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Lecture Schedule

• Lecture 1:  Origins and Introduction to 
Computational Type Theory (CTT)

• Lecture 2:   Logic in CTT

• Lecture 3:   Proofs as Programs

• Lecture 4:   The Logic of Events and Proofs as 
Processes



Obsession

Since 1971 I’ve been obsessed with the connection 
between formal math and programming languages. I see 
a convergence.

formal computational math            richly typed PLs
PSEs                                             LPEs



Why Study CTT?

1. CTT is a very rich type theory, slightly older sibling of CIC 
as implemented in Coq. Here is a comparison:
CTT CIC
grounded in semantics      grounded in proof theory
(partial equivalence)         (strong normalization)
implicitly typed                   explicitly typed
extensional equality          intensional equality
predicative * impredicative
Turing-complete                 sub-Turing complete
elegant objects theory      objects ?
processes are primitive     no primitive processes
proofs as proof trees         proofs as proof scripts
*Deep insight of Poincaré.



Why Study CTT?

2. A “Revolution” in programming is coming.

Logical Programming Environments (LPEs) 
providing advanced formal methods including 
provers, like Coq , HOL, and Nuprl, are coming to 
industry, there will be room for many new ideas 
and a “race to the top.”

Intel understood formal methods for hardware, 
will they get it for software? Will Microsoft or will 
they have the “best 1970s technology”?



Why Study CTT?

3. The “Idea Revolution” has happened, built on 
automated reasoning, constructive logics, 
correct-by-construction programming, large 
libraries of formal knowledge.

These ideas will be manifest broadly, from 
mathematics and physics to biology -- with 
exciting breakthroughs.



Selected Notable Examples

• Four Color Theorem formalization – Gonthier
• Kepler Conjecture Work – Halles with HOL team 

and INRIA team
• Constructive Higman’s Lemma – Murthy
• Prime Number Theorem – Harrison, Avigad
• Kruskal’s Theorem – Seisenberger
• Intel’s verified floating point arith -- Harrison
• POPLMark Challenge – Coq,Twelf,HOL
• Paris driverless Metro line 14 – Abrial, B-tool
• Mizar’s Journal of Formalized Mathematics



Selected Notable Examples

• Automatically Generated Correct-by-
Construction Authentication Protocols –
Bickford

• Verified ML Compiler – Dr. Who

• Other examples?



Lecture 1 Outline

Brief history of type theory from 1908 to 2010

Overview of Computational Type Theory (CTT)
CTT Computation System

terms, evaluation, Howe’s squiggle (~)
CTT Type System

Martin-Löf’s semantic method, 
Allen’s PER model

Exercises and Recommended Reading



Historical Backdrop

The research that led to modern type theories 
was done against the backdrop of a “crisis” in 
mathematics which caused logicians to look at 
ways to be more rigorous and precise about 
basic concepts. Key players in setting the stage 
were:

Frege                         Cantor

Begriffsschrift             Set Theory

1879                            1874



Origins

Russell & Whitehead    Hilbert     Brouwer    Zermelo

Church        Gentzen       Herbrand        Kolmogorov

McCarthy   Kleene     Kreisel    Heyting     de Bruijn      Bishop

Milner         Scott          Girard                        Martin-Löf

Lisp     (Algol68)    ML

HOL          Nuprl     Coq       Alf     ( Automath )  Mizar



Origins



Origins continued

Philosophical Issues

Logicism Intuitionism Formalism

Russell                       Brouwer                   Hilbert



Origins continued

Philosophical issues are harmonized in CTT.

-- CTT is formal but very abstract

-- CTT is a constructive logic, but is classically

sensible and consistent

-- CTT uses propositions-as-types which relates 
logic and mathematics at a fundamental level



Foundational Criteria

What is required for a constructive theory to be 
an adequate foundation for computer science?

1. Proofs-as-programs works and the theory is a  
programming language and programming logic 
combined that can be well implemented.

2. Computational mathematics, e.g. numerical 
methods, computational geometry and algebra 
etc. is grounded in this theory.



Foundational Criteria continued

3. Can provide a semantics to any 
programming language.

4. All axioms and inference rules have a   
computational meaning, justified by 
propositions-as-types.

5. The theory explains and justifies the 
principles of computing as they unfold.

6. Reasoning can well automated well.

7. The theory can be read classically.



Reading for Lecture 1

All reading material can be found at
www.nuprl.org

Douglas Howe:  Equality in Lazy Computation Systems, LICS 89

Stuart Allen: Non-type theoretic definition of Martin-Löf’s types, LICS 87
Nax Mendler: Inductive Definition in Type Theory, PhD thesis, 1988  see Chapter 4

Robert W. Harper: Constructing Type Systems over an Operational Semantics, J. of 
Symbolic Computation, 14, 71-84, 1992

Christoph Kreitz: Nuprl 5 Reference Manual and User’s Guide, 2002
www.nuprl.org/html/02cucs-NuprlManual.pdf see Appendix A

Computational type theory: Scholarpedia, 4(2):7618    2008

http://www.nuprl.org/
http://www.nuprl.org/html/02cucs-NuprlManual.pdf
http://www.nuprl.org/html/02cucs-NuprlManual.pdf
http://www.nuprl.org/html/02cucs-NuprlManual.pdf
http://www.scholarpedia.org/article/Computational_type_theory
http://www.scholarpedia.org/


Lecture 2 Outline

CTT Inference System

judgements and sequents

functionality semantics of sequents

propositions-as-types principle

Intuitionistic Propositional Calculus in CTT

Intuitionistic Predicate Calculus

Heyting Arithmetic (HA)

Proofs as programs

Exercises



Reading for Lecture 2

All reading material is at www.nuprl.org

Proofs as Programs by Joseph L. Bates and Robert L. Constable, ACM 
Transactions on Programming Languages and Systems, vol. 7, no. 1, pp. 53-
71.

