
Concurrent

Programming

Yannis Smaragdakis
University of Massachusetts, Amherst

Obligatory Moore’s Law Slide

2

Number of transistors doubles every 2 years

Transistors/

Chip

P
o
w

e
r D

e
n
s
ity

 (W
/c

m
2)

Nuclear Reactor

Rocket Nozzle

Surface of Sun

Hot Plate

You Have Heard of Multi-Cores

 You have probably also heard that parallel

programming is hard

 Many ways to do parallel programming

 message passing

 multithreading

 …

 Suited for different kinds of parallelism

 e.g., shared memory vs. distributed memory

Yannis Smaragdakis

University of Massachusetts, Amherst

3

This Talk: Only About

Multithreading

 Most explicit parallel programming model,

unlikely to be completely superseded for

general purpose shared memory parallelism

Yannis Smaragdakis

University of Massachusetts, Amherst

4

Quick Review of

Multithreading

 A thread is a single sequential flow of control

 a process can have many threads and a single

address space

 threads share memory and, hence, need to

cooperate to produce correct results

 shared memory: heap, global variables

 thread-private memory: stack, other only if

explicitly designated

Yannis Smaragdakis

University of Massachusetts, Amherst

5

Programming Models for

Multithreading

 Most thread programming nowadays is

“monitor style” programming

 introduced in 70s, subsequently dominated all

alternatives as a general-purpose facility

 alternatives: semaphores, low-level atomic operations,

etc.

 universal mechanism: can do anything

Yannis Smaragdakis

University of Massachusetts, Amherst

6

Outline

1. Monitor style programming: traditional

multithreading
 if you already know mutexes, bear with me for 30

mins and you’ll see new stuff

2. Complexities of the programming model

3. Transactional memory: an emerging MT

programming model
 Complexities

 Implementation

Yannis Smaragdakis

University of Massachusetts, Amherst

7

MONITOR STYLE

PROGRAMMING

Yannis Smaragdakis

University of Massachusetts, Amherst

8

Monitor Style Programming

 Two components:

 locks/mutexes (lock)

 condition variables (wait, signal, broadcast)

 Mapping of abstract to concrete:

 Java: every object is a mutex and a condition var

 lock -> synchronized

 wait -> Object.wait

 signal -> Object.notify

 broadcast -> Object.notifyAll
Yannis Smaragdakis

University of Massachusetts, Amherst

9

Other Incarnations

 PThreads (C, C++, etc.): can declare

explicit mutex and condition var objects

 pthread_mutex_t, pthread_cond_t

 operations:

 lock ->

pthread_mutex_lock ... pthread_mutex_unlock

 wait, signal, broadcast ->
pthread_cond_{wait,signal,broadcast}

Yannis Smaragdakis

University of Massachusetts, Amherst

10

For Our Discussion

 Default Java distorts and handicaps the

model a bit. We will use an imaginary

language with the full power (also supported

in Java through library classes)

 Java but with condition variables declared

explicitly as objects of type Cond

 Thread creation is an uninteresting detail

 in Java threads are instances of class Thread,

they begin execution when the start method is

called
Yannis Smaragdakis

University of Massachusetts, Amherst

11

Mutexes

 Mutexes are used to control access to shared

data

 only one thread can execute inside a

synchronized clause

 other threads who try to enter synchronized code,

are blocked until the mutex is unlocked

 As we said, in Java, every object is a (or “has

an associated”) mutex!

Yannis Smaragdakis

University of Massachusetts, Amherst

12

Mutexes

class List {

public synchronized int insert(int i)

{ [BODY] }

}

 same as

class List {

public int insert(int i)

{ synchronized(this) [BODY] }

}

Yannis Smaragdakis

University of Massachusetts, Amherst

13

Mutexes Prototypical Example

class Account {

int balance = 0;

public synchronized int withdraw(int amt) {

if (balance >= amt) {

balance -= amt;

return amt;

} else return 0;

}

public synchronized void deposit(int i) {

balance += i;

}

}

 what errors are prevented?

 we’ll return to this example
Yannis Smaragdakis

University of Massachusetts, Amherst

14

Using Mutexes: Deadlocks

 Example deadlock:

 A locks M1, B locks M2, A blocks on M2, B blocks

on M1

 Techniques for avoiding deadlocks:

 Fine grained locking (but then greater risk of races)

 Two-phase locking: acquire up front all the locks

you’ll need, release all if you fail to acquire any one

 Order locks and acquire them in order (e.g., all

threads first acquire M1, then M2)

