
Lectures on Computational Type
Theory

From Proofs-as-Programs to
Proofs-as-Processes

Robert L. Constable
Cornell University

Lecture Schedule

• Lecture 1: Origins and Introduction to
Computational Type Theory (CTT)

• Lecture 2: Logic in CTT

• Lecture 3: Proofs as Programs

• Lecture 4: The Logic of Events and Proofs as
Processes

Obsession

Since 1971 I’ve been obsessed with the connection
between formal math and programming languages. I see
a convergence.

formal computational math richly typed PLs
PSEs LPEs

Why Study CTT?

1. CTT is a very rich type theory, slightly older sibling of CIC
as implemented in Coq. Here is a comparison:
CTT CIC
grounded in semantics grounded in proof theory
(partial equivalence) (strong normalization)
implicitly typed explicitly typed
extensional equality intensional equality
predicative * impredicative
Turing-complete sub-Turing complete
elegant objects theory objects ?
processes are primitive no primitive processes
proofs as proof trees proofs as proof scripts
*Deep insight of Poincaré.

Why Study CTT?

2. A “Revolution” in programming is coming.

Logical Programming Environments (LPEs)
providing advanced formal methods including
provers, like Coq , HOL, and Nuprl, are coming to
industry, there will be room for many new ideas
and a “race to the top.”

Intel understood formal methods for hardware,
will they get it for software? Will Microsoft or will
they have the “best 1970s technology”?

Why Study CTT?

3. The “Idea Revolution” has happened, built on
automated reasoning, constructive logics,
correct-by-construction programming, large
libraries of formal knowledge.

These ideas will be manifest broadly, from
mathematics and physics to biology -- with
exciting breakthroughs.

Selected Notable Examples

• Four Color Theorem formalization – Gonthier
• Kepler Conjecture Work – Halles with HOL team

and INRIA team
• Constructive Higman’s Lemma – Murthy
• Prime Number Theorem – Harrison, Avigad
• Kruskal’s Theorem – Seisenberger
• Intel’s verified floating point arith -- Harrison
• POPLMark Challenge – Coq,Twelf,HOL
• Paris driverless Metro line 14 – Abrial, B-tool
• Mizar’s Journal of Formalized Mathematics

Selected Notable Examples

• Automatically Generated Correct-by-
Construction Authentication Protocols –
Bickford

• Verified ML Compiler – Dr. Who

• Other examples?

Lecture 1 Outline

Brief history of type theory from 1908 to 2010

Overview of Computational Type Theory (CTT)
CTT Computation System

terms, evaluation, Howe’s squiggle (~)
CTT Type System

Martin-Löf’s semantic method,
Allen’s PER model

Exercises and Recommended Reading

Historical Backdrop

The research that led to modern type theories
was done against the backdrop of a “crisis” in
mathematics which caused logicians to look at
ways to be more rigorous and precise about
basic concepts. Key players in setting the stage
were:

Frege Cantor

Begriffsschrift Set Theory

1879 1874

Origins

Russell & Whitehead Hilbert Brouwer Zermelo

Church Gentzen Herbrand Kolmogorov

McCarthy Kleene Kreisel Heyting de Bruijn Bishop

Milner Scott Girard Martin-Löf

Lisp (Algol68) ML

HOL Nuprl Coq Alf (Automath) Mizar

Origins

Origins continued

Philosophical Issues

Logicism Intuitionism Formalism

Russell Brouwer Hilbert

Origins continued

Philosophical issues are harmonized in CTT.

-- CTT is formal but very abstract

-- CTT is a constructive logic, but is classically

sensible and consistent

-- CTT uses propositions-as-types which relates
logic and mathematics at a fundamental level

Foundational Criteria

What is required for a constructive theory to be
an adequate foundation for computer science?

1. Proofs-as-programs works and the theory is a
programming language and programming logic
combined that can be well implemented.

