Parallel and Concurrent
Real-time Garbage Collection

Part |
Overview and Memory Allocation Subsystem

David F. Bacon

A

T.J. Watso esearch Center



What It Does

(Demo)

http://www.youtube.com/user/ibmrealtime




What it Is

* A production garbage collector that is

— Real-time (450us worst-case latencies)
— Multiprocesing (uses multiple CPUs)
— Concurrent (can run in background)

— Robust (within and across JVMs)




Why It's Important

Mgt ==
==

Playstation/Xbox etc

DDG-1000 Destroyer

A

\N°® @
Sy

] Automotive Electronics
Trade Execution

JAviator
(w/ Salzburg)

Java-based
Synthesizer

Air Java
(w/ Berkeley CE)

[H]
"“i
i
w



VWho and When

Real Time

Recycler Metronome WebSphere Realtime
(1999-2001) (2001-2004) (2004-2007)
Dick Attanasio David Bacon Josh Auerbach

David Bacon Perry Cheng David Bacon

V.T. Rajan V.T. Rajan Perry Cheng
Steve Smith Dave Grove
Han Lee Martin Vechev 5 Developers
10 Testers
5 Salespeople

iy
N



Digression: Keys to Success

* Intelligence
» Collaboration

* Problem Selection




Perspectives

» Concurrent garbage collection is

— A key language runtime component
— A challenging verification problem

— A multi-faceted concurrent algorithm




Goals

* Learn how to bridge:
— from abstract design...
— ...to concrete implementation

* Learn how to combine different
— algorithms...
— ...and implementations...
— ...Into a complete system

« (Gain deep understanding
— highly complex, real-world system
— apply lessons to your problems

7



Where it Fits In

AoT RTSJ
Scopes,

Compiler Threads




Fundamental Issues

Functional correctness (duh)

Liveness
— Timeliness (real-time bounds)

Fairness

— Priorities

Initiation and Termination
Contention
Non-determinism




Why is Concurrency Hard?

« Performance
— Contention

— Load Balancing

— Overhead -> Granularity

* “Inherent” Simultaneity

* Timing and Determinism

10



GC: A Simple Problem (7)

Class Foo {
Foo aj;
Foo b;

}

* Transitive Graph Closure

11



Basic Approaches: Mark/Sweep

* O(live) mark phase but O(heapsize) sweep
* Usually requires no copying
* Mark stack is O(maxdepth)

12 s



Basics |I: Semi-space Copying

=
\ W
% ()
Stack
* O(live)

* If single-threaded, no mark stack needed
* Wastes 50% of memory

13



Kinds of “Concurrent” Collection

« “Stop the World”

 Parallel

 Concurrent

 |[ncremental

@
@)

@
@)

. AP 0O
. AP 0O

@
@)
@
@)
@
@)

14



Our Subject: Metronome-2 System

GC GC GC GC

GC

 Parallel, Incremental, and Concurrent

* No increment exceeds 450us

» Real-time Scheduling

» Smooth adaptation from under- to over-load
* Implementation in production JVM

THH]
il
i

—

(@) ]



What Does “Real-time” Mean?

* Minimal, predictable interruption of application
» Collection finishes before heap is exhausted

» “Real space” - bounded, predictable memory
* Honor thread priorities

* Micro- or macro-level determinism (cf. CK)

e 16 =



The Cycle of Life

Allocate

* Not really a “garbage collector”...
* ... but a memory management subsystem

17



Metronome Memory Organization

g CEEE ] G
8 ] o o

« Page-based
« Segregated free lists
* Ratio bounds internal & page-internal fragmentation

E 18 =



Large Objects: Arraylets

* (Almost) eliminates external fragmentation

* (Almost) eliminates need for compaction

* Very large arrays still need contiguous pages
« Extra indirection for array access

19



Page Data Structures

20



Page Data Synchronization, Take 1




Page Data, Take 2

22

|
Il
@



http://www.research.ibm.com/metronome

https://sourceforge.net/projects/tuningforkvp

23 s



