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You Have Heard of Multi-Cores

 You have probably also heard that parallel 

programming is hard

 Many ways to do parallel programming

 message passing

 multithreading

 …

 Suited for different kinds of parallelism

 e.g., shared memory vs. distributed memory
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This Talk: Only About

Multithreading

 Most explicit parallel programming model, 

unlikely to be completely superseded for 

general purpose shared memory parallelism
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Quick Review of 

Multithreading

 A thread is a single sequential flow of control

 a process can have many threads and a single 

address space

 threads share memory and, hence, need to 

cooperate to produce correct results

 shared memory: heap, global variables

 thread-private memory: stack, other only if 

explicitly designated
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Programming Models for 

Multithreading

 Most thread programming nowadays is 

“monitor style” programming

 introduced in 70s, subsequently dominated all 

alternatives as a general-purpose facility

 alternatives: semaphores, low-level atomic operations, 

etc.

 universal mechanism: can do anything
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Outline

1. Monitor style programming: traditional 

multithreading
 if you already know mutexes, bear with me for 30 

mins and you’ll see new stuff

2. Complexities of the programming model

3. Transactional memory: an emerging MT 

programming model
 Complexities

 Implementation
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MONITOR STYLE 

PROGRAMMING
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Monitor Style Programming

 Two components:

 locks/mutexes (lock)

 condition variables (wait, signal, broadcast)

 Mapping of abstract to concrete:

 Java: every object is a mutex and a condition var

 lock -> synchronized

 wait -> Object.wait

 signal -> Object.notify

 broadcast -> Object.notifyAll
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Other Incarnations 

 PThreads (C, C++, etc.): can declare 

explicit mutex and condition var objects

 pthread_mutex_t, pthread_cond_t

 operations:

 lock -> 

pthread_mutex_lock ... pthread_mutex_unlock

 wait, signal, broadcast -> 
pthread_cond_{wait,signal,broadcast}
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For Our Discussion

 Default Java distorts and handicaps the 

model a bit. We will use an imaginary 

language with the full power (also supported 

in Java through library classes)

 Java but with condition variables declared 

explicitly as objects of type Cond

 Thread creation is an uninteresting detail

 in Java threads are instances of class Thread, 

they begin execution when the start method is 

called
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Mutexes

 Mutexes are used to control access to shared 

data

 only one thread can execute inside a 

synchronized clause

 other threads who try to enter synchronized code, 

are blocked until the mutex is unlocked

 As we said, in Java, every object is a (or “has 

an associated”) mutex!
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Mutexes

class List {

public synchronized int insert(int i)

{ [BODY] }

}

 same as

class List {

public int insert(int i)

{ synchronized(this) [BODY] }

}
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Mutexes Prototypical Example

class Account {

int balance = 0;

public synchronized int withdraw(int amt) {

if (balance >= amt) {

balance -= amt;

return amt;

} else return 0;

}

public synchronized void deposit(int i) {

balance += i;

}

}

 what errors are prevented?

 we’ll return to this example
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Using Mutexes: Deadlocks

 Example deadlock:

 A locks M1, B locks M2, A blocks on M2, B blocks 

on M1

 Techniques for avoiding deadlocks:

 Fine grained locking (but then greater risk of races)

 Two-phase locking: acquire up front all the locks 

you’ll need, release all if you fail to acquire any one

 Order locks and acquire them in order (e.g., all 

threads first acquire M1, then M2)
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Condition Variables

 Used to wait for specific events (especially for 

long/indefinite waits)

 free memory is getting low, wake up the garbage 

collector thread

 10,000 clock ticks have elapsed, update that 

window

 new data arrived in the I/O port, process it

 Each condition variable is associated with a 

single mutex

 In Java, every object is cond. var (ugly!)
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Condition Variables in Our 

Language

 Cond type with methods

 wait(m): atomically unlocks the mutex (as many 

times as needed) and blocks the thread

 notify: awakes some blocked thread

 the thread is awoken inside wait

 tries to lock the mutex (maybe many times)

 when it (finally) succeeds, it returns from the wait

 notifyAll: like notify but for all blocked 

threads
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Condition Var Example

class Buffer {

Port port;

Cond c = new Cond();

public synchronized void consume() {

while (port.empty())

c.wait(this);

process_data(port.first_data());

}

public synchronized void produce() {

port.add_data();

c.notify();

}

}

Yannis Smaragdakis

University of Massachusetts, Amherst

18



Using Condition Variables

class Buffer {

Port port;

Cond c = new Cond();

public synchronized void consume() {

while (port.empty())

c.wait(this);

process_data(port.first_data());

}

public synchronized void produce() {

port.add_data();

c.notify();

}

}

 Why not “if”? When can we use notifyAll? Could 

we replace condition variables with messaging?
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Monitor Style Programming 

General Pattern

 Armed with mutexes and condition variables, one 

can implement any kind of critical section
 CS.enter(); [controlled code] CS.exit();

 class CS {

[shared data, including c]

public synchronized void enter() {

while (![condition]) c.wait(this); 

