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Monotonic sorting functions

Sort :: [Nat’ n] -> Dss m

• Two problems
– First, a list with type [Nat n] has elements all the same 

size, so sorting is unnecessary. What we want is
•  [ exists n . Nat’ n ]

– Second we can’t know the size of the largest element 
of the sorted list in advance.

Sort :: [exists n . Nat’ n] -> (exists m . Dss m)



  

Covert Types
data Covert:: (Nat ~> *0) ~> *0 where
   Hide::  (t x) -> Covert t

   
inputList :: [Covert Nat']
inputList = 
    [Hide #1,Hide #2,Hide #4, Hide #3]

msort :: [Covert Nat'] -> Covert Dss 



  

Merge Sort
split [] pair = pair
split [x] (xs,ys) = (x:xs,ys)
split (x:y:zs) (xs,ys) = split zs (x:xs,y:ys)

msort :: [Covert Nat'] -> Covert Dss
msort [] = Hide Dnil
msort [Hide x] = Hide(Dcons x Base Dnil)
msort xs = let (y,z) = split xs ([],[])
               (Hide ys) = msort y
               (Hide zs) = msort z
           in case merge ys zs of
               Left z -> Hide z
               Right z -> Hide z



  

Test it!
inputList = 
    [Hide #1,Hide #2,Hide #4, Hide #3]

ans = msort inputList

Hide (Dcons #4 (Step (Step (Step Base))) 
     (Dcons #3 (Step (Step Base)) 
     (Dcons #2 (Step Base) 
     (Dcons #1 Base Dnil))))



  

Problems

• Do we really need to store the (LE a b) 
witness in the cons cell?

• It’s large, its costly to compute, and we 
must produce it at run-time

• Can we push these costs into compile-
time activities



  

The prop declaration
prop LE :: Nat ~> Nat ~> *0 where
  Base:: LE Z a
  Step:: LE a b -> LE (S a) (S b)
• Exactly like a data declaration. Introduces the type LE 

and the constructor functions Base and Step
• (LE a b) is also introduced as a constraint like (Eq Int) or 

(Show Bool).
• prop introduces the prolog like discharging rules:

– Base: LE Z a 
– Step: LE (S a) (S b) :- LE a b 

• These follow directly from the type of the constructor 
functions.



  

Static Sorted Sequences
data Sss:: Nat ~> *0 where 
  Snil:: Sss #0
  Scons:: LE a b => Nat' b -> Sss a -> Sss b

• We make the (LE a b) proof be a static obligation, 
that must be discharged at compile time

• Constrained type system just like Haskell
 \ x y z -> Scons x (Scons y z) ::
(LE a b,LE b c) => Nat' c -> Nat' b -> Sss a -> Sss c



  

Unit size witnesses
• Once we have static propositions we can build unit size 

witness objects.

data LE' :: Nat ~> Nat ~> *0 
   where LE:: (LE m n) => LE' m n

le23 :: LE #2 #3
le23 = Step(Step Base)

Le23’ :: LE’ #2 #3
Le23’ = LE

Step and Base are 
constructors of LE

LE is the only 
constructor of LE’



  

Unit size witness save space
compare :: Nat' a -> Nat' b -> Either (LE' a b) (LE' b a)

compare Z Z     = Left LE
compare Z (S x) = 
   case compare Z x of  
      Left LE -> Left LE
      Right LE -> Left LE 
compare (S x) Z = 
   case compare x Z of  
      Right LE -> Right LE
      Left LE -> Right LE 
compare (S x) (S y) =  
   case compare x y of  
       Right LE -> Right LE
       Left LE -> Left LE 



  

How does it work?
compare (a@(S x)) (b@(S y)) =  
   case compare x y of  
     Right (p@LE) -> Right LE
     Left LE -> Left LE 

• a :: Nat' #(1+_c)
• b :: Nat' #(1+_d)
• x :: Nat' _c
• y :: Nat' _d
• compare x y :: Either(LE' _c _d)(LE' _d _c)
• p :: LE' _d _c