Yannis Smaragdakis

University of Massachusetts, Amherst

15

Condition Variables

 Used to wait for specific events (especially for

long/indefinite waits)

 free memory is getting low, wake up the garbage

collector thread

 10,000 clock ticks have elapsed, update that

window

 new data arrived in the I/O port, process it

 Each condition variable is associated with a

single mutex

 In Java, every object is cond. var (ugly!)
Yannis Smaragdakis

University of Massachusetts, Amherst

16

Condition Variables in Our

Language

 Cond type with methods

 wait(m): atomically unlocks the mutex (as many

times as needed) and blocks the thread

 notify: awakes some blocked thread

 the thread is awoken inside wait

 tries to lock the mutex (maybe many times)

 when it (finally) succeeds, it returns from the wait

 notifyAll: like notify but for all blocked

threads

Yannis Smaragdakis

University of Massachusetts, Amherst

17

Condition Var Example

class Buffer {

Port port;

Cond c = new Cond();

public synchronized void consume() {

while (port.empty())

c.wait(this);

process_data(port.first_data());

}

public synchronized void produce() {

port.add_data();

c.notify();

}

}

Yannis Smaragdakis

University of Massachusetts, Amherst

18

Using Condition Variables

class Buffer {

Port port;

Cond c = new Cond();

public synchronized void consume() {

while (port.empty())

c.wait(this);

process_data(port.first_data());

}

public synchronized void produce() {

port.add_data();

c.notify();

}

}

 Why not “if”? When can we use notifyAll? Could

we replace condition variables with messaging?
Yannis Smaragdakis

University of Massachusets, Amherst

19

Monitor Style Programming

General Pattern

 Armed with mutexes and condition variables, one

can implement any kind of critical section
 CS.enter(); [controlled code] CS.exit();

 class CS {

[shared data, including c]

public synchronized void enter() {

while (![condition]) c.wait(this);

[change shared data to reflect in_CS]

[notify as needed]

}

public synchronized void exit() {

[change shared data to reflect out_of_CS]

[notify as needed]

}

}
Yannis Smaragdakis

University of Massachusetts, Amherst

20

Simplest Example: Implement

an Unstructured Mutex

 class Mutex {

public synchronized void acquire() {

}

public synchronized void release() {

}

}

Yannis Smaragdakis

University of Massachusetts, Amherst

21

Simplest Example: Implement

an Unstructured Mutex

 class Mutex {

boolean locked = false;

Cond c = new Cond();

public synchronized void acquire() {

while (locked) c.wait(this);

locked = true;

}

public synchronized void release() {

locked = false;

c.notify();

}

}

Yannis Smaragdakis

University of Massachusetts, Amherst

22

Classic Example: Readers-

Writers Lock

 class RWLock {

int readers = 0; boolean writer = false;

Cond readPhase = new Cond();

Cond writePhase = new Cond();

public synchronized void enterRead() {

while (writer) readPhase.wait(this);

readers++;

}

public synchronized void exitRead() {

readers--;

if (readers == 0) writePhase.notify();

} …
Yannis Smaragdakis

University of Massachusetts, Amherst

23

Classic Example: Readers-

Writers Lock

 …

public synchronized void enterWrite() {

while (readers != 0 || writer)

writePhase.wait(this);

writer = true;

}

public synchronized void exitWrite() {

writer = false;

readPhase.notifyAll();

writePhase.notify();

}

}

Yannis Smaragdakis

University of Massachusetts, Amherst

24

Comments on Readers/Writers

Example

 How would it be different in plain Java?

 single condition variable for phase changes

 Note the use of notifyAll

 also wakes up many readers that will contend for a mutex

 Writer notifies many threads. Not all can proceed,

however (spurious wake-ups)

 how can we avoid this?

 Unnecessary lock conflicts may arise (especially for

multiprocessors):

 both readers and writers signal condition variables while still

holding the corresponding mutexes

Yannis Smaragdakis

University of Massachusetts, Amherst

25

Many Other Examples (try

them!)

 CS with red/green threads, up to 3 in CS, not

all the same color

 Red/green threads, up to 3, red have priority

 no green can enter if a red is waiting to enter

Yannis Smaragdakis

University of Massachusetts, Amherst

26

COMPLEXITIES OF MONITOR

STYLE PROGRAMMING

Yannis Smaragdakis

University of Massachusetts, Amherst

27

Monitor Style Programming

Errors

 Most problems with concurrent

programming are simple oversights that

are easy to introduce due to partial

program knowledge and near-impossible

to debug!

 more on that later

 People forget to access shared variables

in locks, forget to signal when a condition

changes, etc.