[change shared data to reflect in_CS]

[notify as needed]

}

public synchronized void exit() {

[change shared data to reflect out_of_CS]

[notify as needed]

}

}
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Simplest Example: Implement 

an Unstructured Mutex

 class Mutex {

public synchronized void acquire() {

}

public synchronized void release() {

}

}
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Simplest Example: Implement 

an Unstructured Mutex

 class Mutex {

boolean locked = false;

Cond c = new Cond();

public synchronized void acquire() {

while (locked) c.wait(this); 

locked = true;

}

public synchronized void release() {

locked = false;

c.notify();

}

}
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Classic Example: Readers-

Writers Lock

 class RWLock {

int readers = 0; boolean writer = false;

Cond readPhase = new Cond();

Cond writePhase = new Cond();

public synchronized void enterRead() {

while (writer) readPhase.wait(this); 

readers++;

}

public synchronized void exitRead() {

readers--;

if (readers == 0) writePhase.notify();

} …
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Classic Example: Readers-

Writers Lock

 …

public synchronized void enterWrite() {

while (readers != 0 || writer)

writePhase.wait(this); 

writer = true;

}

public synchronized void exitWrite() {

writer = false;

readPhase.notifyAll();

writePhase.notify();

}

}
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Comments on Readers/Writers 

Example

 How would it be different in plain Java?

 single condition variable for phase changes

 Note the use of notifyAll

 also wakes up many readers that will contend for a mutex

 Writer notifies many threads. Not all can proceed, 

however (spurious wake-ups)

 how can we avoid this?

 Unnecessary lock conflicts may arise (especially for 

multiprocessors):

 both readers and writers signal condition variables while still 

holding the corresponding mutexes
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Many Other Examples (try 

them!)

 CS with red/green threads, up to 3 in CS, not 

all the same color

 Red/green threads, up to 3, red have priority

 no green can enter if a red is waiting to enter
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COMPLEXITIES OF MONITOR 

STYLE PROGRAMMING
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Monitor Style Programming 

Errors

 Most problems with concurrent 

programming are simple oversights that 

are easy to introduce due to partial 

program knowledge and near-impossible 

to debug! 

 more on that later

 People forget to access shared variables 

in locks, forget to signal when a condition 

changes, etc. 
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The Golden Rules 
(best currently known–still easier said than done)

 Associate each shared location with a single 

mutex, access only while holding the mutex

 Associate each condition variable with a boolean 

condition (expressed in terms of program 

variables). Every time the value of the boolean 

condition may have changed, call notifyAll on 

the cond var

 only call notify when you are certain that any and 

only one waiting thread can enter the critical section

 Globally order locks, acquire in order in all 

threads
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Why Is This Hard In Practice?

 Holding locks is a global property: affects 

entire program, cannot be hidden behind an 

abstract interface

 Results in lack of modularity: callers cannot 

ignore what locks their callees acquire or 

what locations they access

 necessary for race avoidance, but also for global 

ordering to avoid deadlock

 part of a method’s protocol which lock needs to 

be held when called, which locks it acquires
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Why Is This Hard In Practice?

 Cond vars are also non-local: every time 

some value changes, we need to know which 

condition var may depend on it to signal it!

 Everything exacerbated by aliasing in 

imperative languages

 hard to tell what location a program expression 

refers to

 are two locks the same?

 are two data locations the same?
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Why Is This Hard In Practice?

 Even worse: lack of composability, cannot 

build safe services out of other safe services
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Back to Earlier Example

Yannis Smaragdakis

University of Massachusetts, Amherst

33

class Account {

int balance = 0;

public synchronized int withdraw(int amt) {…}

public synchronized void deposit(int i) {…}

}

class Client1 {

public synchronized void move (Account a1, Account a2) {

a2.deposit(a1.withdraw(10));

}

}

class Client2 … // same as Client1

 What if move truly needs to be atomic?

 Deadlock? How can it be avoided?
 All clients need to know each other!



TRANSACTIONAL MEMORY
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What is Transactional Memory 

(TM) ?

 Instead of mutexes and condition variables, 

atomic code sections

 atomic(expr) { … } 

 block until expr is true (wake up automatically when it 

changes)

 typically abort and retry statements also 

supported

 The runtime system ensures that the critical 

section executes transactionally

 “as if atomic”
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Semantics (Informally)

 Transaction properties: atomicity, isolation

 other threads cannot see intermediate values of 

the transaction (all-or-nothing)

 the transaction cannot see values of other 

transactions in the middle of its execution

 other transactions have to appear to either have 

committed before the current one, or after

 “serializability”
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Advantages

 No deadlock!

 we never refer to locks explicitly

 Composability, modularity

 no need to know what callees do w.r.t. 

synchronization
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Back to Earlier Example
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class Account {

int balance = 0;

public int withdraw(int amt) {atomic{…}}

public void deposit(int i) {atomic{…}}

}

class Client1 {

public void move (Account a1, Account a2) {

atomic{ a2.deposit(a1.withdraw(10)); }

}

}

class Client2 … // same as Client1

 No deadlock problem, atomicity enforced

 Client1 doesn’t need to know anything about Client2



Foundation: 

