Compiler Construction in Formal Logical Frameworks

Jason Hickey Caltech

Oregon Summer School on Logic and Theorem Proving in Programming Languages

Links

- MetaPRL: http://www.metaprl.org
- OMake
 - svn co <u>svn://svn.metaprl.org/omake-branches/jumbo/everything</u>
- MetaPRL
 - svn co <u>svn://svn.metaprl.org/metaprl-branches/</u> ocaml-3.10.0
- Compiler
 - svn co svn://svn.metaprl.org/mpcompiler

Compiler (highly simplified)

Compiler $L_{in} \longrightarrow L_{out}$ $p_1: ML \longrightarrow p_2: x86$

Requirement: $p_1 = p_2$

Logical Framework (highly simplified)

Concepts:

 Judgments, inferences, proofs, program extraction, etc.

Techniques

Refinement, term rewriting, tactics, search, etc.

LCF:

- Informal tactics in ML for proof automation
- Proofs are foundational

Logic definition + Proof automation

Meta-logic + Inference engine

Plan

- Given p1, use <u>term</u>
 rewriting to find p2 s.t.
 p1=p2
- (for some p1, there exists p2. p1 = p2)
- NB: we will discuss certification, but we will focus primarily on program transformation

Why?

- LFs provide a rich toolbox for manipulating programs
 - Transformations use textbook-style definitions
 - Transformations are cleanly isolated and defined
 - Basic concepts like alpha-renaming and substitution are builtin and automatically enforced (capture is impossible)
 - Compiler is easier to write, cleanly defined, and smaller
- However: non-local transformations might be harder
 - e.g. global code motion

Outline

- Formal part: concise and precise
- Automation:
 - usually small, sometimes not (e.g. register allocation)
 - LCF-style: correctness does not depend on automation

What's covered

- Techniques
 - Methods, representations, etc.
- Assumes
 - Some knowledge of PL + higher-order logics
 - Some knowledge of compilation
- Mostly not covered
 - Compiler verification
 - Automation

Credit

Brian Aydemir's undergraduate research project

Aleksey Nogin, Nathan Gray, ...

Concerns

- Real compilers have many stages and many representations
- Compositionality is a fundamental concern

Summer School on Logic and Theorem Proving in Programming Languages http://www.cs.uoregon.edu/research/summerschool/summer08/ Formal Compilers Jul 30, 2008

Outline

- Logical frameworks
 - Concepts and tools
- Compilers
 - Methods and stages
- Compiler implementation in a LF

Logical Frameworks

- A logical framework is a formal meta-language for deductive systems [Pfenning]; it allows
 - specification of deductive systems,
 - search for derivations within deductive systems,
 - meta-programming of algorithms pertaining to deductive systems,
 - proving meta-theorems about deductive systems.
- Some Logical Framework systems: ELF, Twelf, Isabelle, lambda-Prolog, MetaPRL.

Logical framework

- A <u>language</u> (and a syntax)
- Inferences and derivations
- Search

MetaPRL: syntax

Explicit term syntax.

$$t ::= opname[p_1,...,p_n]\{b_1;\cdots;b_m\}$$
 terms variables $p ::= 0,1,2,...$ parameters (constants) $p ::= x_1,...,x_n.t$ bound term

Syntax

- Binders are primitive (not functions).
- Convention: omit empty parameter, binder, and bterm lists.
- Examples:

Pretty form	Actual syntax
1	number[1]{}
1 + 2	add{number[1]; number[2]}
$\lambda x.x$	llambda{x.x}
$(\lambda x.x)$ 1	apply{lambda{x. x}; number[1]}

Patterns and schemas

· Patterns are specified with *second-order* variables.

$$t ::= \cdots$$
 terms $|x[y_1; \cdots; y_n]$

- The so-variable $x[y_1; \dots; y_n]$ stands for an arbitrary term, where the only free variables are y_1, \dots, y_n .
- The so-variable x[] stands for an arbitrary closed term.

Matching

- · A second-order variable matches any term, with constraints on free variables
- (Using the usual α -renaming convention)

Term	Pattern	Match
$\overline{y+y}$	x[y]	x[y] = y + y
y + z	x[y]	no match
1 + 2	x[y]	x[y] = 1 + 2
$\lambda z.z + z$	$\lambda y.x[y]$	x[y] = y + y