2. Computational mathematics, e.g. numerical
methods, computational geometry and algebra
etc. is grounded in this theory.

Foundational Criteria continued

3. Can provide a semantics to any
programming language.

4. All axioms and inference rules have a
computational meaning, justified by
propositions-as-types.

5. The theory explains and justifies the
principles of computing as they unfold.

6. Reasoning can well automated well.

7. The theory can be read classically.

Reading for Lecture 1

All reading material can be found at
www.nuprl.org

Douglas Howe: Equality in Lazy Computation Systems, LICS 89

Stuart Allen: Non-type theoretic definition of Martin-Löf’s types, LICS 87
Nax Mendler: Inductive Definition in Type Theory, PhD thesis, 1988 see Chapter 4

Robert W. Harper: Constructing Type Systems over an Operational Semantics, J. of
Symbolic Computation, 14, 71-84, 1992

Christoph Kreitz: Nuprl 5 Reference Manual and User’s Guide, 2002
www.nuprl.org/html/02cucs-NuprlManual.pdf see Appendix A

Computational type theory: Scholarpedia, 4(2):7618 2008

http://www.nuprl.org/
http://www.nuprl.org/html/02cucs-NuprlManual.pdf
http://www.nuprl.org/html/02cucs-NuprlManual.pdf
http://www.nuprl.org/html/02cucs-NuprlManual.pdf
http://www.scholarpedia.org/article/Computational_type_theory
http://www.scholarpedia.org/

Lecture 2 Outline

CTT Inference System

judgements and sequents

functionality semantics of sequents

propositions-as-types principle

Intuitionistic Propositional Calculus in CTT

Intuitionistic Predicate Calculus

Heyting Arithmetic (HA)

Proofs as programs

Exercises

Reading for Lecture 2

All reading material is at www.nuprl.org

Proofs as Programs by Joseph L. Bates and Robert L. Constable, ACM
Transactions on Programming Languages and Systems, vol. 7, no. 1, pp. 53-
71.

Christoph Kreitz: Nuprl 5 Reference Manual and User’s Guide, 2002
www.nuprl.org/html/02cucs-NuprlManual.pdf see A.3 Inference Rules

Implementing Metamathematics as an Approach to Automatic Theorem
Proving by Robert L. Constable and Douglas J. Howe, Formal Techniques in
Artificial Intelligence: A Source Book, R.B. Banerji (ed.), pp. 45-76, Elsevier
Science, North-Holland, 1990.

http://www.nuprl.org/
http://www.nuprl.org/documents/Bates/ProofsasPrograms.html
http://www.nuprl.org/documents/Bates/ProofsasPrograms.html
http://www.nuprl.org/documents/Bates/ProofsasPrograms.html
http://www.nuprl.org/html/02cucs-NuprlManual.pdf
http://www.nuprl.org/html/02cucs-NuprlManual.pdf
http://www.nuprl.org/html/02cucs-NuprlManual.pdf
http://www.nuprl.org/documents/Constable/ImplementingMetamathematics.html
http://www.nuprl.org/documents/Constable/ImplementingMetamathematics.html

Lecture 3 Outline

Review and answers to exercises

Programming in CTT, efficient extracts

Universes and Higher-Order Logic

Object-oriented types

subtyping, Top type, unit records

records and intersection types

Exercises and Recommended Reading

Reading for Lecture 3

All reading material is at www.nuprl.org

Dependent Intersection: A New Way of Defining
Records in Type Theory by Alexei Kopylov,
Proceedings of 18th Annual IEEE Symposium on
Logic in Computer Science, pp. 86-95, 2003.