Transactional Retrying

 atomic {

x = 3; 

y = x+2; 

…

z = y + x;

…

}

39

Begin transact

End transact

change shared

change shared

if conflict, undo, retry

...
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Implementations

 TM can be implemented in software 

(“Software TM”—STM) or hardware 

(“Hardware TM”—HTM)

 Realistically, the (first?) mainstream 

incarnations will be hybrids

 processors are expected to offer some support

 software will take over for more expensive 

transactions
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Let’s Think What’s Needed

 How would you implement an STM?
 trivial: acquire a single global lock, right?

 atomic {

x = 3; 

y = x+2; 

…

z = y + x;

…

}

41

Begin transact

End transact

change shared

change shared

if conflict, undo, retry

...
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Implementation Choices: 

Pessimistic

 Acquire locks before accessing shared data

 atomic {

x = 3; 

y = x+2; 

…

z = y + x;

…

}
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Begin transact

End transact

acquire lock, change shared

acquire lock, change shared

try lock, detect deadlock, undo, retry

...
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Implementation Choices: 

Optimistic

 Log all reads/writes to shared data, detect 

conflicts, at commit acquire locks, post updates

 atomic {

x = 3; 

y = x+2; 

…

z = y + x;

…

}
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Begin transact

End transact

log write, change shared

log read, write, change shared

try read, detect conflict, undo, retry

...
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A Myriad Variations

 Logging/commit/serialization protocols

 decided depending on common access patterns

 e.g., how often do we have read/write conflicts, how 

often write/write? How many writes vs. reads?

 early/late conflict detection, locking protocol at 

commit, etc.

 Locking granularity

 word level, object level, cache line level

 also false sharing issues
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Software Transactional 

Memory: Heavy Overheads

 atomic {

x = 3; 

y = x+2; 

…

z = y + x;

}

 Also: overhead for retrying, wasted effort on 

abort, overhead of lock acquisition
45

optimistic: need to track 

all shared memory 

reads/writes!

(to detect conflict, 

undo)
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Footnote:

Semantic Complexities

 What happens between transactions and 

non-transactional code?

 Many different semantic models. Broad 

categories (very rough, imprecise classification)

 Strong atomicity: every memory reference outside 

a transaction appears as if in a little transaction of 

its own

 Weak atomicity: few/no guarantees if a memory 

reference outside a transaction is also accessed 

inside a transaction
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Semantic Complexities, 

Surprising Example (“privatization”)

Thread1

Item item;

atomic {

item = 

list.removeFirst();

}

int r1 = item.val1;

int r2 = item.val2;

// Can r1 != r2 ?

Thread2

atomic {

if (!list.isEmpty()) {

Item item = 

list.getFirst();

item.val1++;

item.val2++;

}

}
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Programming Model 

Complexities

 Important: the potential for “undoing” is 

inevitable!

 in both pessimistic and optimistic implementations

 in pessimistic because of possible deadlock

 in optimistic because of conflict
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49

Programming Model 

Complexities

 What if we have done something that cannot 

be undone?

 Irreversible operations 
 launch

 format

 take_medicine

 shutdown

 send_email_to_boss _after_three_beers
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Problem In Principle 

 Destroys the composability properties

 performing irreversible operations becomes a 

global property, just as holding locks was a global 

property

 caller needs to know whether callee performs 

irreversible operations

 why depends on the specific treatment of irreversible 

operations
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Ideas for Addressing: #1

 Completely disallow irreversible operations in 

transactions

 typically also enforce/propagate property with a 

type system

 a la Haskell

 draconian, global property, hard to adapt to pre-

existing libraries
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Ideas for Addressing: #2

 When encountering irreversible operations, 

roll back the transaction, acquire single global 

lock, restart

 one transaction at a time can be performing 

irreversible actions

 limits performance, makes clients non-

independent

 exposes as a performance impact the fact that 

irreversible actions are a global property
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Ideas for Addressing: #3

 When encountering irreversible operations, 

commit the transaction, breaking it up in two 

(“punctuation”)

 violates atomicity, needs type system for warning 

to the user, all callers need to know

 can be combined with system for restoring “local” 

invariants when a transaction is punctuated

 in practice turns out to be quite easy to retrofit, even 

for large applications and external opaque libraries
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Ideas for Addressing: #4

 (Not really addressing the problem, but 

limiting its impact.)

 I/O is the biggest problem, but most I/O is 

perfectly reversible

 only read after write is irreversible

 Buffer reads, delay writes, as long as they 

are not in a read-after-write pattern

 perform writes at end of transaction, replay reads 

on retry
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CONCLUSIONS
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Concurrent Programming 

Overview

 You got a good idea of concurrent 

programming techniques

 what is used in current practice

 and how to use it correctly

 what people do research on

 and what problems people focus on the most

 what are the possibilities for the future
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