Substitution

Given a matching

$$x[y_1; \cdots; y_n] = t$$

a so-term $x[s_1; \dots; s_n]$ is a substitution

$$x[s_1; \cdots; s_n] \equiv t[s_1/y_1; \cdots; s_n/y_n]$$

Term rewriting specifications

• Definition of β -equivalence:

$$(\lambda x.e_1[x]) e_2[] \longleftrightarrow e_1[e_2[]]$$

 $(e_1[x] \text{ and } e_2[] \text{ are second-order}).$

· Rewrite application:

$$(\lambda y.y + 1) \ 2 \longleftrightarrow 2 + 1$$

· where,

$$e_1[x] = x + 1$$

 $e_2[] = 2$
 $e_1[e_2[]] = 2 + 1$

If this page displays slowly, try turning off the "smooth line art" option in Acrobat, under Edit->Preferences

19

Contexts

- Contexts $\Gamma[x]$ are like so-variables, but they represent a term with a single hole
- Contexts are frequently used in sequent terms
- $\cdot \Gamma[x:t[];\Delta[\vdash x \in t[]]]$
- · Pretty form:

$$\Gamma; x: t; \Delta \vdash x \in t$$

Sentences

· Sentences in the meta-logic are called *schemas*, second-order Horn-formulas, of the form

$$t_1 \longrightarrow t_2 \longrightarrow \cdots \longrightarrow t_n$$

usually written like an inference rule

$$\frac{t_1 \quad t_2 \quad \cdots \quad t_{n-1}}{t_n}$$

- closed w.r.t. first-order variables
- · so variables are implicitly **universally** quantified

Inference in the meta-logic

- The *only* meta-logical inference rule is refinement (like resolution).
- It is exactly what you expect!
 - Suppose $t_1 \longrightarrow \cdots \longrightarrow t_n \longrightarrow u$ is an axiom.
 - To prove $s_1 \longrightarrow \cdots \longrightarrow s_m \longrightarrow u$
 - You must prove $s_1 \longrightarrow \cdots \longrightarrow s_m \longrightarrow t_i$ for each $1 \le i \le n$.

Logics

- Defining and using a logic:
 - Declare some terms that specify the syntax of formulas in your logic,
 - Declare some axioms for its rules,
 - (Define some proof automation),
 - Derive some facts.

Example: ST lambda calculus syntax

Terms:

- application: apply{e1; e2}; pretty e_1 e_2
- abstraction: lambda{t; x. e}; pretty λx : t.e
- arrow type: fun{t1; t2}; pretty $t_1 \rightarrow t_2$
- type judgment: mem{e; t}; pretty e: t
- judgment: $\Gamma \vdash e : t$; (not writing ugly form!)

Axioms for static semantics

$$\overline{\Gamma; x: t; \Delta \vdash x: t}$$
 var

$$\frac{\Gamma \vdash e_1: s \to t \quad \Gamma \vdash e_2: s}{\Gamma \vdash e_1 e_2: t} \text{ app}$$

$$\frac{\Gamma, x: s \vdash e: t}{\Gamma \vdash (\lambda x: s.e): s \to t} \text{ abs}$$

- Context variables: Γ
- · Second-order variables: s, t, e, e_1 , e_2
- · First-order variables: *x*

Formal Compilers

Jul 30, 2008

Rewrites

- Term rewriting is just a special case of a rule.
- · A rewrite definition

$$s_1 \longrightarrow \cdots \longrightarrow s_n \longrightarrow (t_1 \longleftrightarrow t_2)$$

means t_1 and t_2 are equivalent in any context.

$$s_1 \longrightarrow \cdots \longrightarrow s_n \longrightarrow \Gamma[t_1] \longrightarrow \Gamma[t_2]$$

 $s_1 \longrightarrow \cdots \longrightarrow s_n \longrightarrow \Gamma[t_2] \longrightarrow \Gamma[t_1]$

Dynamic semantics

Rewriting axiom:

$$(\lambda x: t.e_1[x]) e_2 \longleftrightarrow e_1[e_2]$$

- Note that t is lost by rewriting.
- This is not *exactly* faithful, because the rewrite is *reversible*.

Summary: MetaPRL LF

- Syntax
 - terms, constants, binders,
 - first-order, second-order, and context variables
- Meta-implications (inference rules)

$$\frac{s_1 \cdots s_n}{t}$$
 foo $\left| \begin{array}{ccc} \Gamma \vdash e_1 : S \to T & \Gamma \vdash e_2 : S \\ \hline \Gamma \vdash e_1 e_2 : T \end{array} \right|$ app

Meta-rewrites

$$s \longleftrightarrow t \mid (\lambda x : S.e_1[x]) \ e_2 \longleftrightarrow e_1[e_2]$$

Notes

 Strictly speaking, context variables are binders and so-variables must specify them.

$$\frac{\Gamma \vdash e_1[\Gamma] : S[\Gamma] \to T[\Gamma] \quad \Gamma \vdash e_2[\Gamma] : S[\Gamma]}{\Gamma \vdash e_1[\Gamma] e_2[\Gamma] : T[\Gamma]} \text{ app}$$

$$\Delta[(\lambda x: S[\Delta].e_1[x,\Delta]) \ e_2[\Delta]] \longleftrightarrow \Delta[e_1[e_2[\Delta],\Delta]]$$