Christoph Kreitz: Nuprl 5 Reference Manual and User’s Guide, 2002
www.nuprl.org/html/02cucs-NuprlManual.pdf see A.3 Inference Rules

Implementing Metamathematics as an Approach to Automatic Theorem 
Proving by Robert L. Constable and Douglas J. Howe, Formal Techniques in 
Artificial Intelligence: A Source Book, R.B. Banerji (ed.), pp. 45-76, Elsevier 
Science, North-Holland,  1990.

http://www.nuprl.org/
http://www.nuprl.org/documents/Bates/ProofsasPrograms.html
http://www.nuprl.org/documents/Bates/ProofsasPrograms.html
http://www.nuprl.org/documents/Bates/ProofsasPrograms.html
http://www.nuprl.org/html/02cucs-NuprlManual.pdf
http://www.nuprl.org/html/02cucs-NuprlManual.pdf
http://www.nuprl.org/html/02cucs-NuprlManual.pdf
http://www.nuprl.org/documents/Constable/ImplementingMetamathematics.html
http://www.nuprl.org/documents/Constable/ImplementingMetamathematics.html


Lecture 3 Outline

Review and answers to exercises

Programming in CTT, efficient extracts

Universes and Higher-Order Logic

Object-oriented types

subtyping, Top type, unit records

records and intersection types

Exercises and Recommended Reading



Reading for Lecture 3

All reading material is at www.nuprl.org

Dependent Intersection: A New Way of Defining 
Records in Type Theory by Alexei Kopylov, 
Proceedings of 18th Annual IEEE Symposium on 
Logic in Computer Science, pp. 86-95, 2003.

Type Theoretical Foundations for Data Structures, 
Classes, and Objects by  Alexei Kopylov, Cornell 
University Ph.D. Thesis, 2004.

http://www.nuprl.org/
http://www.nuprl.org/documents/Kopylov/dinter1.html
http://www.nuprl.org/documents/Kopylov/dinter1.html
http://www.nuprl.org/documents/Kopylov/TypeTheoretical.html
http://www.nuprl.org/documents/Kopylov/TypeTheoretical.html


Lecture 4 Outline

Objectives of Proofs-as-Processes

Distributed Computing Model

Event Structures

A Logic of Events

Specifying Protocols

Extracting Processes from Proofs

General Process Model



Reading for Lecture 4

All reading material is located at www.nuprl.org

• Formal Foundations of Computer Security by Mark 
Bickford and Robert Constable, NATO Science for Peace 
and Security Series, D: Information and 
Communication Security, Vol. 14, pages 29 - 52, 2008., 
2008.

• Unguessable Atoms: A Logical Foundation for 
Security by Mark Bickford, Verified Software: Theories, 
Tools, Experiments, Second International Conference, 
VSTTE 2008 Toronto, Canada, pp 30 - 53, 2008.

http://www.nuprl.org/
http://www.nuprl.org/documents/Constable/Formal.Foundations.html
http://www.nuprl.org/documents/Bickford/UnguessableAtoms.08.htm
http://www.nuprl.org/documents/Bickford/UnguessableAtoms.08.htm


Lecture 2 Slides

Integer square root example



Integer Square Root
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Proof of Root Theorem
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Proof of Root Theorem (cont.)



Here is the extract term for this proof in ML 
notation with proof terms (pf) included:

0

1

2

0 0

1

1 1

 let   

 if  then

 else let 

 in if   then

else 

rec

,pf

r,pf -

r n

sqrt

s

r ,pf

r,pf'

qrti

i

i

i

i

i

The Root Program Extract



A Recursive Program for Integer Roots

0

2

0 0

0

r(n):=  n= 0  0

 let r r (n-1) 

 (r 1) n  r 1

 r  

if then

          else in

          if then

                                 else fi

          fi

Here is a very clean functional program

This program is close to a declarative mathematical 
description of roots given by the following theorem.



Efficient Root Program

0
2

0

0

0

root(n) :   n=0    0
  r  = root (n/4) 

(2 r +1) n
2 r +1

 2 r

                  since if  n 0, n/4 n

if then
else  let in

if 
                  then 
                  else  fi
                  fi

30

The interactive code and the recursive program are 

both very inefficient.  It is easy to make them 

efficient.

This is an efficient recursive function, but why is it correct?



A Theorem that Roots Exist 
(Can be Found)

2 2

0 0 0

 n: . r: . Root (r,n)

by 

     n = 0  let  r = 0

    case  assume r: .Root (r, n/4)

     r           r n/4 < (r  + 1)

      note   

efficient induc

        

ion

   4

t

Theorem

Pf 

Base

Induction

Choose where

2 2 2

0 0 0 0

0 0

2

0

2 2

0 0 0

r  n  < 4 (r 1) 4 r 8 r 4

       thus              2 r   root (n) < 2 (r +1)

           (2 r +1)  n  r = 2×r + 1

         since    (2 r )  = 4 r 8 r 4

         r = 2×r   since

 if then

else 

  

  2 2

0 0   (2 r ) n < (2 r +1)

Qed
31



Correctness of the Recursive Program

P(0) & n: .(P(n/4) P(n))  n: .P(n)

32

Using this “efficient induction principle”.  

We can give a nice proof of the principle by 

ordinary induction.


