Compiler Construction in
Formal Logical Frameworks

Jason Hickey
Caltech

Oregon Summer School on
Logic and Theorem Proving
in Programming Languages

Links

- MetaPRL: http://www.metaprl.org

- OMake
- svn co svn://svn.metaprl.orqg/omake-branches/jumbo/
everything
- MetaPRL

- svn co svn://svn.metaprl.orqg/metapril-branches/
ocaml-3.10.0

- Compiler
- svn co svn://svn.metaprl.org/mpcompiler

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 2

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

http://www.metaprl.org
http://www.metaprl.org
http://svn.metaprl.org/svnroot/omake-branches/jumbo/everything
http://svn.metaprl.org/svnroot/omake-branches/jumbo/everything
http://svn.metaprl.org/svnroot/omake-branches/jumbo/everything
http://svn.metaprl.org/svnroot/omake-branches/jumbo/everything
http://svn.metaprl.org/svnroot/mojave/metaprl-branches/ocaml-3.10.0
http://svn.metaprl.org/svnroot/mojave/metaprl-branches/ocaml-3.10.0
http://svn.metaprl.org/svnroot/mojave/metaprl-branches/ocaml-3.10.0
http://svn.metaprl.org/svnroot/mojave/metaprl-branches/ocaml-3.10.0
http://svn.metaprl.org/svnroot/mojave/metaprl-branches/ocaml-3.10.0
http://svn.metaprl.org/svnroot/mojave/metaprl-branches/ocaml-3.10.0
http://svn.metaprl.org/svnroot/mojave/metaprl-branches/ocaml-3.10.0
http://svn.metaprl.org/svnroot/mojave/metaprl-branches/ocaml-3.10.0

Compiler (highly simplified)

Compiler

Requirement: p1 = p2

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers

http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 3

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Logical Framework (highly simplified) |

- Concepts: P:Lin
- Judgments, inferences,
proofs, program
extraction, etc.
- Techniques

- Refinement, term
rewriting, tactics,
search, etc.

- LCF:

- Informal tactics in ML
for proof automation

- Proofs are foundational

Logic definition +
Proof automation

Meta-logic +
Inference engine

Proof

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 4

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Plan |

- Given pl, use term

rewriting to find p2 s.t. e T

p] =p2 / ~s\\
- (for some pl, there X

exists p2. pl = p2) of rewrite 02 -’

- NB: we will discuss .
certification, but we will
focus primarily on
program transformation

\

Proof

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 5

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Why? |

- LFs provide a rich toolbox for manipulating programs
- Transformations use textbook-style definitions
- Transformations are cleanly isolated and defined

- Basic concepts like alpha-renaming and substitution are
builtin and automatically enforced (capture is impossible)

- Compiler is easier to write, cleanly defined, and smaller

- However: non-local transformations might be harder
- e.g. global code motion

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 6

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

Outline

infer CPS Closure OPT codegen alloc
| |

formal
definition

automation

- Formal part: concise and precise

- Automation:
- usually small, sometimes not (e.g. register allocation)
- LCF-style: correctness does not depend on automation

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 /

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

What’s covered

- Techniques
- Methods, representations, etc.
- Assumes

- Some knowledge of PL + higher-order logics
- Some knowledge of compilation
- Mostly not covered

- Compiler verification
- Automation

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 8

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

Credit

- Brian Aydemir’s undergraduate research project

S i

=
Mt
aa e e e 4

- Aleksey Nogin, Nathan Gray, ...

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers

http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 9

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

Concerns

- Real compilers have

ource language
|

many stages and
many representations

‘ Lexing
I

‘ Parsing
I

- Compositionality is a
fundamental concern

I
¥ AST

‘ Analysis ‘
| IR

‘ Optimization ‘

Summer School on Logic and Theorem Proving in Programming Languages
http://www.cs.uoregon.edu/research/summerschool/summer08/

iIR

‘ Code generation ‘

'

Machine code

If this page displays slowly, try turning off the “smooth line art” option ir

n Acrobat, under Edit->Preferences

Front-end

Middle-end

Back-end

Formal Compilers
Jul 30,2008 10

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Outline

- Logical frameworks
- Concepts and tools

- Compilers
- Methods and stages

- Compiler implementation in a LF

Summer School on Logic and Theorem Proving in Programming Languages

http://www.cs.uoregon.edu/research/summerschool/summer08/

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

Formal Compilers
Jul 30, 2008

11

Logical Frameworks |

A logical framework is a formal meta-language
for deductive systems [Pfenning]; it allows

- specification of deductive systems,

- search for derivations within deductive systems,

- meta-programming of algorithms pertaining to
deductive systems,

- proving meta-theorems about deductive systems.