- There is a syntactic type system that enforces syntactical well-formedness
 - In λx : t.e[x], t represents a type, and e[x] represents an expression

Task: build a compiler

Lexing, parsing, printing

- MetaPRL includes parsers+printers
 - defined together with the logic

http://www.cs.uoregon.edu/research/summerschool/summervo/

standard technology LALR(1), boring

Formal Compilers Jul 30, 2008

Actual plan

Part I: Syntax

- Most mainstream compilers are monolithic w.r.t. the source language
- But we want languages to be extensible, just like a logic
 - Start with a core language
 - Add extensions to it later

Core language: ML-like

$$e ::=$$
 expressions
$$| e(e_1,...,e_n)$$
 application
$$| \mathbf{fun}(x_1,...,x_m) \rightarrow e$$
 function
$$| \mathbf{let} \ x = e_1 \ \mathbf{in} \ e_2$$
 let
$$| \mathbf{let} \ \mathbf{rec} \ x_1 = e_1 \ \mathbf{and} \ \cdots \ \mathbf{and} \ x_n = e_n \ \mathbf{in} \ e$$
 recursive definition

- Notes:
 - Arbitrary arity is achieved using *sequents*

$$\mathbf{fun}(x_1,\ldots,x_n) \to e \equiv x_1:_,\cdots,x_n:_\vdash_{\lambda} e$$

$$e(e_1,\ldots,e_n) \equiv e(_:e_1,\ldots,_:e_n\vdash_{args}_)$$

- Variables (first-order, second-order, context) are implicitly included in the language.

Compiler judgment

- Primary judgment $\langle\langle e\rangle\rangle$
 - Pronounced "*e* is compilable"
 - Intent: e is compilable iff there is a machine program e' equivalent to it.
- To compile a program p
 - Constructively prove a theorem $\vdash \langle\langle p \rangle\rangle$
 - The *witness* machine program p' is the result

Compilable

- This is a partial argument
 - The proof may fail because
 - our compiler is incorrectly automated
 - · doesn't terminate
 - the source program is "incorrect"
 - Translation validation: if a proof is found, it is correct
- First step: how do we prove <<e>>?

Part II: types and type inference

- · We'll use a *typed* intermediate language.
- · Define a type erasure function *erase*,
- · and a typed $\langle\langle e:t\rangle\rangle$ "compilable" judgment.

$$\frac{\vdash \langle\langle e:t\rangle\rangle}{\vdash \langle\langle erase(e)\rangle\rangle} \text{ infer}$$

- · automation: to compile an untyped program e,
 - find a typed program e' and a type t s.t. e = erase(e') and e' : t.

Syntax: System F

Type erasure

- type erasure is a rewriting operation
 - defined by structural induction (syntax directed)
 - some definitions are easy

$$erase(\mathbf{let} x : t = e_1 \mathbf{in} e_2) \longrightarrow \mathbf{let} x = erase(e_1) \mathbf{in} \ erase(e_2)$$

- However, rewrites can specify only a fixed number of operations
 - terms with unbounded arities must be transformed one part at a time

$$erase(\mathbf{fun}(x_1:t_1,\ldots,x_n:t_n) \rightarrow e) \rightarrow ???$$

Inductive definitions

- Introduce a temporary context $\Gamma \Vdash \cdots$, then specify the transformation by induction in 3 parts
- $\cdot erase(\mathbf{fun}(\Delta) \rightarrow e) \rightarrow erase(\Vdash \mathbf{fun}(\Delta) \rightarrow e)$
 - $erase(\Gamma \Vdash \mathbf{fun}(x_i:t_i,\Delta) \rightarrow e) \rightarrow$
 - $erase(\Gamma, x_i : _ \Vdash \mathbf{fun}(\Delta) \rightarrow e)$
- $erase(\Gamma \Vdash \mathbf{fun}() \rightarrow e) \longrightarrow (\mathbf{fun}(\Gamma) \rightarrow erase(e))$

Notes

- The style is similar for the other expressions
- Type erasure is syntax-directed, so:
 - it is entirely automated
 - without requiring any help from the programmer

Type checking

- Theorem provers are really good at this
- Simple fixed rules

$$\frac{\Gamma \vdash e_1 : t \quad \Gamma, x : t \vdash e_2[x] : s}{\Gamma \vdash (\mathbf{let} \, x : t = e_1 \, \mathbf{in} \, e_2[x]) : s} \, \mathbf{let}$$