  

Static Merging
merge2 :: Sss n -> Sss m -> Either(Sss n)(Sss m)
merge2 Snil ys = Right ys
merge2 xs Snil = Left xs
merge2 (a@(Scons x xs)) (b@(Scons y ys)) =
  case compare x y of
    Left LE -> case merge2 a ys of
             Left ws -> R(Scons y ws)        
   

             Right ws -> R(Scons y ws)
    Right LE -> case merge2 b xs of
             Left ws -> Left(Scons x ws)
             Right ws -> Left(Scons x ws)



  

Static Sorting
msort2 :: [Covert Nat'] -> Covert Sss
msort2 [] = Hide Snil
msort2 [Hide x] = Hide(Scons x Snil)
msort2 xs = 
  let (y,z) = split xs ([],[])
      (Hide ys) = msort2 y
      (Hide zs) = msort2 z
  in case merge2 ys zs of
      Left z -> Hide z
      Right z -> Hide z

ans2 = msort2 inputList

Hide (Scons #4 (Scons #3 
     (Scons #2 (Scons #1 Snil))))



  

Logics and Languages
• Logical Languages

– Logical part (quantifiers and connectives)
– Extra-logical (constants, functions, predicates)

• These are the domain of discourse in the logic

• Curry-Howard provides a good mechanism for the first 
part. But we often lack extra-logical operations that relate 
directly to the programs we are trying to reason about.

• GADT’s, Kinds, Witnesses, Singletons, are the extra-
logical terms, and are semantically connected to the 
program.



  

Strategy
• Extend your favorite language (Haskell)

– New constructs to encode propositions as types
• GADTs  (for example: O(E (O Z)) )

– New constructs to build extra-logical operators that 
relate directly to the programs of interest

• Extensible Kinds  (for example: Odd (1+1+1+0)  )
– New use of the constrained type system of Haskell to 

manage and solve constraints
• Static propositions and constraint solving rules

• The logic and the language become 1 entity.



  

Benefits

• New constructs (GADTs and Kinds) 
provide a direct link between a program 
and its properties

• Each of the new constructs has semantic 
meaning within the language. 
– The connection between the property and the 

program is not clouded by an imprecise 
encoding



  

Benefits (continued)

• Management of constraints is performed 
inside the language, they cannot be lost, 
forgotten, mislaid, or forged

• Constraint solving can be either dynamic 
(flexible) or static (efficient). The 
framework provides a mechanism for 
effortlessly sliding between the two 
mechanisms,  even in the same program.



  

Pattern Review
• Indexed Datatypes (List a n)
• Witness types (LE n m)
• Singleton Types (Nat’ n)
• Dynamically Creating Witnesses (compare)
• One point types (LE’)
• Storing Proofs in Data (Dss)
• Using type functions to relate properties of 

inputs and outputs (app)



  

Other Examples we have done
• Typed, staged interpreters

– For languages with binding, with patterns, algebraic datatypes
• Type preserving transformations

– Simplify :: Exp t -> Exp t
– Cps:: Exp t -> Exp {trans t}

• Proof carrying code
• Data Structures

– Red-Black trees, Binomial Heaps , Static length lists
• Languages with security properties
• Typed self-describing databases, where meta data in the 

database describes the database schema
• Programs that slip easily between dynamic and statically 

typed sections. Type-case is easy to encode with no 
additional mechanism



  

Some other examples

• Typed Lambda Calculus
• A Language with Security Domains
• A Language which enforces an interaction 

protocol



  

Typed lambda Calculus
Exp with type t in environment s

data V:: *0 ~> *0 ~> * 0 where
  Z:: V (t,m) t                   
  S:: (V m t) -> V (x,m) t         
  
data Exp:: *0 ~> *0 ~> * 0 where
  IntC:: Int -> Exp s Int                      
  BoolC:: Bool -> Exp s Bool                  
  Plus:: (Exp s Int) -> (Exp s Int) -> Exp s Int 
  Lteq:: (Exp s Int) -> (Exp s Int) -> Exp s Bool
  Var:: (V s t) -> Exp s t