- Some Logical Framework systems: ELF, Twelf,
Isabelle, lambda-Prolog, MetaPRL.

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 12

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

http://www.cs.cmu.edu/~fp/elf.html
http://www.cs.cmu.edu/~fp/elf.html
http://twelf.plparty.org/wiki/Main_Page
http://twelf.plparty.org/wiki/Main_Page
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/
http://www.cis.upenn.edu/~dale/lProlog/index.html
http://www.cis.upenn.edu/~dale/lProlog/index.html
http://www.metaprl.org
http://www.metaprl.org

Logical framework

- A lanquage (and a syntax)
- |Inferences and derivations
- Search

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers

http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 13

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

MetaPRL: syntax

Explicit term syntax.

P

opname|p,...

, Pnliby; - -

-:b,,} terms

X, Z,... variables

= 0,1,2,... parameters (constants)
| "aaa",... string constants

= X1y...,Xn.t bound term

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers

http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 14

If this page displays slowly, try turning off the “smooth line a

rt” option in Acrobat, under Edit->Preferences

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Syntax

- Binders are primitive (not functions).

- Convention: omit empty parameter, binder, and

bterm lists.

- Examples:

Pretty form

Actual syntax

1
1 +2

AX.X
(Ax.x) 1

O
A
Q\

number[1]{}

add{number[1l]; number[2]}
Tambda{x.x}

apply{lambda{x. x}; number[1]}

é) Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers

l*’»: s/ http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 15

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Patterns and schemas

Patterns are specified with second-order variables.

t o= -~ terms
| X[y Vnl

The so-variable x[yy;- - -; vnl stands for an arbi-
trary term, where the only free variables are vy, ..., yu.

The so-variable x|] stands for an arbitrary closed
term.

% Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
(\yoéf http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 16

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Matching

A second-order variable matches any term, with
constraints on free variables

(Using the usual x-renaming convention)

Term Pattern Match

Y+ y x[y xlyl=y+y
vV +Zz x| y] no match

1+2 x|y x|ly]l=1+2
Az.z+z Ay.xly]l x[yl=y+y

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 17

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Substitution

- Given a matching

x|y synl =t

a so-term x|[sy;- - - ;84] 1s a substitution

xS, ssnl = IS/ s Sn/Vnl

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 18

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Term rewriting specifications |

Definition of S-equivalence:

(Ax.e1[x]) ex[] — eilex[]]
(e1|x] and e»|] are second-order).
Rewrite application:
Ay y+1)2—2+1

- where,

e1lx]=x+1

ex[] =2
ejlex[]]1=2+1
Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers

http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 19

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Contexts

Contexts I'[x] are like so-variables, but they rep-
resent a term with a single hole

Contexts are frequently used in sequent terms

I'x:tl[;Al-x € t]]]]

Pretty form:

I'x:t;A-x et

2 Z) Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
l”»,a ey,og http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 20

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Sentences

Sentences in the meta-logic are called schemas,
second-order Horn-formulas, of the form

tl_’tZ—’"'_’tn

usually written like an inference rule

closed w.r.t. first-order variables

so variables are implicitly universally quantified

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 21

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Inference in the meta-logic

The only meta-logical inference rule is refinement
(like resolution).

It is exactly what you expect!

- Suppose t{ — - -+ — t;; — U 1S an axiom.

- Toprove s — -+ — Sy — U

- You must prove s1 — - -+ — S — L
foreach1 <1i < n.

N
% Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers

I (\yoog http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 22

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Logics

Defining and using a logic:

Declare some terms that specify the syntax
of formulas in your logic,

Declare some axioms for its rules,
(Define some proof automation),

Derive some facts.

‘ Z) Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
l”»,a (\y"é) http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Example: ST lambda calculus syntax

. Terms:

application: apply{el; e2}; pretty e; e»
abstraction: lambda{t; x. e};prettyAx:t.e
arrow type: fun{tl; t2}; prettyt; —
type judgment: mem{e; t}; prettye:t
judgment: I' e : t; (not writing ugly form!)

