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Part 2: Trace (aka Mark)

Initiation
- Setup
. turn double barrier on

Root Scan
Active Finalizer scan
Class scan
Thread scan**
. switch to single barrier, color to black
Debugger, JNI, Class Loader scan

Trace
- Trace*
- Trace Terminate***

Re-materialization 1
- Weak/Soft/Phantom Reference List Transfer
- Weak Reference clearing** (snapshot)

Re-Trace 1
- Trace Master
- (Trace*)
- (Trace Terminate***)

Re-materialization 2
- Finalizable Processing

Clearing
—  Monitor Table clearing
— JNI Weak Global clearing
—  Debugger Reference clearing
— JVMTI Table clearing
—  Phantom Reference clearing

Re-Trace 2
—  Trace Master
—  (Trace*)
—  (Trace Terminate***)
—  Class Unloading

—  Move Available Lists to Full List* (contention)
. turn write barrier off

- Flush Per-thread Allocation Pages**
. switch allocation color to white
. switch to temp full list

Sweeping
- Sweep*
- Switch to regular Full List**
- Move Temp Full List to regular Full List* (contention)

Completion
- Finalizer Wakeup
- Class Unloading Flush
—  Clearable Compaction** * Parallel

- Book-keeping ** Callback
*** Single actor symmetric




Let's Assume a Stack Snapshot




Yuasa Algorithm Review:
2(a): Copy Over-written Pointers




Yuasa Algorithm Review:
2(b): Trace

* Color is per-object mark bit
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Yuasa Algorithm Review:
2(c): Allocate “Black”
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Non-monotonicity in Tracing
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Which Design Pattern is This?

Shared Monotonic Work Pool
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Trace i1s Non-Monotonic...
and requires thread-local data

GC GC Application
Master Worker Threads
Thread Threads 4 A
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Basic Solution

* Check if there are more work packets

— If some found, trace is not done yet

— If none found, “probably done”
* Pause all threads
« Re-scan for non-empty buffers
 Resume all threads
* If none, done
« Otherwise, try again later
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Ragged Barriers:

How to Stop without Stopping

<|I
||||||||
g

- Local Epoch
- Global Min
- Global Max
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The Thread’'s Full Monty
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Work Packet Data Structures
buf.epoch < Epoh.agreed

totrace




trace() {
thread->epoch = Epoch.newest;
bool canTerminate = true;

if (WBufCount > 0)
getWriteBuffers();

canTerminate = false;

while (b = wbuf-trace.pop())

if (! moreTime()) return;
int traceCount = traceBufferContents(b);
canTerminate &= (traceCount == 0);

while (b = totrace.pop())

if (! moreTime()) return;
int TraceCount = traceBufferContents(b);
canTerminate &= (traceCount == 0);

1f (canTerminate)
traceTerminate();
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Getting Write Buffer Roots

getWriteBuffers() {
thread->epoch = fetchAndAdd(Epoch.newest, 1);
WBufEpoch = thread->epoch; // mutators will dump wbufs

LOCK(wbuf-£fill);
LOCK (wbuf-trace);

for each (wbuf in wbuf-fill)
if (wbuf.epoch < Epoch.agreed)
remove wbuf from wbuf-fill;

add wbuf to wbuf-trace;

UNLOCK (wbuf-trace);
UNLOCK(wbuf-£fill);
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Write Barrier

writeBarrier (Object object, Field field, Object new)
if (BarrierOn)
Object old = object[field];
if (old != null && ! old.marked)
outOfLineBarrier(old);

{
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Write Barrier Slow Path

outOfLineBarrier (Object obj) {

obj.marked = true;

bool epochOK = thread->wbuf->epoch == WBufEpoch;
bool haveRoom = thread->wbuf->data < thread->wbuf->end;

if (! (epochOK && enoughSpace))
thread->wbuf = flushWBufAndAllocNew(thread->wbuf);
// Updates WBufEpoch, Epoch.newest

*thread->wbuf->data++ = obj;

®
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Trace Termination

totrace
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Asynchronous Agreement

2%% S%i desiredEpoch = Epooch.newest;
WAIT FOR Epoch.agreed == desiredEpoch
if (WBufCount == 0)
DONE
else

RESUME TRACING
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Ragged Barrier

bool raggedBarrier(desiredEpoch, urgent) {

if (Epoch.agreed >= desiredEpoch)
return true;

LOCK(threadlist);
int latest = MAXINT;

for each (Thread thread in threadlist)
latest = min(latest, thread.epoch);

Epoch.agreed = latest;

UNLOCK (threadlist);

if (epoch.agreed >= desiredEpoch)
return true;

else

doCallbacks (RAGGED BARRIER, true, urgent);
return false;

* Non-locking implementation?
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Part 1: Scan Roots

Initiation
- Setup
. turn double barrier on

Root Scan
Active Finalizer scan
Class scan
Thread scan**
. switch to single barrier, color to black
Debugger, JNI, Class Loader scan