 



  

Language with Security Domains
Exp with type t in env s in domain d

kind Domain = High | Low

data D t 
  = Lo where t = Low
  | Hi where t = High
data Dless x y
  = LH where x = Low , y = High
  | LL where x = Low, y = Low
  | HH where x = High, y = High
  
data Exp s d t
  = Int Int where t = Int
  | Bool Bool where t = Bool
  | Plus (Exp s d Int) (Exp s d Int) where t = Int
  | Lteq (Exp s d Int) (Exp s d Int) where t = Bool
  | forall d2 . Var (V s d2 t) (Dless d2 d)



  

Language with interaction prototcol
Command with store St starting in state x, 

ending in state y
kind State = Open | Closed
data V s t 
  = forall st . Z where s = (t,st)
  | forall st t1 . S (V st t) 
                  where s = (t1,st)

data Com st x y
  = forall t . Set (V st t) (Exp st t) where x=y
  | forall a . Seq (Com st x a) (Com st a y) 
  | If (Exp st Bool) (Com st x y) (Com st x y)
  | While (Exp st Bool) (Com st x y) where x = y
  | forall t . Declare (Exp st t) (Com (t,st) x y)
  | Open where x = Closed, y = Open
  | Close where x = Open, y = Closed
  | Write (Exp st Int)  where x = Open, y = Open

Closed Open

open

close

write



  

Next time

• Building structures to parameterize over 
for generic programming
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What is Generic Programming?

• Generic programming is writing one algorithm 
that can run on many different datatypes.

• Saves effort because a function need only be 
written once and maintained in only one place.

• Examples:
–equal :: a -> a -> Bool
–display ::  a -> String
–marshall :: a -> [ Int ]
–unmarshall :: [Int] -> a



  

Flavors of Generic programming

• I know of several different ways to implement Generics all 
of which depend on representing types as data

• Universal type embedding
• Shape based type embeddings

• With isomorphism based equality proofs
• With leibniz based equality proofs  (Ralf Hinze’s example)
• With Omega style Eq proofs

• Cast enabling embeddings

• In this world
• equal :: Rep a -> a -> a -> Bool
• display :: Rep a -> a -> String
• marshall :: Rep a -> a -> [ Int ]
• unmarshall :: Rep a -> [Int] -> a



  

Getting started

• We’ll start with the explicit Rep based 
approach where the representation type is 
passed as an explicit argument to generic 
functions

• How do we represent types as data?

• That depends in what you want to do with 
the types.



  

Ralf Hinze showed a shape based approach

• Declare a type that represent the shape of 
values

data Type:: *0 ~> *0 where
  Int:: Type Int
  Char:: Type Char
  Unit:: Type ()
  Pair:: Type a -> Type b -> Type (a,b)
  Sum::  Type a -> Type b -> Type (a + b)
  List:: Type a -> Type [a]
  Type:: Type a -> Type(Type a)
  Dynamic:: Type Dynamic
  Typed:: Type a -> Type(Typed a)



  

Pair values with shapes
data Typed:: *0 ~> *0 where
  With:: Type a -> a -> Typed a

data  Dynamic :: *0 where
  Dyn:: Typed t -> Dynamic

val (Dyn (With t r)) = r
typef (Dyn (With t r)) = t



  

Type is a singleton

• Note that Type is a singleton type.
– Only one element inhabits (Type a) .
– The shape of that value is in 1-to-1 correspondance 

with its type index  a
• Pair Int Char :: Type(Int,Char)

– If you know the type of (x::Type a), you know its 
shape.

– You can discover the type of a value (x:: Type a)  
by exploring its shape.