UTES:
P oY
(2 z
O 1891
o

) Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
05 http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 24

*

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Axioms for static semantics |

ar

x:t; A x:t M

I'eyi:s—-t IT'He>:s
I'ejer:t

app

I, x:s+—e:t
' (Ax:s.e):s —t

abs

Context variables: T
Second-order variables: s, t, e, ey, e»

First-order variables: x

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 25

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Rewrites

Term rewriting is just a special case of a rule.

A rewrite definition
§] — +++ — Sp — (l1 — 12)
means t; and t» are equivalent in any context.

§1 — ++» — sy — I't1] — T'[t2]
§1 — ++» — sy — '] — I'[t1]

2 % Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
l (\yoog http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 26

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Dynamic semantics |

Rewriting axiom:

(Ax:t.e1[x]) ep — eyler]

Note that t is lost by rewriting.

This is not exactly faithful, because the rewrite is
reversible.

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 27

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Summary: MetaPRL LF

Syntax

- terms, constants, binders,

- first-order, second-order, and context variables

Meta-implications (inference rules)

S1 -+ S, e :S—->T Fl—eg:Sa

foo PP

I'ejer: T

Meta-rewrites

s — t | (Ax:S.e1[x]) eo — eq[ez]

£ % Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
l (\yoog http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 28

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Notes

. Strictly speaking, context variables are binders and
so-variables must specity them.

e [T']:SIT]-T[I'] TrexI]:S[I]
['+e[T'] ex[I']: T[I']

dpp

Al(Ax:S[Al.e1lx,A]) e2[A]] — Aleile2[A], Al]

- There is a syntactic type system that enforces syn-
tactical well-formedness

- In Ax:t.e|x], t represents a type, and e[x|
represents an expression

2 %) Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
l”»,a (\y"é) http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 29

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Task: build a compiler

Char stream — w IR

| Instruction selection |
| ASSsem

| Parsing | Register allocation |

AST [Assem
Semantic | Code emission |

Analysis I Object

IR

Optimize

Constant Folding

Common Subexpression Elim
Function inlining

Hoisting
__

% Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
o

-) http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 30

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Lexing, parsing, printing

- MetaPRL includes parsers+printers

- defined together with the logic
- standard technology LALR(1), boring

fun(x:t)->e fun (x:t) -> e
LALR(1) Pretty-printer
Extensible (rewrite based)
parsers
\:bda{t; x/
Concrete
Summer School on Logic and Thec terms nguages Formal Compilers

http://WWW.CS.Uoreqon.edU/resea|_||/ SUIIITIITIDOUIIVUUI/ DUITITTITIVO/ _JUI 30, 2008 3]

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

Actual plan

~
W IR

I Instruction selection I
I Assem

I Register allocation I
AsSsem

Semantic

Analysis ‘
IR |

Optimize

Constant Folding

Common Subexpression Elim
Function inlining

Hoisting

L /
Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 32

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Part I: Syntax |

- Most mainstream compilers are monolithic w.r.t.
the source language
- But we want languages to be extensible, just like
a logic
- Start with a core language
- Add extensions to it later

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008

33

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

Core language: ML-like

expressions
e(e,...,en) application
fun(xq,...,xm) — e function

letx =e;Ine» let
letrecx; =e;and - - - and x,, = e, in e recursive definition

Notes:

— Arbitrary arity is achieved using sequents

fun(xq,...,xn) — e L, L, Xni_F)e
6(81,...,€n),_:en |_arg5 _)

- Variables (first-order, second-order, context)
are implicitly included in the language.

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 34

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Compiler judgment

Primary judgment ((e))

- Pronounced “e is compilable”

- Intent: e is compilable iff there is a machine
program e’ equivalent to it.

To compile a program p

- Constructively prove a theorem + {((p))

— The witness machine program p’ is the result

2 Z) Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
l”»,a ey,og http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 35

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Compilable

- This is a partial argument

— The proof may fail because
- our compiler is incorrectly automated
- doesn’t terminate
- the source program is “incorrect”

- Translation validation: if a proof is found, it is correct

« First step:

how do we prove <<e>>?

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 36

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

Part Il: types and type inference

.- We’ll use a typed intermediate language.