Type checking unbounded arity

$$\frac{\Gamma \vdash e : t}{\Gamma \vdash (\mathbf{fun}() \to e) : (\mathbf{Fun}() \to t)} \text{ fun} 0$$

$$\frac{\Gamma, x : s \vdash (\mathbf{Fun}(\Delta_1) \to e) : (\mathbf{Fun}(\Delta_2) \to t)}{\Gamma \vdash (\mathbf{fun}(x : s, \Delta_1) \to e) : (\mathbf{Fun}(s, \Delta_2) \to t)} \text{ fun} 1$$

Type checking

- Similar structure for application, type application, etc.
- Syntax directed, fully automated
- N.B. the following rule is not valid if there are side-effects

$$\frac{\Gamma, X \vdash (\mathbf{Lam}(\Delta_1) \to e) : (\forall (\Delta_2) \to t)}{\Gamma \vdash (\mathbf{Lam}(X, \Delta_1) \to e) : (\forall (X, \Delta_2) \to t)} \text{ Lam1}$$

Type inference

- · We have defined erase(e),
- and a type judgment $\Gamma \vdash e : t$,
- and the inference,

$$\frac{-\langle\langle e:t\rangle\rangle}{-\langle\langle erase(e)\rangle\rangle} \text{ infer}$$

• How do we find t?

Hindley-Milner type inference

- Given an untyped program e, compute e' and t the usual way (algorithm W), s.t. erase(e') = e and $\vdash e' : t$.
- This is an example where the computation is performed outside the meta-logic
- The system still provides support, need about 300 lines OCaml code for the core language

Compiler outline

"ML" TAST ----- assembly

Summer School on Logic and Theorem Proving in Programming Languages http://www.cs.uoregon.edu/research/summerschool/summer08/

CPS

Read Danvy and Filinski, Representing Control: A Study of the CPS Transformation (1992)

Summer School on Logic and Theorem Proving in Programming Languages

http://www.cs.uoregon.edu/research/summerschool/summer08/

An example transformation

 Conversion to continuation passing style is a straightforward translation (from Danvy and Filinski)

 MetaPRL version uses meta-notation to represent transformation-time terms; meta-syntax and objectsyntax are clearly separated.

$$\begin{split} \mathsf{CPS}\{\mathbf{let}\,v_1:t_1&=e_1\;\mathbf{in}\;e_2[v_1];t_2;v_2.c[v_2]\}\\ &\leftarrow [\mathsf{cps_let}] \to\\ \mathsf{CPS}\{e_1;t_1;v_3.\mathbf{let}\,v_1:\mathsf{TyCPS}\{t_1\}=v_3\;\mathbf{in}\\ &\quad \mathsf{CPS}\{e_2[v_1];t_2;v_2.c[v_2]\}\, \} \end{split}$$

Summer School on Logic and Theorem Proving in Programming Languages

Formal Compilers

http://www.cs.uoregon.edu/research/summerschool/summer08/

Jul 30, 2008

Closure conversion

- Also called <u>lambda lifting</u>
- Goal: every lambda-abstraction should be closed
 - Then, it can be hoisted to top-level
- Formal definition:
 - It is difficult (but not impossible) in this setting to talk about variables formally
 - HOAS: binders in the object language are represented as binders in the meta-language
 - · free variables, names, substitution are implicit
 - See Hickey et.al. <u>Hybrid deBruijn/HOAS</u> in ICFP 2006 for another approach

Lightweight closure conversion

- Use term rewriting to
 - step 1: close
 - step 2: hoist
- Potential issue
 - Rewriting is local, is this possible?

Closure Conversion in 4 parts

0. Function with a free var

$$\cdots$$
 (fun($x:t$) $\rightarrow x + y$) \cdots

1. Add a dummy let for the free var (just to get it near the fun)

$$\cdots$$
 (let $y : \mathbb{Z} = y$ in fun($x : \mathbb{Z}$) $\rightarrow x + y$) \cdots

parts 2 and 3

2. Add an extra parameter, and apply it

$$\cdots$$
 (let $y : \mathbb{Z} = y$ in $(\text{fun}(y : \mathbb{Z}, x : \mathbb{Z}) \rightarrow x + y)(y)) \cdots$

3. Hoist

let
$$f = \text{fun}(y : \mathbb{Z}, x : \mathbb{Z}) \to x + y$$
 in \cdots (let $y : \mathbb{Z} = y$ in $f(y)$) \cdots

Formal definition (parts 2, 3)

2. Purely local definition

let
$$x$$
: $t = e_1$ in fun(Δ) $\rightarrow e_2[x]$
 \leftarrow let x : $t = e_1$ in (fun(x : t , Δ) $\rightarrow e[x]$)(x : t)

3. Need a single context

let
$$f = e[]$$
 in $\Gamma[f] \longleftrightarrow \Gamma[e[]]$

- $\Gamma[e]$ is an arbitrary context containing e
- apply the rewrite in reverse
- note: *e*[] means that *e* is *closed*

Part 1 is harder

The following rewrite is wrong!

$$e[x] \longleftrightarrow \mathbf{let} \, x : t = x \, \mathbf{in} \, e[x]$$

- · Two problems:
 - What is x? Supposed to be a first-order var.
 - What is *t*? Can it be anything?