  

Inspect Shape to write generic functions
equal:: Type a -> a -> a -> Bool

equal Int x y = x==y
equal Char x y = eqStr [x] [y]
equal Unit () () = True
equal (Pair a b) (w,x) (y,z) = 
     equal a w y && equal b x z
equal (Sum a b) (L x) (L y) = equal a x y
equal (Sum a b) (R x) (R y) = equal b x y
equal (Sum a b) _ _ = False
equal (List a) x y = equalL (equal a) x y

equalL f [] [] = True
equalL f (x:xs) (y:ys) = f x y && equalL f xs ys



  

Are two reps equal?
data Equal:: *0 ~> *0 ~> *0 where
   Eq :: Equal a a
test :: Type a -> Type b -> Maybe (Equal a b)
test Int Int = return Eq
test Char Char = return Eq
test Unit Unit = return Eq
test (Pair x y) (Pair a b) =
  do { Eq <- test x a; Eq <- test y b; return Eq }
test (Sum x y) (Sum a b) =
  do { Eq <- test x a; Eq <- test y b; return Eq }
test (List x) (List y) =
  do { Eq <- test x y; return Eq }
test _ _ = Nothing

Really exploiting the singleton properties here!



  

Explore the type checking

test (Pair x y) (Pair a b) = 
  check
  do { Eq <- test x a
     ; Eq <- test y b
     ; check (return Eq) }



  

*** Check: do { (p1 @ Eq) <- test x a
             ; (p2 @ Eq) <- test y b
             ; Check (return Eq)}
*** expected type: Maybe ( Equal (c+d) (e+f) )
check> x
x :: Type c
check> y
y :: Type d
check> a
a :: Type e
check> b
b :: Type f
check> :q

*** Check: return Eq
*** expected type: Maybe ( Equal (c+d) (c+d) )
check> x
x :: Type c
check> y
y :: Type d
check> a
a :: Type c
check> b
b :: Type d
check> p1
p1 :: Equal c c
check> p2
p2 :: Equal d d



  

Universal Embedding Approach
• Let there be a universal type that can encode all values 

of the language (a datatype that uses dynamic tags 
(constructor functions) to distinguish different kinds of 
values.  Embedding Lisp into Omega.

data Val
  = Vint Int            -- basic types
  | Vchar Char
  | Vunit
  | Vfun (Val  -> Val ) -- functions
  | Vdata String [Val]  –- data types
  | Vtuple [Val ]       -- tuples
  | Vpar Int Val



  

Interesting functions

• Note there are several interesting functions 
on the universal domain Value

• Equality
• Mapping
• Showing



  

Show
plist sh start xs sep end = start++ f xs ++ end
  where f [] = ""
        f [x] = sh x
        f (x:xs) = sh x ++ sep ++ f xs

showV :: Val -> String
showV (Vint n) = show n
showV (Vchar c) = show c
showV Vunit = "()"
showV (Vfun f) = "fn"
showV (Vdata s []) = s
showV (Vdata s xs) =  
   "("++ s ++ plist showV " " xs " " ")"
showV (Vtuple xs) = plist showV "(" xs "," ")"
showV (Vpar n x) = showV x



  

equal (Vint n) (Vint m) = n==m
equal (Vchar n) (Vchar m) = eqStr [n] [m]
equal Vunit Vunit = True
equal (Vdata s xs) (Vdata t ys)
   = eqStr s t && equalL xs ys
equal (Vtuple xs) (Vtuple ys) 
   = equalL xs ys
equal (Vpar n x) (Vpar m y) = equal x y
equal _ _ = False

equalL [] [] = True
equalL (x:xs) (y:ys) = 
   equal x y && equalL xs ys
equalL _ _ = False

Equality



  

Mapping
mapVal :: (Val -> Val) -> Val -> Val
mapVal f (Vpar n a) = Vpar n (f a)
mapVal f (Vint n) = Vint n
mapVal f (Vchar c) = Vchar c
mapVal f Vunit = Vunit
mapVal f (Vfun h) = 
    error "can't mapVal Vfun"
mapVal f (Vdata s xs) =
    Vdata s (map (mapVal f) xs)
mapVal f (Vtuple xs) = 
    Vtuple(map (mapVal f) xs)



  

Generic Functions

• Strategy:

3) Push (or pull) values into (out of) the universal 
domain.