- Define a type erasure function erase,
- and a typed (e : t)) “compilable” judgment.
— ((e:t))

~ {{erase(e)))

infer

automation: to compile an untyped program e,

- find a typed program e’ and a type ¢
s.t. e = erase(e’) and e’ : t.

N
’%Z\) Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers

*’»: s/ http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 37

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Syntax: System F

L] T base types
Fun(t{,...,t,) — t function type
V(X1,...,Xn).t polymorphic type

e(e; :ty,...,en:tyn) application
fun(x; : t1,...,x5n: ty) — e function
letx:t=e;ney let
letrec xq:t;1 = ey recursive definition
and - - -
and x,, : t,, = ey
ine
Lam(Xq,...,X;,) — e type function
| e[lt1;- - - tnl] type application

% Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
(\yoéf http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 38

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Type erasure |

- type erasure is a rewriting operation

- defined by structural induction (syntax directed)
- some definitions are easy

erase(letx :t = e;jiney) — letx = erase(eq) In erase(er)

- However, rewrites can specify only a fixed
number of operations

- terms with unbounded arities must be transformed one
part at a time

erase(fun(xy : t1,...,x5n 1 t,) —) —??7

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 39

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

Inductive definitions

Introduce a temporary contextI I - - -, then spec-
ify the transformation by induction in 3 parts

erase(fun(A) — e) — erase(i- fun(A) — e)

erase(I' + fun(x; : t;,;A) - e) —
erase(I', x; : _ I fun(A) — e)

erase(I' - fun() - e¢) — (fun(I') — erase(e))

S
}g‘/ ’éz\) Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
l”»,a eyoog http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 40

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Notes

- The style is similar for the other expressions

- Type erasure is syntax-directed, so:
- it is entirely automated
- without requiring any help from the programmer

Summer School on Logic and Theorem Proving in Programming Languages
http://www.cs.uoregon.edu/research/summerschool/summer08/

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

Formal Compilers
Jul 30, 2008

41

Type checking |

- Theorem provers are really good at this
- Simple fixed rules

I[—eyp:t I,x:tHeox[x]|:s
' (letx:t=e11Ines|x]):s

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 42

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

Type checking unbounded arity |

I'—e:t
[- (fun() — e) : (Fun() — t)

funO

['x:s— (Fun(A1) — e) : (Fun(A») — t)
[(fun(x :s,A1) — ¢e) : (Fun(s,A») — t)

funl

% Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 43

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Type checking |

- Similar structure for application, type application,
etc.

- Syntax directed, fully automated

- N.B. the following rule is not valid if there are
side-effects

[X+ (Lam(Ay) —e) : (V(Ar) = 1)
['- (Lam(X,Aqy) —e): (V(X,A») = 1)

Laml

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 44

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

Type inference

- We have defined erase(e),

and a type judgmentI' - e : ¢,

and the inference,

— (e : L))

— {{erase(e)))

infer

How do we find t?

TUTE 5~
s g,
K N
(X @\
(Z

o

]

} %) Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
% (\yoog http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 45

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Hindley-Milner type inference

Given an untyped program e, compute ¢’ and ¢
the usual way (algorithm W), s.t. erase(e’) = e
and + e’ : t.

This is an example where the computation is per-
formed outside the meta-logic

The system still provides support, need about 300
lines OCaml code for the core language

2 Z) Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
l”»,a ey,og http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30,2008 46

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Compiler outline |

“ML” TAST ------------------ assembly
CPS Closure OPT

codegen register
allocation

type
inference

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 47

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

CPS

- Read Danvy and Filinski, Representing Control: A
Study of the CPS Transformation (1992)

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 48

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

http://citeseer.ist.psu.edu/danvy92representing.html
http://citeseer.ist.psu.edu/danvy92representing.html
http://citeseer.ist.psu.edu/danvy92representing.html
http://citeseer.ist.psu.edu/danvy92representing.html

An example transformation

Conversion to continuation passing style is a
straightforward translation (from Danvy and Filinski)

‘ [letz = Nin M] =

Ac.Q[N](n.letz’ = nin O[M [z + z']]c)
|
MetaPRL version uses meta-notation to represent

transformation-time terms; meta-syntax and object-
syntax are clearly separated.
‘ CPS{letvq : i1 = e INeg|v1]; to; vo.clvp]}
+— [cps let]—
CPS{el; t1,v3.letvq : TyCPS{tl} = v3 INn
CPS{es[v1]; to; vo.clva]} }

% Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers

http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008

Closure conversion |

- Also called lambda lifting

- Goal: every lambda-abstraction should be closed
— Then, it can be hoisted to top-level

- Formal definition:

- It is difficult (but not impossible) in this setting to talk
about variables formally

- HOAS: binders in the object language are represented
as binders in the meta-language

- free variables, names, substitution are implicit

- See Hickey et.al. Hybrid deBruijn/HOAS in ICFP 2006 for
another approach

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 50

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

http://nogin.org/papers/reflection2.html
http://nogin.org/papers/reflection2.html

Lightweight closure conversion

- Use term rewriting to

— step 1: close
— Step 2: hoist

- Potential issue
- Rewriting is local, is this possible?

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 51

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

Closure Conversion in 4 parts |

0. Function with a free var

- (fun(x i t) = x+y) - -

1. Add a dummy let for the free var (just to get it
near the fun)

---(lety:Z=vyinfun(x:7) - x+vy) - - -

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 52

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

parts 2 and 3 |

2. Add an extra parameter, and apply it
c--(lety:Z=yin(ftun(y :7Z,x:7) - x+vy)(y)) - - -

3. Hoist

letf =fun(y:Z,x:7) - x+ yin
- (lety:Z=yin f(y)) - - -

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 53

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Formal definition (parts 2, 3)

2. Purely local definition

letx:t =e;infun(A) — ex[x]
— letx:t =e;in (fun(x:t,A) — e[x])(x :t)

3. Need a single context

let f =e[]inT[f] — T[e[]]

- I'le[]] is an arbitrary context containing e
apply the rewrite in reverse
. note: e| | means that e is closed

2 % Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
l (\yoog http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 54

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Part 1 is harder

The following rewrite is wrong!

elx] — letx:t = xinel[x]

Two problems:

- What is x? Supposed to be a first-order var.
- What is t? Can it be anything?

% Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
(\yoéf http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 55

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Proper formal definition

Every variable has a binding (we only consider closed
programs),

- Every binding has a type constraint (by luck?)

Use a context to place the let-binder.

letx:t =egInTI[el[x]]
letx:t = x11n
[Nletx:t = x1me|lx]]

2 % Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
l (\yoog http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 56

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Generalized form

There are several kinds of binders

It is frequently useful to know the types of all the
bound variables in a given context

General solution: collect an environment by scan-
ning from the root the the leaves

sweep (2 I+ e)

where X is a set of membership terms

2 i=X1 €1l1,...,X5 €y

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Definition

The general form of sweep(X I e) is defined by struc-
tural induction

sweep(2 - letx:t =e;Iney)
— letx:t = sweep(2 I+ e1) In sweep(Z, x:t I e»)

sweep (2 I+ fun(A) — e)
— fun(A) — sweep(Z, A I+ e)

sweep(2Z - e(eq,...,en))
— sweep(Z I+ e)(sweep(Z - el),...,sweep (2 I+ ey))

sweep(Z - x) — X

\‘{: O,x
}g‘/ ’% Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 58

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Sweep let droppings
Generic rule for adding a let-definition

sweep(21,x € t,3> IF e|x])
— sweep (21, x €t,2 Fletx:t = x1Ine|lx])

Steps in closure conversion:

- Sweep down the term, placing appropriate let-
definitions before the functions

- Add new function parameters

- Hoist functions (now closed)

A
2 '%\) Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
‘*’»,a (\yoé" http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 59

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Summary: closure conversion

- Three main steps:
- Add let-definitions for free variables
- Add extra function parameters
— Hoist functions

- Next
- Can go straight to code generation
- But, let’s do some optimizations

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 60

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

Outline |

“ML” TAST ------------------ assembly
CPS Closure OPT

type codegen register
inference allocation

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 61

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Dead code elimination

Dead code: any code that does not affect the ba-
havior of the program

Mainly introduced during code transformation
Syntactic approximation:

letx:t =e;jine» — e»
(note x is not free in e»)

OK to apply blindly, everywhere

- Caution: what about side-effects?

