Parallel and Concurrent
Real-time Garbage Collection

Part llI:
Tracing, Snapshot, and Defragmentation

David F Bacon

T.J. Watso

Part 2: Trace (aka Mark)

Initiation
- Setup
. turn double barrier on

Root Scan
Active Finalizer scan
Class scan
Thread scan**
. switch to single barrier, color to black
Debugger, JNI, Class Loader scan

Trace
- Trace*
- Trace Terminate***

Re-materialization 1
- Weak/Soft/Phantom Reference List Transfer
- Weak Reference clearing** (snapshot)

Re-Trace 1
- Trace Master
- (Trace*)
- (Trace Terminate***)

Re-materialization 2
- Finalizable Processing

Clearing
— Monitor Table clearing
— JNI Weak Global clearing
— Debugger Reference clearing
— JVMTI Table clearing
— Phantom Reference clearing

Re-Trace 2
— Trace Master
— (Trace*)
— (Trace Terminate***)
— Class Unloading

— Move Available Lists to Full List* (contention)
. turn write barrier off

- Flush Per-thread Allocation Pages**
. switch allocation color to white
. switch to temp full list

Sweeping
- Sweep*
- Switch to regular Full List**
- Move Temp Full List to regular Full List* (contention)

Completion
- Finalizer Wakeup
- Class Unloading Flush
— Clearable Compaction** * Parallel

- Book-keeping ** Callback
*** Single actor symmetric

Let's Assume a Stack Snapshot

Yuasa Algorithm Review:
2(a): Copy Over-written Pointers

Yuasa Algorithm Review:
2(b): Trace

* Color is per-object mark bit

4 =

Yuasa Algorithm Review:
2(c): Allocate “Black”

Sta

Non-monotonicity in Tracing

1 GB

Which Design Pattern is This?

Shared Monotonic Work Pool

f (. (- .
) - /) -
y g PN E 3 (:)
\ .y pool of work A S
7 / € o .V (oy \V
/ = XT - \/ '
g g. . /Q/. A
.,-" 4 g/ n le Vv { { n ,,-"
\\A : \ .) \.»' v :,, \ . Q | \,,-' \\A :
/ /' \ ©F . V "X °7 V

7

Trace i1s Non-Monotonic...
and requires thread-local data

GC GC Application
Master Worker Threads
Thread Threads 4 A
y [, @ % éa v
) ¢ § 3" o =) W
. 2 2 ~ - \ 7
/ S\ pool of / <7 V
7 non-monotonic 4
work

Basic Solution

* Check if there are more work packets

— If some found, trace is not done yet

— If none found, “probably done”
* Pause all threads
« Re-scan for non-empty buffers
 Resume all threads
* If none, done
« Otherwise, try again later

-1 I
||||||||
g

Ragged Barriers:

How to Stop without Stopping

<|I
||||||||
g

- Local Epoch
- Global Min
- Global Max

1]
@

11

The Thread’'s Full Monty

4 N\
— = =
List "L

pthread t
..
epoch-
color ()
dblb x

256

sweep x

i
)
||:“|||
RN
N

Work Packet Data Structures
buf.epoch < Epoh.agreed

totrace

trace() {
thread->epoch = Epoch.newest;
bool canTerminate = true;

if (WBufCount > 0)
getWriteBuffers();

canTerminate = false;

while (b = wbuf-trace.pop())

if (! moreTime()) return;
int traceCount = traceBufferContents(b);
canTerminate &= (traceCount == 0);

while (b = totrace.pop())

if (! moreTime()) return;
int TraceCount = traceBufferContents(b);
canTerminate &= (traceCount == 0);

1f (canTerminate)
traceTerminate();

= 14

Getting Write Buffer Roots

getWriteBuffers() {
thread->epoch = fetchAndAdd(Epoch.newest, 1);
WBufEpoch = thread->epoch; // mutators will dump wbufs