5) Then manipulate the “typeless” data

7) Pull the result (if necessary) out of the universal 
domain.



  

A Rep is a pair of functions
data Rep t = Univ (t -> Val) (Val -> t)
• We represent a type t by a pair of functions that inject 

and project from the universal type.

• Property   (Univ f g) :: Rep t
• For all x :: t  .    g(f x) == x
• Functions

into (Univ f g) = f
out  (Univ f g) = g



  

Example Reps
int =  Univ Vint (\ (Vint n) -> n)
char = Univ Vchar (\ (Vchar c) -> c)
unit = Univ (const Vunit) (const ())

pair :: (Rep a) -> (Rep b) -> Rep (a,b)
pair (Univ to1 from1) (Univ to2 from2)  = Univ f g
   where f (x,y) = Vtuple[to1 x,to2 y]
         g (Vtuple[x,y])= (from1 x,from2 y)

arrow r1 r2 =  Univ f g
  where f h = Vfun(into r2 . h . out r1)
        g (Vfun h) = out r2 . h . into r1



  

Datatype Reps - List

list (Univ to from) = Univ h k
  where 
    h [] = Vdata "[]" []
    h (x:xs) = Vdata ":" [ Vpar 1 (to x),h xs]
    k (Vdata "[]" []) = []
    k (Vdata ":" [Vpar 1 x,xs]) = (from x) : k xs



  

Datatype Reps - Either

either (Univ to1 from1) (Univ to2 from2) = Univ h k
  where 
   h (Left x) = Vdata "Left" [Vpar 1 (to1 x)]
   h (Right x) = Vdata "Right" [Vpar 2 (to2 x)]
   k (Vdata "Left" [Vpar 1 x]) = Left (from1 x)
   k (Vdata "Right" [Vpar 2 x]) = Right (from2 x)



  

Marshall and Unmarshall
marshall (Univ to from) x = 
         reverse (flat (to x) [])

flat :: Val -> [Int] -> [Int]
flat (Vint n) xs = n : 1 : xs
flat (Vchar c) xs = ord c : 2 : xs
flat Vunit xs = 3: xs
flat (Vfun f) xs = error "no Vfun in marshall"
flat (Vdata s zs) xs = 
  flatList zs (length zs : (flatString s (5: xs)))
flat (Vtuple zs) xs = 
  flatList zs (length zs : 6 : xs)
flat (Vpar n x) xs = flat x (7 : xs)



  

Helper functins
flatList [] xs = xs
flatList (z:zs) xs = 
  flatList zs (flat z xs)

flatString s xs = 
  (reverse (map ord s)) ++ 
  ((length s) : xs)

unflatList 0 xs = ([],xs)
unflatList n xs = (v:vs,zs)
  where (v,ys)= unflat xs
        (vs,zs) = unflatList (n-1) ys



  

unmarshall (Univ to from) xs = from j
  where (j,ks) = (unflat xs)

unflat :: [Int] -> (Val,[Int])
unflat (1: x : xs) = (Vint x,xs)
unflat (2: x : xs) = (Vchar (chr x),xs)
unflat (3: xs) = (Vunit,xs)
unflat (5: xs) = (Vdata s ws,zs)
    where (s,n : ys) = unflatString xs
          (ws,zs) = unflatList n ys
unflat (6: n : xs) =
   (Vtuple ws,zs) where (ws,zs) = unflatList n xs
unflat (7:n: xs) = (Vpar n x,ys) 
    where (x,ys) = unflat xs
unflat zs =    error ("Bad unMarshal Case"++ show zs)



  

Generic Map

gmap :: 
  Rep b -> Rep c -> 
 (forall a . Rep a -> Rep(t a)) -> 
 (b -> c) -> t b -> t c

gmap repB repC t f x = 
    out repLC (help (into repLB x))
  where repLB = t repB
        repLC = t repC
        help xs = mapVal trans xs
        trans x = 
            into repC (f(out repB x))



  

But is this safe?