~

Trace
- Trace*
- Trace Terminate***

Re-materialization 1
- Weak/Soft/Phantom Reference List Transfer
- Weak Reference clearing** (snapshot)

Re-Trace 1
- Trace Master
- (Trace*)
- (Trace Terminate***)

Re-materialization 2
- Finalizable Processing

Clearing
—  Monitor Table clearing
— JNI Weak Global clearing
—  Debugger Reference clearing
— JVMTI Table clearing
—  Phantom Reference clearing

Re-Trace 2
—  Trace Master
—  (Trace*)
—  (Trace Terminate***)
—  Class Unloading

—  Move Available Lists to Full List* (contention)
. turn write barrier off

- Flush Per-thread Allocation Pages**
. switch allocation color to white
. switch to temp full list

Sweeping
- Sweep*
- Switch to regular Full List**
- Move Temp Full List to regular Full List* (contention)

Completion
- Finalizer Wakeup
- Class Unloading Flush
- Clearable Compaction**
- Book-keeping

* Parallel
** Callback
*** Single actor symmetric
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Fuzzy Snapshot

* Finally, we assume no magic

* |Initiate Collection
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Initiate: Color Black, Double Barrier

pthread pthread t

thread
list

pthread t
.
epoch [37]
color @
sweep X | abib

256
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What is a Double Barrier?
Store both Old and New Pointers
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Why Double Barrier?

T2: m.b = n (writes X.b = W)
T3: j.b = k (writes X.b = V)
Tl: g = p.b (reads X.b: V, W, or Z??)

7 % k
(a )
EJ (o)

T1 3

Stack Stack / Stack

“Snapshot” ={V, W, X, Z}
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Yuasa (Single) Barrier with 2 Writers

T2: m.b = n (X.b = W)
T3: §.b = k (X.b = V)
T2 T3

p/@ j

q - n
Iy L)

T1 = = T2 /T3

Stack Stack / Stack
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Yuasa Barrier Lost Update

T2: m.b = n (X.b = W)
T3: 5.b = k (X.b = V)
T2 T3
-
o o= J
% 5]
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T2 3

Stack Stack / Stack
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T1: Scan Stack
HOSed' T2: m.b = n (X.b = W)
T3: j.b = k (X.b = V)
T1: = p.b (g <- W)
T2: n = null
T2: Scan Stack
T1 T2 T3
’ —m
p/é} J
=0
q \N () - K
)
T1 — 3
Stack Stack / Stack
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Scan Stacks (double barrier off)

pthread pthread t

thread
list

Scan Stack 1

pthread t
.
epoch [37]
color @
sweep X | abib

256

Scan Stack 2
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All Done!

3,
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Boosting: Ensuring Progress

/Boost to master priority

GC GC Application
Master Worker Threads
Thread Threads (may do GC work)
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Part 4. Defragmentation

Initiation
- Setup
. turn double barrier on

Root Scan
- Active Finalizer scan
- Class scan
- Thread scan**
. switch to single barrier, color to black
- Debugger, JNI, Class Loader scan

Trace
- Trace*
- Trace Terminate***

Re-materialization 1
- Weak/Soft/Phantom Reference List Transfer
- Weak Reference clearing** (snapshot)

Re-Trace 1
- Trace Master
- (Trace*)
- (Trace Terminate***)

Re-materialization 2
- Finalizable Processing

Clearing
—  Monitor Table clearing
— JNI Weak Global clearing
—  Debugger Reference clearing
— JVMTI Table clearing
—  Phantom Reference clearing

Re-Trace 2
—  Trace Master
— (Trace®)
—  (Trace Terminate***)
—  Class Unloading

. Flip
—  Move Available Lists to Full List* (contention)
. turn write barrier off
- Flush Per-thread Allocation Pages**
. switch allocation color to white
. switch to temp full list
. Sweeping
- Sweep*
- Switch to regular Full List**
- Move Temp Full List to regular Full List* (contention)
[ . Defragmentation }
. Completion * Parallel
- Finalizer Wakeu
g ** Callback

- Class Unloading Flush
- Clearable Compaction**
- Book-keeping

*** Single actor symmetric
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Two-way Communication

GC GC Application
Master Worker Threads
Thread Threads (may do GC work)

pointers have chM
&objects have moved
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Defragmentation

®
Iyl




\ Staccato Algorithm
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Scheduling
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Guaranteeing Real Time

« Guaranteeing usability without realtime:

— Must know maximum live memory
« If fragmentation & metadata overhead bounded

 We also require:
— Maximum allocation rate (MB/s)

 How does the user figure this out???
— Very simple programming style
— Empirical measurement
— (Research) Static analysis
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Conclusions

« Systems are made of concurrent components

» Basic building blocks:

— Locks

— Try-locks

— Compare-and-Swap

— Non-locking stacks, lists, ...

— Monotonic phases

— Logical clocks and asynchronous agreement

* Encapsulate so others won't suffer!
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http://www.research.ibm.com/metronome

https://sourceforge.net/projects/tuningforkvp
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GC Phases
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