Type Theoretical Foundations for Data Structures,
Classes, and Objects by Alexei Kopylov, Cornell
University Ph.D. Thesis, 2004.

http://www.nuprl.org/
http://www.nuprl.org/documents/Kopylov/dinter1.html
http://www.nuprl.org/documents/Kopylov/dinter1.html
http://www.nuprl.org/documents/Kopylov/TypeTheoretical.html
http://www.nuprl.org/documents/Kopylov/TypeTheoretical.html

Lecture 4 Outline

Objectives of Proofs-as-Processes

Distributed Computing Model

Event Structures

A Logic of Events

Specifying Protocols

Extracting Processes from Proofs

General Process Model

Reading for Lecture 4

All reading material is located at www.nuprl.org

• Formal Foundations of Computer Security by Mark
Bickford and Robert Constable, NATO Science for Peace
and Security Series, D: Information and
Communication Security, Vol. 14, pages 29 - 52, 2008.,
2008.

• Unguessable Atoms: A Logical Foundation for
Security by Mark Bickford, Verified Software: Theories,
Tools, Experiments, Second International Conference,
VSTTE 2008 Toronto, Canada, pp 30 - 53, 2008.

http://www.nuprl.org/
http://www.nuprl.org/documents/Constable/Formal.Foundations.html
http://www.nuprl.org/documents/Bickford/UnguessableAtoms.08.htm
http://www.nuprl.org/documents/Bickford/UnguessableAtoms.08.htm

Lecture 2 Slides

Integer square root example

Integer Square Root

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

6

5

4

3

2

1

Proof of Root Theorem
22

22

22

2

2

2

22

1

1

0

1

0

1

1 1

1

1

allR

exis

n : . r : . r n r

n :

r : . r n r

.....

r : . r r

AtsR

Decide r

uto

.....

: , r : , r r

r : . r r

+

BY

BY

induction case.....

BY THEN

induction case.....

BY T

Nat n

N

d

HE

I

i

i

i

i

Auto

2 22

22

2 22

22

1 1 1

1

1

1

1 1 1

+

+

Case 1.....

BY THEN

Case 2.....

BY THEN

.....

: , r : , r r , r

r : . r r

Auto'

.....

: , r : , r r , r

r : . r r

existsR r

existsR Autor

i i i

i

i i i

i

Proof of Root Theorem (cont.)

Here is the extract term for this proof in ML
notation with proof terms (pf) included:

0

1

2

0 0

1

1 1

 let

 if then

 else let

 in if then

else

rec

,pf

r,pf -

r n

sqrt

s

r ,pf

r,pf'

qrti

i

i

i

i

i

The Root Program Extract

A Recursive Program for Integer Roots

0

2

0 0

0

r(n):= n= 0 0

 let r r (n-1)

 (r 1) n r 1

 r

if then

 else in

 if then

 else fi

 fi

Here is a very clean functional program

This program is close to a declarative mathematical
description of roots given by the following theorem.

Efficient Root Program

0
2

0

0

0

root(n) : n=0 0
 r = root (n/4)

(2 r +1) n
2 r +1

 2 r

 since if n 0, n/4 n

if then
else let in

if
 then
 else fi
 fi

30

The interactive code and the recursive program are

both very inefficient. It is easy to make them

efficient.

This is an efficient recursive function, but why is it correct?

A Theorem that Roots Exist
(Can be Found)

2 2

0 0 0

 n: . r: . Root (r,n)

by

 n = 0 let r = 0

 case assume r: .Root (r, n/4)

 r r n/4 < (r + 1)

 note

efficient induc

ion

 4

t

Theorem

Pf

Base

Induction

Choose where

2 2 2

0 0 0 0

0 0

2

0

2 2

0 0 0

r n < 4 (r 1) 4 r 8 r 4

 thus 2 r root (n) < 2 (r +1)

 (2 r +1) n r = 2×r + 1

 since (2 r) = 4 r 8 r 4

 r = 2×r since

 if then

else

 2 2

0 0 (2 r) n < (2 r +1)

Qed
31

Correctness of the Recursive Program

P(0) & n: .(P(n/4) P(n)) n: .P(n)

32

Using this “efficient induction principle”.

We can give a nice proof of the principle by

ordinary induction.