• Recall that anything can be made into a 
value

• Not all values actually represent real 
things

• There is “junk” in values
• Use GADTs to get rid of the junk



  

Type indexed Values

data Constr :: *0 ~> *0 where
  Con :: a -> String -> Constr a
  A:: Constr(a -> b) -> Value a -> Constr b

data Value:: *0 ~> *0 where
  IntV:: Int -> Value Int
  CharV:: Char -> Value Char
  UnitV:: Value ()
  PairV :: Value a -> Value b -> Value (a,b)
  ParV:: Int -> Value a -> Value a
  ConV:: Constr a -> Value a
  FunV:: Rep2 a -> (Value a -> Value b) 
         -> Value(a -> b)



  

to and from Values
data Rep2 t = Inject (t -> Value t)

to:: Rep2 t -> t -> Value t
to (Inject f) x = f x

from:: Value a -> a
from (IntV n) = n
from (CharV c) = c
from UnitV = ()
from (PairV x y) = (from x, from y)
from (ConV (Con x s)) = x
from (ConV (A c v)) = from (ConV c) (from v)
from (FunV (Inject inj) f) = \ v -> from (f(inj v))



  

A rep is just an injection

• Before, a (Rep a) was an injection and a 
projection.

• Now only an injection is needed as 
projection come for free.



  

Sample Reps
int2 =  Inject IntV
char2 = Inject CharV 
unit2 = Inject (const UnitV)

list2 (Inject f) = Inject g
  where 
    g [] = ConV (Con [] "[]")
    g (x:xs) = 
         ConV ((Con (:) ":") `A` (f x) `A` (g xs))



  

Generic equality
equal2 :: Rep2 a -> a -> a -> Bool
equal2 (Inject f) x y = eq (f x) (f y)
eq:: Value a -> Value a -> Bool
eq (IntV n) (IntV m) = n==m
eq (CharV n) (CharV m) = eqStr [n] [m]
eq UnitV UnitV = True
eq (ConV x) (ConV y) = eqCon x y
eq (PairV w x) (PairV y z) = eq w y && eq x z
eq (ParV n x) (ParV m y) = eq x y
eq _ _ = False

eqCon:: Constr a -> Constr a -> Bool
eqCon (Con _ x) (Con _ y) = eqStr x y
eqCon (A w x) (A y z) = eqCon w y && eq x z



  

Overhead
• Note that both the Shape based approach and 

the Universal embedding approach involve a 
level of interpretation
– The universal value approach has more overhead 

than the shape based approach

• Can we remove the interpretation?
• Stage the generic program

• equal :: Type a -> Code(a -> a -> Bool)



  

Code in Omega

• Omega supports a notion of code
• Programmers can generate code at 

runtime
• They can also execute the code they 

generate
• Programmers annotate their program to 

express when they are generating code 
and when they are directing the generator.



  

Staging Annotations

  notation pronounced     purpose

• [| _ |] brackets   (build code)

• $ _ escape  (splice in code)

• lift _ lift    (turn values into 
code)

• run _  run  (execute runtime code)



  

Simple example
trip :: (Int,(Code Int,Code Int))
trip = (3+4,[| 3+4 |], lift (3+4))

f :: (a,(Code Int,b)) -> Code Int
f (x,y,z) = [| 8 - $y |]

code :: Code Int
code = f trip

ans = run code
prompt> trip
(7,([| 3 + 4 |],[| 7 |])) :: (Int,(Code Int,Code Int))
prompt> f
<fn> :: (forall a b . (a,(Code Int,b)) -> Code Int)
prompt> code
[| 8 - 3 + 4 |] :: Code Int
prompt> ans
1 :: Int



  