Yannis Smaragdakis

University of Massachusetts, Amherst

28

The Golden Rules
(best currently known–still easier said than done)

 Associate each shared location with a single

mutex, access only while holding the mutex

 Associate each condition variable with a boolean

condition (expressed in terms of program

variables). Every time the value of the boolean

condition may have changed, call notifyAll on

the cond var

 only call notify when you are certain that any and

only one waiting thread can enter the critical section

 Globally order locks, acquire in order in all

threads
Yannis Smaragdakis

University of Massachusetts, Amherst

29

Why Is This Hard In Practice?

 Holding locks is a global property: affects

entire program, cannot be hidden behind an

abstract interface

 Results in lack of modularity: callers cannot

ignore what locks their callees acquire or

what locations they access

 necessary for race avoidance, but also for global

ordering to avoid deadlock

 part of a method’s protocol which lock needs to

be held when called, which locks it acquires
Yannis Smaragdakis

University of Massachusetts, Amherst

30

Why Is This Hard In Practice?

 Cond vars are also non-local: every time

some value changes, we need to know which

condition var may depend on it to signal it!

 Everything exacerbated by aliasing in

imperative languages

 hard to tell what location a program expression

refers to

 are two locks the same?

 are two data locations the same?

Yannis Smaragdakis

University of Massachusetts, Amherst

31

Why Is This Hard In Practice?

 Even worse: lack of composability, cannot

build safe services out of other safe services

Yannis Smaragdakis

University of Massachusetts, Amherst

32

Back to Earlier Example

Yannis Smaragdakis

University of Massachusetts, Amherst

33

class Account {

int balance = 0;

public synchronized int withdraw(int amt) {…}

public synchronized void deposit(int i) {…}

}

class Client1 {

public synchronized void move (Account a1, Account a2) {

a2.deposit(a1.withdraw(10));

}

}

class Client2 … // same as Client1

 What if move truly needs to be atomic?

 Deadlock? How can it be avoided?
 All clients need to know each other!

TRANSACTIONAL MEMORY

Yannis Smaragdakis

University of Massachusetts, Amherst

34

What is Transactional Memory

(TM) ?

 Instead of mutexes and condition variables,

atomic code sections

 atomic(expr) { … }

 block until expr is true (wake up automatically when it

changes)

 typically abort and retry statements also

supported

 The runtime system ensures that the critical

section executes transactionally

 “as if atomic”
Yannis Smaragdakis

University of Massachusetts, Amherst

35

Semantics (Informally)

 Transaction properties: atomicity, isolation

 other threads cannot see intermediate values of

the transaction (all-or-nothing)

 the transaction cannot see values of other

transactions in the middle of its execution

 other transactions have to appear to either have

committed before the current one, or after

 “serializability”

Yannis Smaragdakis

University of Massachusetts, Amherst

36

Advantages

 No deadlock!

 we never refer to locks explicitly

 Composability, modularity

 no need to know what callees do w.r.t.

synchronization

Yannis Smaragdakis

University of Massachusetts, Amherst

37

Back to Earlier Example

Yannis Smaragdakis

University of Massachusetts, Amherst

38

class Account {

int balance = 0;

public int withdraw(int amt) {atomic{…}}

public void deposit(int i) {atomic{…}}

}

class Client1 {

public void move (Account a1, Account a2) {

atomic{ a2.deposit(a1.withdraw(10)); }

}

}

class Client2 … // same as Client1

 No deadlock problem, atomicity enforced

 Client1 doesn’t need to know anything about Client2

Foundation:

Transactional Retrying

 atomic {

x = 3;

y = x+2;

…

z = y + x;

…

}

39

Begin transact

End transact

change shared

change shared

if conflict, undo, retry

...

Yannis Smaragdakis

University of Massachusetts, Amherst

Implementations

 TM can be implemented in software

(“Software TM”—STM) or hardware

(“Hardware TM”—HTM)

 Realistically, the (first?) mainstream

incarnations will be hybrids

 processors are expected to offer some support

 software will take over for more expensive

transactions

Yannis Smaragdakis

University of Massachusetts, Amherst

40

Let’s Think What’s Needed

 How would you implement an STM?
 trivial: acquire a single global lock, right?

 atomic {

x = 3;

y = x+2;

…

z = y + x;

…

}

41

Begin transact

End transact

change shared

change shared

if conflict, undo, retry

...

Yannis Smaragdakis

University of Massachusetts, Amherst

Implementation Choices:

Pessimistic

 Acquire locks before accessing shared data

 atomic {

x = 3;

y = x+2;

…

z = y + x;

…

}

42

Begin transact

End transact

acquire lock, change shared

acquire lock, change shared

try lock, detect deadlock, undo, retry

...