TU
%\

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 62

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Common subexpression elimination

Inverse beta-reduction (if language is pure)

letx:t=e1Inex[x] — eq|er]

Apply in reverse (right-to-left)

axb+ f(axb)
letx:Z=axbin---x+ f(x)

2 % Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
% (\yoog http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 63

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Inlining |

(beta-reduction)

letx:t =ejIneyx[x] — esleq]

(fun(x:t,A1) — elx])(e1,A2) — (fun(A;) — eler]) (Ap)
Example:

letf =fun(x:7) - x + xin f(1)
— (fun(x :7) - x + x)(1)

— (fun() - 1+ 1)()

— 1 +1

Summer School on Logic and Theorem Proving in Programming Languages

Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/

jul 30, 2008 64

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Partial Redundancy Elimination

% Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers

(\yoog http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Partial Redundancy Elimination

- So there, Sorin!
Y,

I/ / Y

D 5
)) /»//oyi,é
Ui

/4

4
/a0y,

¢ % Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
| ?/ http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30,2008 66

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Outline |

“ML" TAST ------------------ assembly
CPS Closure OPT

type codegen register
inference allocation

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 67

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Homework solution |

- Closure conversion for recursive functions

- Recursive definitions are defined together
- Definitions may be nested, but it doesn’t matter
- (Assume el, ..., en are lambdas)

letrec f1:t; = e
and - - -

and f,, : t,, = ey
In e

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 68

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

Step 1: add a let-definition (simultaneous) |

Collect free variables

letA; = Ay in
letrec f1:t; = e
and C e .

and f,, : t,, = ey
ine

g
||

(xl:tl,...,xm:tm)

(X1,...,Xm) =FV(ey)u---UFV(eyn)

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers

http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 69

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Step 2: Add extra function parameters

- Use new names for actuals funs, old names for
partial applications

letA; = A>In
let rec fll :Fun(Al) — 11 = fun(Al) — €1

and - -

and f, : Fun(A;) — t,, = fun(Ay) — ey
and f; : t; = f](A2)

and C e .

and fy, : ty = f,(A2)

in e

S 6}»
)g‘/ % Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
l”»‘a (\yoog http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 70

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Notes:

This is actually done 1 function at a time

- Close f; inletrec fi,... fpin - - -
- Then rotate to letrec fo,..., fu, f1, f1in - -

In a real compiler, only 1 closure is needed:

-c=(fl,--, [r, X1,y Xm)
- file,...,e) = apply;(c,e,...,e)

- Easy to do (but the language needs to be ex-
tended)

A
2 '%\) Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
\”»,a (\yf’ http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 /1

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Pretty important optimization |

- Inline closures when possible

IEtC — f(els .- -yem)C in A[C(em-Fl! . -,en)]

— IEtC — f(el, . .,em)c iIl
A[f(ela-'-seﬂ’hem-l-ll--'Jen)d]

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 72

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

Extensibility, compositionality |

- The core language is unrealistically small

- We would like arithmetic, tuples, Boolean values,
assignment, ...

- Architecturally, we want the language to be
compositional
- choose the language features

- In a LF, this style happens frequently, as logics
are constructed

- constructive propositional -> classical propositional

- constructive propositional -> constructive first-order ->
classical first-order logic -> ...

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 73

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

Extensibility

- Formally, it is no different in a compiler

recursive
functions

arrays
integers
arithmetic

Boolean values

source
program

type type CPS closure code
inference checking conversion conversion generation

core: polymorphic lambda calculus

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 74

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

Useful example: Tuples |

- New syntax
- (Note: MetaPRL grammars are extensible)

- Untyped language

e = .- expressions
| (e1,...,en) tuple
| let(xy,...,Xn) = e;Ine» projection

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 75

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

Tuples: typed language |

t o= .- types
| k- kty product type

e = .- expressions
| (e1:ty,...,en:ty) tuple
| let(xi:ty,...,Xn:tn) =e;Iner projection

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 76

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Tuple: type erasure

Erasure definition

erase(ey i t1,...,en :ty) — (erase(ey),...,erase(ey))
erase(let(xy:t1,...,xn:ty) = e1iney) — let(xy,...,x,) = erase(ey) in erase(e»)

Automation is still automatic (just include these
rewrites).