Larger Example
mult :: (Code Int) -> Int -> Code Int
mult x n =
    if n==0 then [|1|] 
            else [| $x * $(mult x (n-1)) |]

cube :: Code (Int -> Int)
cube = [| \ y -> $(mult [|y|] 3) |]

exponent :: Int -> Code (Int -> Int)
exponent n = [| \ y -> $(mult [|y|] n) |]



  

Generic Programming?

prompt> exponent 4
[| \ y -> y * y * y * y * 1 |] : 
Code (Int -> Int)

prompt>



  

Lets combine generics and staging

• First we’ll write an unstaged generic 
program

• Then in a second pass we’ll add staging 
annotations



  

Add up all the Ints

sumR :: Type a -> a -> Int
sumR Int n = n
sumR Char c = 0
sumR Unit () = 0
sumR (Pair r s) (x,y) = sumR r x + sumR s y
sumR (List a) [] = 0
sumR (List a) (x:xs) = sumR a x + sumR (List a) xs
sumR _ x = 0  



  

Testing 

t1 = List(Pair Int Char)
x1 = [(5,'z'),(2,'z'),(3,'w')]

prompt> sumR t1 x1
10 : Int



  

Stage it
sum2 :: Type a -> Code a -> Code Int
sum2 Int n = n
sum2 Char c = [| 0 |]
sum2 Unit _ = [| 0 |]
sum2 (Pair r s) x = 
  [| $(sum2 r [| fst $x |]) + 
     $(sum2 s [| snd $x |]) |]
sum2 (List a) xs = 
  [| if null $xs
        then 0
        else $(sum2 a [| hd $xs |]) + 
             $(sum2 (List a) [| tl $xs |]) |]
sum2 _ x = [| 0 |] 



  

Test it
t2 = Pair Int (Pair Char Int)

prompt> [| \ x -> $(sum2 t2 [| x |]) |]

[| \ x -> %fst x + 0 + %snd (%snd x) |]
: Code ((Int,(Char,Int)) -> Int)

BUT
t1 = List(Pair Int Char)
prompt> [| \ x -> $(sum2 t1 [| x |]) |]
Never returns !!



  

Oops !
sum2 (List a) xs = 
  [| if null $xs
        then 0
        else $(sum2 a [| hd $xs |]) + 
             $(sum2 (List a) [| tl $xs |]) |]

The recursion 
is not well 
founded!



  

Second try
sum2 (List a) xs = 
  [| let f [] = 0
         f (z:zs) = $(sum2 a [| z |]) + 
                    f zs
     in f $xs |]



  

Test it
prompt> [| \ x -> $(sum2 t1 [| x |]) |]

[| \ x34 -> 
   let f38 [] = 0
       f38 (z39 : zs40) = 
         %fst z39 + 0 + f38 zs40
   in f38 x34 |]

 : Code ([(Int,Char)] -> Int)



  

Next time

• Richer examples
• We’ll try and write something on the fly
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Lets abstract over something new

• So far all our generic programs are abstractions 
over types.  Lets abstract over something else

• Build an indexed specification type
– Spec t

• Write a type function that relates the 
specification index to a type
– {result t} = …

• Generate code with that type given a spec as 
input.
– gen::  Spec t -> {result t}



  

N-ary objects

• Consider the family of functions

\ x -> x
\ x -> \ y -> x+y
\ x -> \ y -> \ z -> x+y+z
\ x -> \ y -> \ z -> \ w -> x+y+z+w



  

type function

• Define a type function

sumTy :: Nat ~> *0
{sumTy Z} = Int
{sumTy (S n)} = Int -> {sumTy n}

{sumTy #4}
Int -> Int -> Int -> Int -> Int



  

Write a function
nsum :: Nat' n -> Int -> {sumTy n}
nsum Z x = x
nsum (S m) x = \ y -> nsum m (x+y)

• Note we can apply test sum to a different number of 
arguments.

testsum = (nsum #2 0 4 5) == (nsum #1 0 9) 