Proper formal definition

- Every variable has a binding (we only consider closed programs),
 - Every binding has a type constraint (by luck?)
- Use a context to place the let-binder.

$$\mathbf{let} \, \mathbf{x} : t = e_1 \, \mathbf{in} \, \Gamma[e[\mathbf{x}]]$$

 $\mathbf{let}\,x{:}\,t=x_1\,\mathbf{in}$

 $\Gamma[\mathbf{let}\,x\colon\!t=x\;\mathbf{in}\;e[x]]$

Generalized form

- There are several kinds of binders
- It is frequently useful to know the types of *all* the bound variables in a given context
- General solution: collect an environment by scanning from the root the leaves

$$sweep(\Sigma \Vdash e)$$

• where Σ is a set of membership terms

$$\Sigma ::= x_1 \in t_1, \ldots, x_n \in t_n$$

Definition

The general form of $sweep(\Sigma \Vdash e)$ is defined by structural induction

$$sweep(\Sigma \Vdash let x: t = e_1 \text{ in } e_2)$$

 $\longleftrightarrow let x: t = sweep(\Sigma \Vdash e_1) \text{ in } sweep(\Sigma, x: t \Vdash e_2)$
 $sweep(\Sigma \Vdash fun(\Delta) \to e)$
 $\longleftrightarrow fun(\Delta) \to sweep(\Sigma, \Delta \Vdash e)$
 $sweep(\Sigma \Vdash e(e_1, ..., e_n))$
 $\longleftrightarrow sweep(\Sigma \Vdash e)(sweep(\Sigma \Vdash e_1), ..., sweep(\Sigma \Vdash e_n))$

 $sweep(\Sigma \Vdash x) \longleftrightarrow x$

Sweep let droppings

Generic rule for adding a let-definition

$$sweep(\Sigma_1, x \in t, \Sigma_2 \Vdash e[x])$$

 $\longrightarrow sweep(\Sigma_1, x \in t, \Sigma_2 \Vdash \text{let } x : t = x \text{ in } e[x])$

- Steps in closure conversion:
 - Sweep down the term, placing appropriate letdefinitions before the functions
 - Add new function parameters
 - Hoist functions (now closed)

Summary: closure conversion

Three main steps:

- Add let-definitions for free variables
- Add extra function parameters
- Hoist functions

Next

- Can go straight to code generation
- But, let's do some optimizations

Outline

"ML" TAST ----- assembly

Dead code elimination

- Dead code: any code that does not affect the bahavior of the program
- Mainly introduced during code transformation
- Syntactic approximation:

$$\mathbf{let} \, x : t = e_1 \, \mathbf{in} \, e_2 \longrightarrow e_2$$

(note x is not free in e_2)

- OK to apply blindly, everywhere
- Caution: what about side-effects?

Common subexpression elimination

Inverse beta-reduction (if language is pure)

$$\mathbf{let}\,x:t=e_1\;\mathbf{in}\;e_2[x]\longleftarrow e_1[e_2]$$

Apply in reverse (right-to-left)

$$a * b + f(a * b)$$

let $x : \mathbb{Z} = a * b \text{ in } \cdots x + f(x)$

Inlining

(beta-reduction)

$$\mathbf{let} \, x : t = e_1 \, \mathbf{in} \, e_2[x] \quad \longrightarrow \quad e_2[e_1]$$

$$(\mathbf{fun}(x;t,\Delta_1) \to e[x])(e_1,\Delta_2) \longrightarrow (\mathbf{fun}(\Delta_1) \to e[e_1])(\Delta_2)$$

· Example:

let
$$f = \operatorname{fun}(x : \mathbb{Z}) \to x + x \text{ in } f(1)$$

 $\longrightarrow (\operatorname{fun}(x : \mathbb{Z}) \to x + x)(1)$
 $\longrightarrow (\operatorname{fun}() \to 1 + 1)()$
 $\longrightarrow 1 + 1$

Partial Redundancy Elimination

Partial Redundancy Elimination

So there, Sorin!