LOCK(wbuf-£fill);
LOCK (wbuf-trace);

for each (wbuf in wbuf-fill)
if (wbuf.epoch < Epoch.agreed)
remove wbuf from wbuf-fill;

add wbuf to wbuf-trace;

UNLOCK (wbuf-trace);
UNLOCK(wbuf-£fill);

15

Write Barrier

writeBarrier (Object object, Field field, Object new)
if (BarrierOn)
Object old = object[field];
if (old != null && ! old.marked)
outOfLineBarrier(old);

{

16

Write Barrier Slow Path

outOfLineBarrier (Object obj) {

obj.marked = true;

bool epochOK = thread->wbuf->epoch == WBufEpoch;
bool haveRoom = thread->wbuf->data < thread->wbuf->end;

if (! (epochOK && enoughSpace))
thread->wbuf = flushWBufAndAllocNew(thread->wbuf);
// Updates WBufEpoch, Epoch.newest

*thread->wbuf->data++ = obj;

®

17 s

Il
@

18

Trace Termination

totrace

Il
@

Asynchronous Agreement

2%% S%i desiredEpoch = Epooch.newest;
WAIT FOR Epoch.agreed == desiredEpoch
if (WBufCount == 0)
DONE
else

RESUME TRACING

20

||“|| -

Ragged Barrier

bool raggedBarrier(desiredEpoch, urgent) {

if (Epoch.agreed >= desiredEpoch)
return true;

LOCK(threadlist);
int latest = MAXINT;

for each (Thread thread in threadlist)
latest = min(latest, thread.epoch);

Epoch.agreed = latest;

UNLOCK (threadlist);

if (epoch.agreed >= desiredEpoch)
return true;

else

doCallbacks (RAGGED BARRIER, true, urgent);
return false;

* Non-locking implementation?

21

Part 1: Scan Roots

Initiation
- Setup
. turn double barrier on

Root Scan
Active Finalizer scan
Class scan
Thread scan**
. switch to single barrier, color to black
Debugger, JNI, Class Loader scan

~

Trace
- Trace*
- Trace Terminate***

Re-materialization 1
- Weak/Soft/Phantom Reference List Transfer
- Weak Reference clearing** (snapshot)

Re-Trace 1
- Trace Master
- (Trace*)
- (Trace Terminate***)

Re-materialization 2
- Finalizable Processing

Clearing
— Monitor Table clearing
— JNI Weak Global clearing
— Debugger Reference clearing
— JVMTI Table clearing
— Phantom Reference clearing

Re-Trace 2
— Trace Master
— (Trace*)
— (Trace Terminate***)
— Class Unloading

— Move Available Lists to Full List* (contention)
. turn write barrier off

- Flush Per-thread Allocation Pages**
. switch allocation color to white
. switch to temp full list

Sweeping
- Sweep*
- Switch to regular Full List**
- Move Temp Full List to regular Full List* (contention)

Completion
- Finalizer Wakeup
- Class Unloading Flush
- Clearable Compaction**
- Book-keeping

* Parallel
** Callback
*** Single actor symmetric

22

Fuzzy Snapshot

* Finally, we assume no magic

* |Initiate Collection

23

Il
@

24

Initiate: Color Black, Double Barrier

pthread pthread t

thread
list

pthread t
.
epoch [37]
color @
sweep X | abib

256

25

What is a Double Barrier?
Store both Old and New Pointers

26

Why Double Barrier?

T2: m.b = n (writes X.b = W)
T3: j.b = k (writes X.b = V)
Tl: g = p.b (reads X.b: V, W, or Z??)

