int -> Code Int
mult x n =
if n==0 then [|1]]
else [| $x * $(mult x (n-1)) |]

cube :: Code (Int -> Int)
cube = [| \ yv -> $(mult [|y]|] 3) |]

exponent :: Int -> Code (Int -> Int)
exponent n = [| \ y -> $(mult [|y|] n) |]

Generic Programming?

prompt> exponent 4

[| \y >y *y*y*y *1|]
Code (Int -> Int)

prompt>

Lets combine generics and staging

* First we'll write an unstaged generic
program

* Then in a second pass we’'ll add staging
annotations

Add up all the Ints

sumR :: Type a -> a -> Int

sumR Int n = n

sumR Char ¢ = 0

sumR Unit () = 0

sumR (Pair r s) (x,y) = sumR r x + sumR s y

sumR (List a) [] = O

sumR (List a) (x:xs) = sumR a x + sumR (List a) xs
sumR x =0

Testing

tl = List(Pair Int Char)
x1 [(5,'2"),(2,'2"),(3,'w")]

prompt> sumR tl x1
10 : Int

Stage it

sum2 :: Type a -> Code a -> Code Int
sum2 Int n = n
sum2 Char c [O |]
sum2 Unit [| O |]
sum?2 (Pair r s) x =
[| $(sum2 r [| fst $x [|]) +
$(sum2 s [| snd $x [|]) |]
sum2 (List a) xs =
[| if null $xs
then O
else $(sum2 a [| hd $xs |]) +
S$(sum2 (List a) [| t1 S$xs |]) |]
sum2 x = [| O |]

Test it

t2 Pair Int (Pair Char Int)

prompt> [| \ x -> $(sum2 t2 [| x |]) |]

[| \ x > %$fst x + 0 + %$snd (%snd x) |]
Code ((Int, (Char,Int)) -> Int)

BUT
tl = List(Pair Int Char)
prompt> [|] \ x -> $(sum2 t1 [| x |]) |]

Never returns !!

Oops !

sum2 (List a) xs =
[| if null S$xs
then 0
else $(sum2 a [| hd $xs |]) +
S(sum2 (List a) [| tl1 $xs |]) |]

The recursion
is not well
founded!

Second try

sum2 (List a) xs =
[| 1let £ [] =0
f (z:2zs) = $(sum2 a [| z |]) +
f zs
in £ $xs |]

Test it

prompt> [|] \ x -> $(sum2 t1 [| x |]) |]

[l \ x34 ->
let £38 [] = 0
£38 (z39 : zs40) =
$fst z39 + 0 + £38 zs40
in £38 x34 |]

Code ([(Int,Char)] -> Int)

Next time

* Richer examples
* We'll try and write something on the fly

Generic Programming in Omega
Part 4

Tim Sheard
Portland State University

Lets abstract over something new

So far all our generic programs are abstractions
over types. Lets abstract over something else

Build an indexed specification type

— Spec t

Write a type function that relates the
specification index to a type

— {result t} =...

Generate code with that type given a spec as
iInput.

—gen:: Spec t -> {result t}

N-ary objects
* Consider the family of functions

-> X

-> \ 'y -> x+y

> \y >\ z -> x+ty+z

> \y ->\z->\w -> xty+z+w

L T B

type function

* Define a type function

sumTy :: Nat ~> *0
{sumTy Z} = Int
{sumTy (S n)} = Int -> {sumTy n}

{sumTy #4}
Int -> Int -> Int -> Int -> Int

Write a function

nsum :: Nat' n -> Int -> {sumTy n}
nsum Z x = X
nsum (S m) x = \ y -> nsum m (x+y)

* Note we can apply test sum to a different number of
arguments.

testsum = (nsum #2 0 4 5) == (nsum #1 0 9)

* But

prompt> nsum #2 2 3 4 5
The equations:

{{sumTy #2} == (Int -> Int -> Int -> a)}
have no solution

Stage it

nsumG :: Nat' n -> Code Int -> Code {sumTy n}
nsumG Z x = X
nsumG (S n) x =

[\y > $S(nsumG n [| $Sx + y |]) |]

Test it

testsumG = [| \ y -> $(nsumG #2 [|yI|]) |]

prompt> testsumG
[| \y4 > \ y6 -> \ y8 -> y4 + y6 + y8 |]
Code (Int -> Int -> Int -> Int)

Now for something completely different

* Goal — Use Omega types to write array package
where the types prevent out of bounds access
errors.

data Vector:: *0 ~> Nat ~> *0 where
Snil :: Vector a Z
Scons:: a -> Vector a n -> Vector a (S n)

access :: Indx 1 n -> Vector a n -> a

loop:: Indx start n -> (Indx i n -> a) -> a
- for 1 = start, n do £

What is a bounded index?

prop LT:: Nat ~> Nat ~> *0 where
LtZ:: LT Z (S x)
LtS:: LT nm -> LT (S n) (S m)

data Indx 1 n
In (Nat' i) (LT i1 n) (Nat' n)

i0 = In Z LtZ #4
il = In (S 2Z) (LtS LtZ) #4
i2 = In (S (S 2Z)) (LtS (LtS LtZ)) #4

Not the types

prompt> i0
(In #0 LtZ #4) : Indx #0 #4

prompt> il
(In #1 (LtS LtZ) #4) : Indx #1 #4

prompt> i2
(In #2 (LtS (LtS LtZ)) #4) : Indx #2 #4

Access function

access :: Indx i n -> Vector a n -> a
access (In Z LtZ) (Scons x xs) = X

access (In (S n) (LtS p) (S gq)) (Scons x xs)
= access (In n p gq) xs

All other cases are unreachable !

Something different again

* Representing kind indexed Type
representations

* |dea

* Build a GADT in Omega which has two
iIndexes, one a kind, and another a type
indexed by that kind.

data Rep :: forall (k:: *2) (t::k)
(k ~> Row HasKind ~> t ~> *(0) where

Int :: Rep *0 env Int

Char :: Rep *0 env Char

Unit :: Rep *0 env ()

Pair :: Rep (*0 ~> *0 ~> *0) env (,)

Sum :: Rep (*0 ~> *0 ~> *0) env (+)

Arr :: Rep (*0 ~> *0 ~> *0) env (->)

Ap :: forall (a:: *1) (env:: Row HasKind) f x

Rep (*0 ~> a) env £ ->
Rep *0 env x -> Rep a env (f x)

Now for Abstractions

A list type at the type level
kind Row a = RCons a (Row a) | RNil
An environment type

kind HasKind:: *1 where
HK:: forall (k:: *2) (t:: k)
Tag ~> k ~> t ~> HasKind

data Rep :: forall (k:: *2) (t::k)
(k ~> Row HasKind ~> t ~> *0) where
Var:: forall(k2:: k) (t2:: k2) (1l:: Tag) (env:: Row HasKind).
Label 1 -> Rep k2 (RCons (HK 1 k2 t2) env) t2

prompt> Var "z
(Var 'z) : Rep b {HK 'z b c; d} c

prompt> Ap (Ap Pair Int) (Var "z))
(Ap (Ap Pair Int) (Var "z))
Rep * {HK 'z * a; b} (Int,a)

Now Abstractions

A:: forall (k2:: k) (t3:: k2)

(t2:: k2) (1:: Taqg)

(env:: Row HasKind) .
Rep *0 (RCons (HK 1 k2 t2) env) t3 ->
Rep *0 env t3