Outline

"ML" TAST ----- assembly

Summer School on Logic and Theorem Proving in Programming Languages http://www.cs.uoregon.edu/research/summerschool/summer08/

Homework solution

- Closure conversion for recursive functions
- Recursive definitions are defined together
 - Definitions may be nested, but it doesn't matter
 - (Assume e1, ..., en are lambdas)

let rec
$$f_1$$
: $t_1 = e_1$
and \cdots
and f_n : $t_n = e_n$
in e

Step 1: add a let-definition (simultaneous)

Collect free variables

let
$$\Delta_1 = \Delta_2$$
 in
let rec $f_1 : t_1 = e_1$
and \cdots
and $f_n : t_n = e_n$
in e

- $\cdot \Delta_1 = (x_1; t_1, \dots, x_m; t_m)$
- $\Delta_2 = (x_1, \dots, x_m) = FV(e_1) \cup \dots \cup FV(e_n)$

Step 2: Add extra function parameters

 Use new names for actuals funs, old names for partial applications

let
$$\Delta_1 = \Delta_2$$
 in
let $\operatorname{rec} f_1' : \operatorname{Fun}(\Delta_1) \to t_1 = \operatorname{fun}(\Delta_1) \to e_1$
and \cdots
and $f_n' : \operatorname{Fun}(\Delta_1) \to t_n = \operatorname{fun}(\Delta_1) \to e_n$
and $f_1 : t_1 = f_1'(\Delta_2)$
and \cdots
and $f_n : t_n = f_n'(\Delta_2)$
in e

Notes:

- This is actually done 1 function at a time
 - Close f_1 in let rec $f_1, \ldots f_n$ in \cdots
 - Then rotate to **let rec** $f_2, \ldots, f_n, f'_1, f_1$ **in** \cdots
- · In a real compiler, only 1 closure is needed:

$$-c = (f'_1, \dots, f'_n, x_1, \dots, x_m)$$

- $f_i(e, \dots, e) = apply_i(c, e, \dots, e)$
- Easy to do (but the language needs to be extended)

Pretty important optimization

Inline closures when possible

let
$$c = f(e_1, ..., e_m)_c$$
 in $\Delta[c(e_{m+1}, ..., e_n)]$
 \rightarrow let $c = f(e_1, ..., e_m)_c$ in $\Delta[f(e_1, ..., e_m, e_{m+1}, ..., e_n)_d]$

Extensibility, compositionality

- The core language is unrealistically small
- We would like arithmetic, tuples, Boolean values, assignment, ...
- Architecturally, we want the language to be compositional
 - choose the language features
- In a LF, this style happens frequently, as logics are constructed
 - constructive propositional -> classical propositional
 - constructive propositional -> constructive first-order -> classical first-order logic -> ...

Extensibility

Formally, it is no different in a compiler

Useful example: Tuples

- New syntax
 - (Note: MetaPRL grammars are extensible)
- Untyped language

$$e ::= \cdots$$
 expressions (e_1, \dots, e_n) tuple $|\mathbf{let}(x_1, \dots, x_n)| = e_1 \mathbf{in} e_2$ projection

Tuples: typed language

$$t ::= \cdots$$
 types
 $t_1 * \cdots * t_n$ product type

 $e ::= \cdots$ expressions
 $t_1 * \cdots * t_n *$

Tuple: type erasure

· Erasure definition

$$erase(e_1:t_1,\ldots,e_n:t_n) \rightarrow (erase(e_1),\ldots,erase(e_n))$$

 $erase(\mathbf{let}(x_1:t_1,\ldots,x_n:t_n)=e_1 \mathbf{in} e_2) \rightarrow \mathbf{let}(x_1,\ldots,x_n)=erase(e_1) \mathbf{in} erase(e_2)$

· Automation is still automatic (just include these rewrites).

Tuple: type checking

$$\frac{}{\Gamma \vdash ():()}$$
 tuple₀

$$\frac{\Gamma \vdash e : t \quad \Gamma \vdash (\Delta_1) : \Delta_2}{\Gamma \vdash (e : t, \Delta_1) : t * \Delta_2} \text{ tuple}_1$$

$$\frac{\Gamma \vdash e_1:(\Delta) \quad \Gamma, \Delta \vdash e_2:t}{\Gamma \vdash (\mathbf{let}(\Delta) = e_1 \mathbf{in} e_2):t} \text{ proj}$$

Tuple: sweep (for closure conversion)

$$sweep(\Sigma \Vdash (e_1 : t_1, ..., e_n : t_n))$$

 $\rightarrow (sweep(\Sigma \Vdash e_1) : t_1, ..., sweep(\Sigma \Vdash e_n) : t_n)$

$$sweep(\Sigma \Vdash let(\Delta) = e_1 \text{ in } e_2)$$

 $\rightarrow let(\Delta) = sweep(\Sigma \Vdash e_1) \text{ in } sweep(\Sigma \Vdash e_1)$