7 % k
(a)
EJ (o)

T1 3

Stack Stack / Stack

“Snapshot” ={V, W, X, Z}

27 s

Yuasa (Single) Barrier with 2 Writers

T2: m.b = n (X.b = W)
T3: §.b = k (X.b = V)
T2 T3

p/@ j

q - n
Iy L)

T1 = = T2 /T3

Stack Stack / Stack

28

Yuasa Barrier Lost Update

T2: m.b = n (X.b = W)
T3: 5.b = k (X.b = V)
T2 T3
-
o o= J
% 5]

°JP)<

T2 3

Stack Stack / Stack

29

T1: Scan Stack
HOSed' T2: m.b = n (X.b = W)
T3: j.b = k (X.b = V)
T1: = p.b (g <- W)
T2: n = null
T2: Scan Stack
T1 T2 T3
’ —m
p/é} J
=0
q \N () - K
)
T1 — 3
Stack Stack / Stack

30

Il
@

31

Scan Stacks (double barrier off)

pthread pthread t

thread
list

Scan Stack 1

pthread t
.
epoch [37]
color @
sweep X | abib

256

Scan Stack 2

32 s

|
Il
@

All Done!

3,

33

Boosting: Ensuring Progress

/Boost to master priority

GC GC Application
Master Worker Threads
Thread Threads (may do GC work)

<|I
||||||||
g

34

Part 4. Defragmentation

Initiation
- Setup
. turn double barrier on

Root Scan
- Active Finalizer scan
- Class scan
- Thread scan**
. switch to single barrier, color to black
- Debugger, JNI, Class Loader scan

Trace
- Trace*
- Trace Terminate***

Re-materialization 1
- Weak/Soft/Phantom Reference List Transfer
- Weak Reference clearing** (snapshot)

Re-Trace 1
- Trace Master
- (Trace*)
- (Trace Terminate***)

Re-materialization 2
- Finalizable Processing

Clearing
— Monitor Table clearing
— JNI Weak Global clearing
— Debugger Reference clearing
— JVMTI Table clearing
— Phantom Reference clearing

Re-Trace 2
— Trace Master
— (Trace®)
— (Trace Terminate***)
— Class Unloading

. Flip
— Move Available Lists to Full List* (contention)
. turn write barrier off
- Flush Per-thread Allocation Pages**
. switch allocation color to white
. switch to temp full list
. Sweeping
- Sweep*
- Switch to regular Full List**
- Move Temp Full List to regular Full List* (contention)
[. Defragmentation }
. Completion * Parallel
- Finalizer Wakeu
g ** Callback

- Class Unloading Flush
- Clearable Compaction**
- Book-keeping

*** Single actor symmetric

35

=

[
(o))

IIn
I
@

Two-way Communication

GC GC Application
Master Worker Threads
Thread Threads (may do GC work)

pointers have chM
&objects have moved

<|I
||||||||
g

37

38

Defragmentation

®
Iyl

\ Staccato Algorithm

daccess

load

~

FREE

~

_ J
bl |
4 MOVED A
T
(@) (a)
2) =
_ J

allocate
nop

e

access (abort)

cas

S

commit
cas

-~

NORMAL

L
(a]
(o]

~

1

COPYING

=)
@ . I
(5 (5

_ /

daccess

Sj

efragment
cas

39

Scheduling

40

Guaranteeing Real Time

« Guaranteeing usability without realtime:

— Must know maximum live memory
« If fragmentation & metadata overhead bounded

 We also require:
— Maximum allocation rate (MB/s)

 How does the user figure this out???
— Very simple programming style
— Empirical measurement
— (Research) Static analysis

41

Conclusions

« Systems are made of concurrent components

» Basic building blocks:

— Locks

— Try-locks

— Compare-and-Swap

— Non-locking stacks, lists, ...

— Monotonic phases

— Logical clocks and asynchronous agreement

* Encapsulate so others won't suffer!

42 =

http://www.research.ibm.com/metronome

https://sourceforge.net/projects/tuningforkvp

43 o

GC Phases

[SNAPSHOT|

TRACE
FLIP

SWEEP
[TERMINATE]|

Legend

| L ||
1l
@