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 77

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Tuple: type checking

tuple,

I'=0:0

I'e:t TH (A7) :A
' (e:t,A1):t % Ao

tuple,

I['e:(A) TLhArRer:t
' (let(A) =ejIner) : t

% Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers

proj

|S 1801 B
&, (\yg? http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 /8

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Tuple: sweep (for closure conversion)

sweep(X I+ (e :t1,...,en :tn)
— (sweep(X - e1) 1 t1,...,Sweep(Z I+ ey) @ ty)

sweep (2 I+ let(A) = e 1Ine»)
— let(A) = sweep (2 I+ e1) In sweep (2 I+ eq)

, % Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
% (\yoog http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 79

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Revisiting closure conversion

- Represent the environment as a tuple

let(Aq) = (A>) Infun(A3) — e[A, Az]
— let(A;) = (A») In
(fun(x: -,Ag) —

let(A1) = x me[A1,A3])((A2))

2 % Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
l”»‘a (\yoog http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 80

Outline |

“ML" TAST ------------------ assembly
CPS Closure OPT

type codegen register
inference allocation

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 81

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Code generation

- Intermediate representation

- Fairly high-level (ML-like)

- Typed

- Pure

- Explicit binders

- alpha-equivalence, substitution make sense

- Machine code

- Low level

- Imperative

- Fixed number of registers

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 82

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

Back-ends |

- A compiler may have several back-ends, one for
each instruction set architecture (ISA)

- We'll do Intel x86 (386)

- Please read the Intel instruction set description during
the next few slides (~1000 pages)

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 83

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

Oversimplified x86 architecture

2-operand ALU

Kegister 11le

[.1 Cache (16k)
.2 Cache (512k)

Primary RAM (8MB-64GB)

%\) Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
l”»,a 95? http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 84

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

2-operand instructions |

// Factorial:

/] Arg in Y%ebx

// Result in Yoeax
/] Destroys Yoedx

mov %eax.$1 /] Yoeax <- 1
fact:
cmp %ebx,$0 // test %oebx ==
jmp z,break // 1t so, exit
mul Joebx I/ Yoeax *= Jebx
dec Joebx Il Yoebx--
jmp fact // next iteration
Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers

http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 85

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Notes

- Most instructions have a normal 2-operand form
- ADD opl,op2
- means opl +=op2
- Some instructions are strange
- MUL opl
.- means (edx,eax) *=opl
- SHL opl,0p2
- means opl <<= opZ2
- but op2 must be a constant or %cl

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 86

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

x86 is a CISC architecture |

- Lots of instructions, some very complex

- For example, looping constructs, string operations
- We will use only a simple subset
- Most complex instructions are pretty slow

- Because compiler writers often ignore the complex parts
- Intel wouldn’t benefit much by optimizing them

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

Operands

Instruction

opcode operandq, operand-

Operand

operand = 1 address

$i integer constant

18 register

(%7) indirect - *r

1(%7) offset - *(r + 1)

11 (%ry,%r>,12) *(rl + r2*12 + 11)

% Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
(\yoéf http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Representation |

- We have two choices:

Deep embedding where we model the real
machine

- State = registers + heap + pc + flags + ...

- an instruction is a state transformation

- this needs to be done for proving correctness
- straightforward, and laborious

- Alternative: shallow embedding
- Registers are represented by variables
— The heap is abstract

- Shallow embedding is much more interesting,
perhaps more appropriate(?)

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 89

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

X86 instruction set |

- We’ll use a simplified representation
- Bindings are significant
- 3-operand instructions
- Typed assembly

- We’ll initially assume that there are an infinite
number of registers/variables
- Register v is valid for any variable v

- Register allocation will take care of assignment to actual
registers

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

Abstract instruction set

letr:t =opine Load

op — %r;e Store

letr:t = op; +oprIne arithmetic

letv:t = f(11,...,7n) Ine function call

jmp f(r1,...,72) unconditional branch
cmp opq, Op>; e compare

if cc then e; else e»

ret op

let rec f1 (7,.
and f>(7,.

andfn(y V) = ey

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 91

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Notes |

- A program is a set of recursive definitions called
basic blocks

- The abstract instructions usually map 1-1 onto
real ones

- In x86 there are extra constraints
- On combinations of operands

- Some instructions (shift, multiply, divide) are special

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers

http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 92

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

Code generation

Code generator expression:

asmvt :t =[e]ina
e 1s an IR expression (System F), a is an assembly

expression

to translate a program e, start with
asmv :t = |[e] in%r

Note: assembly types are different from IR, but
not by much

2 %\) Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
l”»,a (\y"é) http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 93