Revisiting closure conversion

Represent the environment as a tuple

$$let(\Delta_1) = (\Delta_2) \text{ in } fun(\Delta_3) \rightarrow e[\Delta_1, \Delta_3] \\
\longleftrightarrow let(\Delta_1) = (\Delta_2) \text{ in} \\
(fun(x : \cdot, \Delta_3) \rightarrow \\
let(\Delta_1) = x \text{ in } e[\Delta_1, \Delta_3])((\Delta_2))$$

Outline

"ML" TAST ----- assembly

Code generation

- Intermediate representation
 - Fairly high-level (ML-like)
 - Typed
 - Pure
 - Explicit binders
 - · alpha-equivalence, substitution make sense
- Machine code
 - Low level
 - Imperative
 - Fixed number of registers

Back-ends

- A compiler may have several back-ends, one for each instruction set architecture (ISA)
- We'll do Intel x86 (386)
 - Please read the Intel instruction set description during the next few slides (~1000 pages)

Oversimplified x86 architecture

Register file

2-operand instructions

```
// Factorial:
      // Arg in %ebx
      // Result in %eax
      // Destroys %edx
      mov %eax,$1
                             // %eax <- 1
fact:
              %ebx,$0
                             // test %ebx == 0
      cmp
              z,break
                             // if so, exit
      jmp
              %ebx
                             // %eax *= %ebx
      mul
              %ebx
                             // %ebx--
      dec
              fact
                             // next iteration
      imp
exit:
```


Notes

- Most instructions have a normal 2-operand form
 - *ADD op1,op2*
 - means op 1 += op 2
- Some instructions are strange
 - MUL op1
 - means (edx,eax) *= op1
 - *SHL op1*, *op2*
 - means op1 <<= op2
 - but op2 must be a constant or %cl

x86 is a CISC architecture

- Lots of instructions, some very complex
 - For example, looping constructs, string operations
- We will use only a simple subset
- Most complex instructions are pretty slow
 - Because compiler writers often ignore the complex parts
 - Intel wouldn't benefit much by optimizing them

Operands

Instruction

Operand

operand
 ::=
$$i$$
 address

 | $$i$
 integer constant

 | $%r$
 register

 | $(%r)$
 indirect - *r

 | $i(%r)$
 offset - *(r + i)

 | $i_1(%r_1, %r_2, i_2)$
 *($r1 + r2*i2 + i1$)

Formal Compilers
Jul 30, 2008

Representation

- We have two choices:
- Deep embedding where we model the real machine
 - state = registers + heap + pc + flags + ...
 - an instruction is a state transformation
 - this <u>needs</u> to be done for proving correctness
 - straightforward, and laborious
- Alternative: shallow embedding
 - Registers are represented by variables
 - The heap is abstract
- Shallow embedding is much more interesting, perhaps more appropriate(?)

X86 instruction set

- · We'll use a simplified representation
 - Bindings are significant
 - <u>3-operand</u> instructions
 - Typed assembly
- We'll initially assume that there are an infinite number of registers/variables
 - Register v is valid for any variable v
 - <u>Register allocation</u> will take care of assignment to actual registers

Abstract instruction set

$$e ::= let r: t = op in e$$
 Load
 $| op \leftarrow \%r; e$ Store
 $| let r: t = op_1 + op_2 in e$ arithmetic
 $| let r: t = f(r_1, ..., r_n) in e$ function call
 $| jmp f(r_1, ..., r_2)$ unconditional branch
 $| cmp op_1, op_2; e$ compare
 $| if cc then e_1 else e_2$
 $| ret op$

$$p$$
 ::= let rec $f_1(r,...,r) = e_1$ and $f_2(r,...,r) = e_2$

and
$$f_n(\gamma, ..., \gamma) = e_n$$

Notes

- A <u>program</u> is a set of recursive definitions called basic blocks
- The abstract instructions usually map 1-1 onto real ones
- In x86 there are extra constraints
 - On combinations of operands
 - Some instructions (shift, multiply, divide) are special

Code generation

Code generator expression:

$$\operatorname{asm} r : t = [e] \text{ in } a$$

- \cdot *e* is an IR expression (System F), *a* is an assembly expression
- to translate a program e, start with $\mathbf{asm} \, r : t = [\![e]\!] \, \mathbf{in} \, \%r$
- Note: assembly types are different from IR, but not by much