• But
prompt> nsum #2 2 3 4 5
The equations: 
  {{sumTy #2} == (Int -> Int -> Int -> a)} 
have no solution



  

Stage it
nsumG :: Nat' n -> Code Int -> Code {sumTy n}
nsumG Z x = x 
nsumG (S n) x = 
   [| \ y -> $(nsumG n [| $x + y |]) |]



  

Test it
testsumG = [| \ y -> $(nsumG #2 [|y|]) |]

prompt> testsumG
[| \ y4 -> \ y6 -> \ y8 -> y4 + y6 + y8 |]
 : Code (Int -> Int -> Int -> Int)



  

Now for something completely different

• Goal – Use Omega types to write array package 
where the types prevent out of bounds access 
errors.

data Vector:: *0 ~> Nat ~> *0 where
  Snil :: Vector a Z
  Scons:: a -> Vector a n -> Vector a (S n)

access :: Indx i n -> Vector a n -> a
loop:: Indx start n -> (Indx i n -> a) -> a

–   for i = start, n do f



  

What is a bounded index?
prop LT:: Nat ~> Nat ~> *0 where
  LtZ:: LT Z (S x)
  LtS:: LT n m -> LT (S n) (S m)  
  
data Indx i n = 
   In (Nat' i) (LT i n) (Nat' n)

i0 = In Z LtZ #4
i1 = In (S Z) (LtS LtZ) #4
i2 = In (S (S Z)) (LtS (LtS LtZ)) #4



  

Not the types
prompt> i0
(In #0 LtZ #4) : Indx #0 #4

prompt> i1
(In #1 (LtS LtZ) #4) : Indx #1 #4

prompt> i2
(In #2 (LtS (LtS LtZ)) #4) : Indx #2 #4



  

Access function

access :: Indx i n -> Vector a n -> a
access (In Z LtZ _) (Scons x xs) = x
access (In (S n) (LtS p) (S q)) (Scons x xs) 
= access (In n p q) xs

All other cases are unreachable !



  

Something different again

• Representing kind indexed Type 
representations

• Idea
• Build a GADT in Omega which has two 

indexes, one a kind, and another a type 
indexed by that kind.



  

data Rep :: forall (k:: *2)(t::k) . 
            (k ~> Row HasKind ~> t ~> *0) where
  Int  :: Rep *0 env Int
  Char :: Rep *0 env Char
  Unit :: Rep *0 env ()
  Pair :: Rep (*0 ~> *0 ~> *0) env (,)
  Sum  :: Rep (*0 ~> *0 ~> *0)  env (+)
  Arr  :: Rep (*0 ~> *0 ~> *0) env (->)
  Ap   :: forall (a:: *1) (env:: Row HasKind) f x .
          Rep (*0 ~> a) env f -> 
          Rep *0 env x -> Rep a env (f x)
   



  

Now for Abstractions
A list type at the type level

kind Row a = RCons a (Row a) | RNil

An environment type

kind HasKind:: *1 where
  HK:: forall (k:: *2)(t:: k) . 
       Tag ~> k ~> t ~> HasKind

data Rep :: forall (k:: *2)(t::k) . 
           (k ~> Row HasKind ~> t ~> *0) where
  Var:: forall(k2:: k)(t2:: k2)(l:: Tag)(env:: Row HasKind).
        Label l -> Rep k2 (RCons (HK l k2 t2) env) t2



  

prompt> Var `z
(Var `z) : Rep b {HK `z b c;  d} c

prompt> Ap (Ap Pair Int) (Var `z))
(Ap (Ap Pair Int) (Var `z)) : 
    Rep * {HK `z * a; b} (Int,a)



  

Now Abstractions

A:: forall (k2:: k) (t3:: k2) 
           (t2:: k2)(l:: Tag) 
           (env:: Row HasKind) .
Rep *0 (RCons (HK l k2 t2) env) t3 ->
Rep *0 env t3