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Arithmetic

asm7? :t=[v]ina
— letr:t=%vina

asm7? :7 =|e; +ex]|1Ina

—asmvy :Z=|[e;] In
asm11, :Z = [le>] In
letr : Z = %vy + %7r> In
a

TUTE
sV TEg
K 2\
(X NS
[Z

o

]

‘ %Z\ Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
\”»,a (\yf’ http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 94

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Tuple projection |

asmvr = [let(xy,...,x,) = ejinex[xy,...,x,]l Imalr]
— asms = [e;] In
letx; = 0(%s) In

letx,, = 4n(%s) In
letr = [ex[x1,..., x4]] In
alr]

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 95

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Tuple allocation

For type safety, we assume that malloc is an
assembly primitive (like 1st generation TAL)

asm? = [(eq,...,en) | mmalr]
— asm7] = [e;] In

asmrv, = [e,] In
letr = alloc(%ry,...,%r,) In # Cheat!
alr]

2 % Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
l (\yoog http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 96

Function call

asm? = [[e(eq,...,en)]| Inalr]
— asm7; = [e;] In

asmv, = [e] In

asmry = 0(%7r:) In # Function pointer
letr = (x%ry) (%rc, %11,...,%1) IN
alr]

TUTE
s g,
K N
(X @\
[
|

o

%) Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers

& ey,og http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 97

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Step 2: register allocation

- After code generation, we have

- an assembly program
- using an unbounded number of variables/registers

KRegister 111e

eax __]2-operand ALU
edx

ecXx

ebx Y

esl

odi ‘Ll Cacfle (16k)
esp

ebp ‘LZ Cache (512k)
Primary RAM (8MB-64GB)

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 98

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

Register allocation

Use x-renaming to use only register names for the
variables

There will be a lot of shadowing

Formally, this is invisible!

let f(11,12) = — let f(eax, ebx) =
letr3 = %r; + %1y In let eax = %eax + %ebx In
letry = %13 + $1 in leteax = %eax + $1 in
%7 4 %eax

% Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
l (\yoog http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 99

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Chaitin-style graph coloring |

- Construct a graph with 1 node for each variable

- A variable is live from the point where it is
defined, to the last point where it is used

- Two variables interfere iff they are both live at
some program point
- Add an edge between interfering variables
- Color the graph so adjacent vertices have
different colors
- A color stands for a register

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 100

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

Graph coloring

W

Summer School on Logic and Theorem Proving in Programming Languages
http://www.cs.uoregon.edu/research/summerschool/summer08/

If this page displays slowly, try turning off the “smooth line art”

option in Acrobat, under Edit->Preferences

Y%eax
%ebx
Y%ecx
%0edXx
%0esi
%edi

Formal Compilers
Jul 30,2008 101

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Algorithm

/Vbulld ->51mphfy —-coalesce =—>{reeze==> potential
sp111

FIR ‘\ /

seleCt =——p-aCtlua] =———— done

N spill

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 102

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

Spills |

- Come back to reality!

- A real machine has a finite number of registers
- (6)

- When too many variables are simultaneously live,
some have to be “spilled”: stored in memory

letr = e; Ines|7r]

— letr = e In
spill s = ¥ 1In
ex[s]

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008

103

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

Spill optimization

- Each variable is:
- defined once
- then used 0-or-movre times
- Split the range so that
- the register is copied before each use

- now only a portion of the live range may need to be
spilled

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 104

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

Outline

“ML” TAST ------------------ assembly
CPS Closure OPT codegen alloc

type
inference

\‘,s“‘uﬁ'o,)

s ‘?‘é Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers

O 1891

& poe http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 105

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

http://www.cs.caltech.edu/~jyh/classes/cs136/a/
http://www.cs.caltech.edu/~jyh/classes/cs136/a/

You made it! |

This is real x86 code

The quality is good
- straightforward methods, about comparable to gcc -O1
- Full employment theorem is still valid!

The formal part is tiny!

The complete codebase is still comparable in size
to traditional methods

- Register allocation, especially, is complicated

Summer School on Logic and Theorem Proving in Programming Languages Formal Compilers
http://www.cs.uoregon.edu/research/summerschool/summer08/ Jul 30, 2008 106

If this page displays slowly, try turning off the “smooth line art” option in Acrobat, under Edit->Preferences

