Parallel and Concurrent Real-time Garbage Collection

Part III:

Tracing, Snapshot, and Defragmentation

David F. Bacon

T.J. Watson Research Center

Part 2: Trace (aka Mark)

- Initiation
 - Setup
 - turn double barrier on
- Root Scan
 - Active Finalizer scan
 - Class scan
 - Thread scan**
 - · switch to single barrier, color to black
 - Debugger, JNI, Class Loader scan
- Trace
 - Trace*
 - Trace Terminate***
- Re-materialization 1
 - Weak/Soft/Phantom Reference List Transfer
 - Weak Reference clearing** (snapshot)
- Re-Trace 1
 - Trace Master
 - (Trace*)
 - (Trace Terminate***)
- Re-materialization 2
 - Finalizable Processing

- Clearing
 - Monitor Table clearing
 - JNI Weak Global clearing
 - Debugger Reference clearing
 - JVMTI Table clearing
 - Phantom Reference clearing
- Re-Trace 2
 - Trace Master
 - (Trace*)
 - (Trace Terminate***)
 - Class Unloading
- Flip
 - Move Available Lists to Full List* (contention)
 - turn write barrier off
 - Flush Per-thread Allocation Pages**
 - · switch allocation color to white
 - · switch to temp full list
- Sweeping
 - Sweep*
 - Switch to regular Full List**
 - Move Temp Full List to regular Full List* (contention)
- Completion
 - Finalizer Wakeup
 - Class Unloading Flush
 - Clearable Compaction**
 - Book-keeping

- * Parallel
- ** Callback
- *** Single actor symmetric

Let's Assume a Stack Snapshot

Yuasa Algorithm Review: 2(a): Copy Over-written Pointers

Yuasa Algorithm Review: 2(b): Trace

* Color is per-object mark bit

Yuasa Algorithm Review: 2(c): Allocate "Black"

Non-monotonicity in Tracing

Which Design Pattern is This?

Shared Monotonic Work Pool

Per-Thread State Update

Trace is Non-Monotonic... and requires thread-local data

Basic Solution

- Check if there are more work packets
 - If some found, trace is not done yet
 - If none found, "probably done"
 - Pause all threads
 - Re-scan for non-empty buffers
 - Resume all threads
 - If none, done
 - Otherwise, try again later

Ragged Barriers:

How to Stop without Stopping

"Trace" Phase

The Thread's Full Monty

Work Packet Data Structures


```
trace() {
  thread->epoch = Epoch.newest;
 bool canTerminate = true;
  if (WBufCount > 0)
    getWriteBuffers();
    canTerminate = false;
 while (b = wbuf-trace.pop())
    if (! moreTime()) return;
    int traceCount = traceBufferContents(b);
    canTerminate &= (traceCount == 0);
 while (b = totrace.pop())
    if (! moreTime()) return;
    int TraceCount = traceBufferContents(b);
    canTerminate &= (traceCount == 0);
  if (canTerminate)
    traceTerminate();
```


Getting Write Buffer Roots

```
getWriteBuffers() {
  thread->epoch = fetchAndAdd(Epoch.newest, 1);
  WBufEpoch = thread->epoch; // mutators will dump wbufs
  LOCK(wbuf-fill);
  LOCK(wbuf-trace);
  for each (wbuf in wbuf-fill)
    if (wbuf.epoch < Epoch.agreed)</pre>
      remove wbuf from wbuf-fill;
      add wbuf to wbuf-trace;
  UNLOCK(wbuf-trace);
  UNLOCK(wbuf-fill);
```


Write Barrier

```
writeBarrier(Object object, Field field, Object new) {
  if (BarrierOn)
    Object old = object[field];
    if (old != null && ! old.marked)
       outOfLineBarrier(old);
    if (thread->dblb) // double barrier
       outOfLineBarrier(new);
}
```


Write Barrier Slow Path

```
outOfLineBarrier(Object obj) {
  if (obj == null | obj.marked)
   return:
 obj.marked = true;
 bool epochOK = thread->wbuf->epoch == WBufEpoch;
 bool haveRoom = thread->wbuf->data < thread->wbuf->end;
  if (! (epochOK && enoughSpace))
    thread->wbuf = flushWBufAndAllocNew(thread->wbuf);
    // Updates WBufEpoch, Epoch.newest
  *thread->wbuf->data++ = obj;
```


"Trace Terminate" Phase

Trace Termination

Asynchronous Agreement

Ragged Barrier

```
bool raggedBarrier(desiredEpoch, urgent) {
  if (Epoch.agreed >= desiredEpoch)
    return true;
  LOCK(threadlist);
    int latest = MAXINT;
    for each (Thread thread in threadlist)
      latest = min(latest, thread.epoch);
    Epoch.agreed = latest;
  UNLOCK(threadlist);
  if (epoch.agreed >= desiredEpoch)
    return true;
  else
    doCallbacks(RAGGED BARRIER, true, urgent);
    return false;
                                        * Non-locking implementation?
```