Arithmetic

$$\operatorname{asm} r : t = \llbracket v \rrbracket \text{ in } a$$

$$\rightarrow$$
 let γ : $t = \%\nu$ in a

$$\operatorname{asm} r : \mathbb{Z} = \llbracket e_1 + e_2 \rrbracket \text{ in } a$$

$$\longrightarrow$$
 asm $r_1 : \mathbb{Z} = \llbracket e_1 \rrbracket$ in

$$\operatorname{asm} r_2 : \mathbb{Z} = \llbracket e_2 \rrbracket \text{ in }$$

$$\mathbf{let}\,\boldsymbol{\gamma}:\mathbb{Z}=\%\boldsymbol{\gamma}_1+\%\boldsymbol{\gamma}_2\,\,\mathbf{in}$$

 α

Tuple projection

$$\operatorname{asm} r = \llbracket \operatorname{let}(x_1, \dots, x_n) = e_1 \text{ in } e_2[x_1, \dots, x_n] \rrbracket \text{ in } a[r]$$

$$\to \operatorname{asm} s = \llbracket e_1 \rrbracket \text{ in}$$

$$\operatorname{let} x_1 = 0(\%s) \text{ in}$$

$$\dots$$

$$\operatorname{let} x_n = 4n(\%s) \text{ in}$$

$$\operatorname{let} r = \llbracket e_2[x_1, \dots, x_n] \rrbracket \text{ in}$$

$$a[r]$$

Tuple allocation

 For type safety, we assume that malloc is an assembly primitive (like 1st generation TAL)

$$\mathbf{asm} \, r = \llbracket (e_1, \dots, e_n) \rrbracket \, \mathbf{in} \, a[r]$$

$$\rightarrow \, \mathbf{asm} \, r_1 = \llbracket e_1 \rrbracket \, \mathbf{in}$$

$$\dots$$

$$\mathbf{asm} \, r_n = \llbracket e_n \rrbracket \, \mathbf{in}$$

$$\mathbf{let} \, r = \mathbf{alloc}(\%r_1, \dots, \%r_n) \, \mathbf{in} \quad \# \, \mathbf{Cheat!}$$

$$a[r]$$

Function call

$$\mathbf{asm} \, r = \llbracket e(e_1, \dots, e_n) \rrbracket \, \mathbf{in} \, a[r]$$

$$\rightarrow \mathbf{asm} \, r_i = \llbracket e_i \rrbracket \, \mathbf{in}$$

$$\cdots$$

$$\mathbf{asm} \, r_c = \llbracket e \rrbracket \, \mathbf{in}$$

$$\mathbf{asm} \, r_f = 0(\% r_c) \, \mathbf{in} \quad \# \, \text{Function pointer}$$

$$\mathbf{let} \, r = (*\% r_f)(\% r_c, \% r_1, \dots, \% r_n) \, \mathbf{in}$$

$$a[r]$$

Step 2: register allocation

- After code generation, we have
 - an assembly program
 - using an unbounded number of variables/registers

Register file

Register allocation

- Use α -renaming to use only register names for the variables
- · There will be a *lot* of shadowing
- · Formally, this is invisible!

$$\begin{aligned} \textbf{let}\,f(r_1,r_2) &= \\ \textbf{let}\,r_3 &= \%r_1 + \%r_2 \,\textbf{in} \\ \textbf{let}\,r_4 &= \%r_3 + \$1 \,\textbf{in} \\ \%r_4 &= \end{cases} \end{aligned}$$

Chaitin-style graph coloring

- Construct a graph with 1 node for each variable
- A variable is <u>live</u> from the point where it is defined, to the last point where it is used
- Two variables <u>interfere</u> iff they are both live at some program point
 - Add an edge between interfering variables
- Color the graph so adjacent vertices have different colors
 - A color stands for a register

Graph coloring

- %eax
- %ebx
- %ecx
- %edx
- %esi
- %edi

Algorithm

Spills

- Come back to reality!
- A real machine has a finite number of registers
 (6)
- When too many variables are simultaneously live, some have to be "spilled": stored in memory

let
$$r = e_1$$
 in $e_2[r]$
 \rightarrow let $r = e_1$ in
spill $s = r$ in
 $e_2[s]$

Spill optimization

- Each variable is:
 - defined once
 - then used 0-or-more times

http://www.cs.uoregon.edu/research/summerschool/summer08/

- Split the range so that
 - the register is copied before each use
 - now only a portion of the live range may need to be spilled

104

Outline

"ML" TAST ----- assembly

Summer School on Logic and Theorem Proving in Programming Languages http://www.cs.uoregon.edu/research/summerschool/summer08/ Formal Compilers
Jul 30, 2008

You made it!

- This is real x86 code
- The quality is good
 - straightforward methods, about comparable to gcc -O1
 - Full employment theorem is still valid!
- The formal part is tiny!
- The complete codebase is still comparable in size to traditional methods
 - Register allocation, especially, is complicated