Yannis Smaragdakis

University of Massachusetts, Amherst

Implementation Choices:

Optimistic

 Log all reads/writes to shared data, detect

conflicts, at commit acquire locks, post updates

 atomic {

x = 3;

y = x+2;

…

z = y + x;

…

}

43

Begin transact

End transact

log write, change shared

log read, write, change shared

try read, detect conflict, undo, retry

...

Yannis Smaragdakis

University of Massachusetts, Amherst

A Myriad Variations

 Logging/commit/serialization protocols

 decided depending on common access patterns

 e.g., how often do we have read/write conflicts, how

often write/write? How many writes vs. reads?

 early/late conflict detection, locking protocol at

commit, etc.

 Locking granularity

 word level, object level, cache line level

 also false sharing issues

Yannis Smaragdakis

University of Massachusetts, Amherst

44

Software Transactional

Memory: Heavy Overheads

 atomic {

x = 3;

y = x+2;

…

z = y + x;

}

 Also: overhead for retrying, wasted effort on

abort, overhead of lock acquisition
45

optimistic: need to track

all shared memory

reads/writes!

(to detect conflict,

undo)

Yannis Smaragdakis

University of Massachusetts, Amherst

Footnote:

Semantic Complexities

 What happens between transactions and

non-transactional code?

 Many different semantic models. Broad

categories (very rough, imprecise classification)

 Strong atomicity: every memory reference outside

a transaction appears as if in a little transaction of

its own

 Weak atomicity: few/no guarantees if a memory

reference outside a transaction is also accessed

inside a transaction

Yannis Smaragdakis

University of Massachusetts, Amherst

46

Semantic Complexities,

Surprising Example (“privatization”)

Thread1

Item item;

atomic {

item =

list.removeFirst();

}

int r1 = item.val1;

int r2 = item.val2;

// Can r1 != r2 ?

Thread2

atomic {

if (!list.isEmpty()) {

Item item =

list.getFirst();

item.val1++;

item.val2++;

}

}

Yannis Smaragdakis

University of Massachusetts, Amherst

47

Programming Model

Complexities

 Important: the potential for “undoing” is

inevitable!

 in both pessimistic and optimistic implementations

 in pessimistic because of possible deadlock

 in optimistic because of conflict

Yannis Smaragdakis

University of Massachusetts, Amherst

48

49

Programming Model

Complexities

 What if we have done something that cannot

be undone?

 Irreversible operations
 launch

 format

 take_medicine

 shutdown

 send_email_to_boss _after_three_beers

Yannis Smaragdakis

University of Massachusetts, Amherst

49

Problem In Principle

 Destroys the composability properties

 performing irreversible operations becomes a

global property, just as holding locks was a global

property

 caller needs to know whether callee performs

irreversible operations

 why depends on the specific treatment of irreversible

operations

Yannis Smaragdakis

University of Massachusetts, Amherst

50

Ideas for Addressing: #1

 Completely disallow irreversible operations in

transactions

 typically also enforce/propagate property with a

type system

 a la Haskell

 draconian, global property, hard to adapt to pre-

existing libraries

Yannis Smaragdakis

University of Massachusetts, Amherst

51

Ideas for Addressing: #2

 When encountering irreversible operations,

roll back the transaction, acquire single global

lock, restart

 one transaction at a time can be performing

irreversible actions

 limits performance, makes clients non-

independent

 exposes as a performance impact the fact that

irreversible actions are a global property

Yannis Smaragdakis

University of Massachusetts, Amherst

52

Ideas for Addressing: #3

 When encountering irreversible operations,

commit the transaction, breaking it up in two

(“punctuation”)

 violates atomicity, needs type system for warning

to the user, all callers need to know

 can be combined with system for restoring “local”

invariants when a transaction is punctuated

 in practice turns out to be quite easy to retrofit, even

for large applications and external opaque libraries

Yannis Smaragdakis

University of Massachusetts, Amherst

53

Ideas for Addressing: #4

 (Not really addressing the problem, but

limiting its impact.)

 I/O is the biggest problem, but most I/O is

perfectly reversible

 only read after write is irreversible

 Buffer reads, delay writes, as long as they

are not in a read-after-write pattern

 perform writes at end of transaction, replay reads

on retry

Yannis Smaragdakis

University of Massachusetts, Amherst

54

CONCLUSIONS

Yannis Smaragdakis

University of Massachusetts, Amherst

55

Concurrent Programming

Overview

 You got a good idea of concurrent

programming techniques

 what is used in current practice

 and how to use it correctly

 what people do research on

 and what problems people focus on the most

 what are the possibilities for the future

Yannis Smaragdakis

University of Massachusetts, Amherst

56

