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What It Does

(Demo)

http://www.youtube.com/user/ibmrealtime




What it Is

* A production garbage collector that is

— Real-time (450us worst-case latencies)
— Multiprocesing (uses multiple CPUs)
— Concurrent (can run in background)

— Robust (within and across JVMs)




Why It's Important
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VWho and When

Real Time

Recycler Metronome WebSphere Realtime
(1999-2001) (2001-2004) (2004-2007)
Dick Attanasio David Bacon Josh Auerbach

David Bacon Perry Cheng David Bacon

V.T. Rajan V.T. Rajan Perry Cheng
Steve Smith Dave Grove
Han Lee Martin Vechev 5 Developers
10 Testers
5 Salespeople
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Digression: Keys to Success

* Intelligence
» Collaboration

* Problem Selection




Perspectives

» Concurrent garbage collection is

— A key language runtime component
— A challenging verification problem

— A multi-faceted concurrent algorithm




Goals

* Learn how to bridge:
— from abstract design...
— ...to concrete implementation

* Learn how to combine different
— algorithms...
— ...and implementations...
— ...Into a complete system

« (Gain deep understanding
— highly complex, real-world system
— apply lessons to your problems
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Where it Fits In
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Fundamental Issues

Functional correctness (duh)

Liveness
— Timeliness (real-time bounds)

Fairness

— Priorities

Initiation and Termination
Contention
Non-determinism




Why is Concurrency Hard?

« Performance
— Contention

— Load Balancing

— Overhead -> Granularity

* “Inherent” Simultaneity

* Timing and Determinism
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GC: A Simple Problem (7)

Class Foo {
Foo aj;
Foo b;

}

* Transitive Graph Closure
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Basic Approaches: Mark/Sweep

* O(live) mark phase but O(heapsize) sweep
* Usually requires no copying
* Mark stack is O(maxdepth)
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Basics |I: Semi-space Copying
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* O(live)

* If single-threaded, no mark stack needed
* Wastes 50% of memory
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Kinds of “Concurrent” Collection

« “Stop the World”

 Parallel

 Concurrent
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Our Subject: Metronome-2 System

GC GC GC GC

GC

 Parallel, Incremental, and Concurrent

* No increment exceeds 450us

» Real-time Scheduling

» Smooth adaptation from under- to over-load
* Implementation in production JVM
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What Does “Real-time” Mean?

* Minimal, predictable interruption of application
» Collection finishes before heap is exhausted

» “Real space” - bounded, predictable memory
* Honor thread priorities

* Micro- or macro-level determinism (cf. CK)

e 16 =



The Cycle of Life

Allocate

* Not really a “garbage collector”...
* ... but a memory management subsystem
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Metronome Memory Organization
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« Page-based
« Segregated free lists
* Ratio bounds internal & page-internal fragmentation
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Large Objects: Arraylets

* (Almost) eliminates external fragmentation

* (Almost) eliminates need for compaction

* Very large arrays still need contiguous pages
« Extra indirection for array access
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Page Data Structures
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Page Data Synchronization, Take 1




Page Data, Take 2
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http://www.research.ibm.com/metronome

https://sourceforge.net/projects/tuningforkvp
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