Part 1: Scan Roots

- Initiation
 - Setup
 - turn double barrier on
- Root Scan
 - Active Finalizer scan
 - Class scan
 - Thread scan**
 - · switch to single barrier, color to black
 - Debugger, JNI, Class Loader scan
- Trace
 - Trace*
 - Trace Terminate***
- Re-materialization 1
 - Weak/Soft/Phantom Reference List Transfer
 - Weak Reference clearing** (snapshot)
- Re-Trace 1
 - Trace Master
 - (Trace*)
 - (Trace Terminate***)
- Re-materialization 2
 - Finalizable Processing

- Clearing
 - Monitor Table clearing
 - JNI Weak Global clearing
 - Debugger Reference clearing
 - JVMTI Table clearing
 - Phantom Reference clearing
- Re-Trace 2
 - Trace Master
 - (Trace*)
 - (Trace Terminate***)
 - Class Unloading
- Flip
 - Move Available Lists to Full List* (contention)
 - turn write barrier off
 - Flush Per-thread Allocation Pages**
 - switch allocation color to white
 - · switch to temp full list
- Sweeping
 - Sweep*
 - Switch to regular Full List**
 - Move Temp Full List to regular Full List* (contention)
- Completion
 - Finalizer Wakeup
 - Class Unloading Flush
 - Clearable Compaction**
 - Book-keeping

- * Parallel
- ** Callback
- *** Single actor symmetric

Fuzzy Snapshot

• Finally, we assume no magic

Initiate Collection

"Initiate Collection" Phase

Initiate: Color Black, Double Barrier

What is a Double Barrier?

Store both Old and New Pointers

Why Double Barrier?

```
T2: m.b = n (writes X.b = W)
T3: j.b = k (writes X.b = V)
T1: q = p.b (reads X.b: V, W, or Z??)
```


Yuasa (Single) Barrier with 2 Writers

T2:
$$m.b = n$$
 (X.b = W)
T3: $j.b = k$ (X.b = V)

Yuasa Barrier Lost Update

T2:
$$m.b = n$$
 (X.b = W)
T3: $j.b = k$ (X.b = V)

Hosed!

```
T1: Scan Stack
T2: m.b = n (X.b = W)
T3: j.b = k (X.b = V)
T1: q = p.b (q <- W)
T2: n = null
T2: Scan Stack
```


"Thread Stack Scan" Phase

Scan Stacks (double barrier off)

All Done!

Boosting: Ensuring Progress

Part 4: Defragmentation

- Initiation
 - Setup
 - turn double barrier on
- Root Scan
 - Active Finalizer scan
 - Class scan
 - Thread scan**
 - switch to single barrier, color to black
 - Debugger, JNI, Class Loader scan
- Trace
 - Trace*
 - Trace Terminate***
- Re-materialization 1
 - Weak/Soft/Phantom Reference List Transfer
 - Weak Reference clearing** (snapshot)
- Re-Trace 1
 - Trace Master
 - (Trace*)
 - (Trace Terminate***)
- Re-materialization 2
 - Finalizable Processing

- Clearing
 - Monitor Table clearing
 - JNI Weak Global clearing
 - Debugger Reference clearing
 - JVMTI Table clearing
 - Phantom Reference clearing
- Re-Trace 2
 - Trace Master
 - (Trace*)
 - (Trace Terminate***)
 - Class Unloading
- Flip
 - Move Available Lists to Full List* (contention)
 - turn write barrier off
 - Flush Per-thread Allocation Pages**
 - switch allocation color to white
 - · switch to temp full list
- Sweeping
 - Sweep*
 - Switch to regular Full List**
 - Move Temp Full List to regular Full List* (contention)
- Defragmentation
- Completion
 - Finalizer Wakeup
 - Class Unloading Flush
 - Clearable Compaction**
 - Book-keeping

- * Parallel
- ** Callback
- *** Single actor symmetric

Two-way Communication

GC GC Application Master Worker **Threads** (may do GC work) **Thread Threads** pointers have changed objects have moved

Defragmentation

create store

Staccato Algorithm

Scheduling

Guaranteeing Real Time

- Guaranteeing usability without realtime:
 - Must know maximum live memory
 - If fragmentation & metadata overhead bounded
- We also require:
 - Maximum allocation rate (MB/s)
- How does the user figure this out???
 - Very simple programming style
 - Empirical measurement
 - (Research) Static analysis

Conclusions

- Systems are made of concurrent components
- Basic building blocks:
 - Locks
 - Try-locks
 - Compare-and-Swap
 - Non-locking stacks, lists, ...
 - Monotonic phases
 - Logical clocks and asynchronous agreement
- Encapsulate so others won't suffer!

http://www.research.ibm.com/metronome

https://sourceforge.net/projects/tuningforkvp

GC Phases

